Jump to content

Hyperlocomotion

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Hyperlocomotion, also known as locomotor hyperactivity, hyperactivity, or increased locomotor activity, is an effect of certain drugs in animals in which locomotor activity (locomotion) is increased.[1] It is induced by certain drugs like psychostimulants and NMDA receptor antagonists and is reversed by certain other drugs like antipsychotics and certain antidepressants.[1][2][3][4] Stimulation of locomotor activity is thought to be mediated by increased signaling in the nucleus accumbens.[5][6]

Drugs inducing and reversing hyperlocomotion

Psychostimulants and NMDA receptor antagonists

Hyperlocomotion is induced by dopamine releasing agents and psychostimulants like amphetamine and methamphetamine and by NMDA receptor antagonists and dissociative hallucinogens like dizocilpine (MK-801), phencyclidine (PCP), and ketamine.[1][2][3][7][8] Amphetamines and NMDA receptor antagonists likewise induce stereotypies.[1][3]

Monoamine reuptake inhibitors

The dopamine reuptake inhibitors (DRIs) amineptine, bupropion, and nomifensine increase spontaneous locomotor activity in animals.[4][9] The DRI cocaine increases locomotor activity similarly to the preceding DRIs and to amphetamines.[7] The atypical DRI modafinil does not produce hyperlocomotion in animals.[7]

Norepinephrine reuptake inhibitors (NRIs), like atomoxetine, reboxetine, desipramine do not increase locomotor activity and either have no effect or can decrease it.[10][11][12][13] In addition, NRIs decrease amphetamine-, cocaine-, methylphenidate-, and PCP-induced hyperlocomotion.[14][15] Accordingly, atomoxetine has been reported to attenuate the stimulant and rewarding effects of dextroamphetamine in humans.[16][17]

Selective serotonin reuptake inhibitors (SSRIs) have been reported to have no effect or to increase locomotor activity, at least under certain circumstances like novel environments.[18][11][12]

Many other antidepressants, for instance many tricyclic antidepressants (TCAs), do not increase locomotion, and instead often actually show behavioral sedation.[4][5][19]

Dopamine receptor agonists

Direct dopamine receptor agonists like apomorphine show biphasic effects, decreasing locomotor activity at low doses and increasing locomotor activity at high doses.[5]

Dopamine receptor antagonists

Drug-induced hyperlocomotion can be reversed by various drugs, such as antipsychotics acting as dopamine D2 receptor antagonists.[1][3] Reversal of drug-induced hyperlocomotion has been used as an animal test of drug antipsychotic-like activity.[1][3] Reversal of amphetamine- and NMDA receptor antagonist-induced stereotypies is also employed as a test of drug antipsychotic-like activity.[1][3]

Serotonin receptor agonists

The non-selective serotonin receptor agonists and serotonergic psychedelics LSD and DOI decrease locomotor activity in animals.[8] However, whereas LSD suppresses locomotion at all doses tested, subsequent study found that DOI showed an inverted U-shaped dose–response curve, with stimulation of locomotor activity at low doses and suppression of locomotion at higher doses.[8] The hyperlocomotion of DOI at low doses is abolished in serotonin 5-HT2A receptor knockout mice, whereas the hypolocomotion with DOI at higher doses is blocked by the selective serotonin 5-HT2C receptor antagonist SER-082.[8]

Serotonin receptor antagonists

Serotonin 5-HT2A receptor antagonists like volinanserin (MDL-100907) and ketanserin counteract the hyperactivity induced by amphetamine, cocaine, and NMDA receptor antagonists like PCP in animals.[20][8][21][22][23][24][25][26] Less-selective serotonin 5-HT2A receptor antagonists, like trazodone, have been found to decrease locomotor and behavioral activity and to inhibit amphetamine-, cocaine-, and PCP-induced hyperactivity in animals similarly.[23][27][28][29][30][4] In addition to serotonin 5-HT2A receptor antagonists, serotonin 5-HT2A receptor biased agonists that selectively activate the β-arrestin pathway but not the Gq pathway, like 25N-N1-Nap, have been found to antagonize PCP-induced locomotor hyperactivity in rodents.[20]

