Jump to content

Complex coordinate space

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, the n-dimensional complex coordinate space (or complex n-space) is the set of all ordered n-tuples of complex numbers, also known as complex vectors. The space is denoted , and is the n-fold Cartesian product of the complex line with itself. Symbolically, or The variables are the (complex) coordinates on the complex n-space. The special case , called the complex coordinate plane, is not to be confused with the complex plane, a graphical representation of the complex line.

Complex coordinate space is a vector space over the complex numbers, with componentwise addition and scalar multiplication. The real and imaginary parts of the coordinates set up a bijection of with the 2n-dimensional real coordinate space, . With the standard Euclidean topology, is a topological vector space over the complex numbers.

A function on an open subset of complex n-space is holomorphic if it is holomorphic in each complex coordinate separately. Several complex variables is the study of such holomorphic functions in n variables. More generally, the complex n-space is the target space for holomorphic coordinate systems on complex manifolds.

See also

References

  • Gunning, Robert; Hugo Rossi, Analytic functions of several complex variables