Jump to content

Geometrically (algebraic geometry)

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In algebraic geometry, especially in scheme theory, a property is said to hold geometrically over a field if it also holds over the algebraic closure of the field. In other words, a property holds geometrically if it holds after a base change to a geometric point. For example, a smooth variety is a variety that is geometrically regular.

Geometrically irreducible and geometrically reduced

Given a scheme X that is of finite type over a field k, the following are equivalent:[1]

  • X is geometrically irreducible; i.e., is irreducible, where denotes an algebraic closure of k.
  • is irreducible for a separable closure of k.
  • is irreducible for each field extension F of k.

The same statement also holds if "irreducible" is replaced with "reduced" and the separable closure is replaced by the perfect closure.[2]

References

  1. ^ Hartshorne 1977, Ch II, Exercise 3.15. (a)
  2. ^ Hartshorne 1977, Ch II, Exercise 3.15. (b)

Sources

  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157