Although serotonin 5-HT2B receptor antagonists by themselves do not appear to affect locomotor activity,[31] antagonists of the serotonin 5-HT2B receptor decrease the locomotor hyperactivity of amphetamine, cocaine, and PCP.[32][33][34][35]

Serotonin releasing agents

Certain serotonin releasing agents (SRAs), like MDMA and MDAI, though notably not others, like chlorphentermine, fenfluramine, and MMAI,[36][37][38] induce locomotor hyperactivity in animals.[39][40][41][42] This is dependent on serotonin release allowed for by the serotonin transporter (SERT) and serotonin 5-HT2B receptor.[43][40][41][44][45] SERT knockout, pretreatment with serotonin reuptake inhibitors (SRIs) (which block MDMA-induced SERT-mediated serotonin release), or serotonin 5-HT2B receptor knockout (which likewise blocks MDMA-induced serotonin release), all completely block MDMA-induced locomotor hyperactivity.[43][40][41][44][45] In addition, locomotor hyperactivity produced by MDMA is partially attenuated by serotonin 5-HT1B receptor antagonism (or knockout)[43][46][47] or by serotonin 5-HT2A receptor antagonism.[48][49][50] The locomotor hyperactivity produced by MDMA is fully attenuated by combined serotonin 5-HT1B and 5-HT2A receptor antagonism.[49] Conversely, the serotonin 5-HT1A receptor is not involved in MDMA-induced hyperlocomotion.[40] Serotonin 5-HT2C receptor activation appears to inhibit MDMA-induced hyperlocomotion, and antagonism of this receptor has been reported to markedly enhance the locomotor hyperactivity induced by MDMA.[50][49][51][52] Activation of the serotonin 5-HT2C receptor is known to strongly inhibit dopamine release in the mesolimbic pathway as well as inhibit dopamine release in the nigrostriatal and mesocortical pathways.[53][54][50][55]

Although the serotonin system has been implicated in the hyperlocomotion of SRAs, certain SRAs, such as MDMA, are actually serotonin–norepinephrine–dopamine releasing agents (SNDRAs), and catecholaminergic mechanisms are likely to additionally be involved.[56][57] Relatedly, the α1-adrenergic receptor antagonist prazosin completely blocks MDMA-induced hyperlocomotion in animals.[58][57][59] In addition, the α1-adrenergic receptor antagonists prazosin and doxazosin reduce the psychostimulant and/or euphoric effects of MDMA in humans.[60][61][62] Similarly, the norepinephrine reuptake inhibitor (NRI) reboxetine, which prevents MDMA from inducing norepinephrine release, likewise reduces the stimulant effects and emotional excitation of MDMA in humans.[58][63] Dopamine receptors also appear to be involved in MDMA-induced hyperlocomotion, although findings in this area, both in animals and humans, seem to be conflicting.[58][64][65]

The reasons for the differences in locomotor activity with different SRAs are not fully clear.[50] In any case, they may be related to factors such as whether the agents are selective SRAs, whether they additionally act as agonists of serotonin 5-HT2 receptors, and whether they additionally induce the release of norepinephrine and/or dopamine.[50][66][18][43][38][67]

Muscarinic acetylcholine receptor antagonists

Non-selective muscarinic acetylcholine receptor antagonists, or antimuscarinics, such as atropine, hyoscyamine, and scopolamine, produce robust hyperactivity in animals, but also produce deliriant effects such as amnesia and hallucinations in both animals and humans.[68][69]

Similar effects

Other similar effects include stereotypy, exploratory behavior, climbing behavior, and jumping behavior.[70][2][3] Amphetamines induce stereotypies in addition to hyperlocomotion.[2][3] Apomorphine induces stereotypy and climbing behavior.[2] The dopamine precursor levodopa (L-DOPA) induces jumping behavior.[2] These effects can all be reversed by antipsychotics.[2]

See also

References

  1. ^ a b c d e f g Castagné, Vincent; Moser, Paul C.; Porsolt, Roger D. (2009). "Preclinical Behavioral Models for Predicting Antipsychotic Activity". Advances in Pharmacology. Vol. 57. Elsevier. pp. 381–418. doi:10.1016/s1054-3589(08)57010-4. ISBN 978-0-12-378642-5. ISSN 1054-3589. PMID 20230767.
  2. ^ a b c d e f g Ayyar P, Ravinder JR (June 2023). "Animal models for the evaluation of antipsychotic agents". Fundam Clin Pharmacol. 37 (3): 447–460. doi:10.1111/fcp.12855. PMID 36410728.
  3. ^ a b c d e f g h Yee BK, Singer P (October 2013). "A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia". Cell Tissue Res. 354 (1): 221–246. doi:10.1007/s00441-013-1611-0. PMC 3791321. PMID 23579553.
  4. ^ a b c d Tucker JC, File SE (1986). "The effects of tricyclic and 'atypical' antidepressants on spontaneous locomotor activity in rodents". Neurosci Biobehav Rev. 10 (2): 115–121. doi:10.1016/0149-7634(86)90022-9. PMID 3737024.
  5. ^ a b c D'Aquila PS, Collu M, Gessa GL, Serra G (September 2000). "The role of dopamine in the mechanism of action of antidepressant drugs". Eur J Pharmacol. 405 (1–3): 365–373. doi:10.1016/s0014-2999(00)00566-5. PMID 11033341.
  6. ^ Ikemoto S, Panksepp J (December 1999). "The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking". Brain Res Brain Res Rev. 31 (1): 6–41. doi:10.1016/s0165-0173(99)00023-5. PMID 10611493.
  7. ^ a b c Nishino, Seiji; Kotorii, Nozomu (2016). "Modes of Action of Drugs Related to Narcolepsy: Pharmacology of Wake-Promoting Compounds and Anticataplectics". Narcolepsy. Cham: Springer International Publishing. pp. 307–329. doi:10.1007/978-3-319-23739-8_22. ISBN 978-3-319-23738-1.
  8. ^ a b c d e Hanks JB, González-Maeso J (January 2013). "Animal models of serotonergic psychedelics". ACS Chem Neurosci. 4 (1): 33–42. doi:10.1021/cn300138m. PMC 3547517. PMID 23336043.
  9. ^ Rampello, Liborio; Nicoletti, Ferdinando; Nicoletti, Francesco (2000). "Dopamine and Depression". CNS Drugs. 13 (1). Springer Science and Business Media LLC: 35–45. doi:10.2165/00023210-200013010-00004. ISSN 1172-7047.
  10. ^ Upadhyaya HP, Desaiah D, Schuh KJ, Bymaster FP, Kallman MJ, Clarke DO, Durell TM, Trzepacz PT, Calligaro DO, Nisenbaum ES, Emmerson PJ, Schuh LM, Bickel WK, Allen AJ (March 2013). "A review of the abuse potential assessment of atomoxetine: a nonstimulant medication for attention-deficit/hyperactivity disorder". Psychopharmacology (Berl). 226 (2): 189–200. doi:10.1007/s00213-013-2986-z. PMC 3579642. PMID 23397050.
  11. ^ a b Mitchell HA, Ahern TH, Liles LC, Javors MA, Weinshenker D (November 2006). "The effects of norepinephrine transporter inactivation on locomotor activity in mice". Biol Psychiatry. 60 (10): 1046–1052. doi:10.1016/j.biopsych.2006.03.057. PMID 16893531.
  12. ^ a b Prinssen EP, Ballard TM, Kolb Y, Nicolas LB (September 2006). "The effects of serotonin reuptake inhibitors on locomotor activity in gerbils". Pharmacol Biochem Behav. 85 (1): 44–49. doi:10.1016/j.pbb.2006.07.005. PMID 16920181.
  13. ^ Rogóz Z, Wróbel A, Krasicka-Domka M, Maj J (1999). "Pharmacological profile of reboxetine, a representative of new class of antidepressant drugs, selective noradrenaline reuptake inhibitor (NARI), given acutely". Pol J Pharmacol. 51 (5): 399–404. PMID 10817540.
  14. ^ Tyler TD, Tessel RE (1980). "Norepinephrine uptake inhibitors as biochemically and behaviorally selective antagonists of the locomotor stimulation induced by indirectly acting sympathomimetic aminetic amines in mice". Psychopharmacology (Berl). 69 (1): 27–34. doi:10.1007/BF00426517. PMID 6771822.
  15. ^ Harkin A, Morris K, Kelly JP, O'Donnell JM, Leonard BE (March 2001). "Modulation of MK-801-induced behaviour by noradrenergic agents in mice". Psychopharmacology (Berl). 154 (2): 177–188. doi:10.1007/s002130000630. PMID 11314680.
  16. ^ Somaini L, Donnini C, Raggi MA, Amore M, Ciccocioppo R, Saracino MA, Kalluppi M, Malagoli M, Gerra ML, Gerra G (May 2011). "Promising medications for cocaine dependence treatment". Recent Pat CNS Drug Discov. 6 (2): 146–160. doi:10.2174/157488911795933893. PMID 21599628.
  17. ^ Sofuoglu M, Poling J, Hill K, Kosten T (2009). "Atomoxetine attenuates dextroamphetamine effects in humans". Am J Drug Alcohol Abuse. 35 (6): 412–6. doi:10.3109/00952990903383961. PMC 2796580. PMID 20014909.
  18. ^ a b Higgins GA, Fletcher PJ (July 2015). "Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders". ACS Chem Neurosci. 6 (7): 1071–1088. doi:10.1021/acschemneuro.5b00025. PMID 25870913.
  19. ^ File SE, Tucker JC (1986). "Behavioral consequences of antidepressant treatment in rodents". Neurosci Biobehav Rev. 10 (2): 123–134. doi:10.1016/0149-7634(86)90023-0. PMID 3526203.
  20. ^ a b Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD (December 2023). "Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential". Nat Commun. 14 (1): 8221. doi:10.1038/s41467-023-44016-1. PMC 10724237. PMID 38102107.
  21. ^ Carlsson ML (1995). "The selective 5-HT2A receptor antagonist MDL 100,907 counteracts the psychomotor stimulation ensuing manipulations with monoaminergic, glutamatergic or muscarinic neurotransmission in the mouse--implications for psychosis". J Neural Transm Gen Sect. 100 (3): 225–237. doi:10.1007/BF01276460. PMID 8748668.
  22. ^ O'Neill MF, Heron-Maxwell CL, Shaw G (June 1999). "5-HT2 receptor antagonism reduces hyperactivity induced by amphetamine, cocaine, and MK-801 but not D1 agonist C-APB". Pharmacol Biochem Behav. 63 (2): 237–243. doi:10.1016/s0091-3057(98)00240-8. PMID 10371652.
  23. ^ a b Gleason SD, Shannon HE (January 1997). "Blockade of phencyclidine-induced hyperlocomotion by olanzapine, clozapine and serotonin receptor subtype selective antagonists in mice". Psychopharmacology (Berl). 129 (1): 79–84. doi:10.1007/s002130050165. PMID 9122367.
  24. ^ Ninan I, Kulkarni SK (October 1998). "5-HT2A receptor antagonists block MK-801-induced stereotypy and hyperlocomotion". Eur J Pharmacol. 358 (2): 111–116. doi:10.1016/s0014-2999(98)00591-3. PMID 9808259.
  25. ^ McMahon LR, Cunningham KA (April 2001). "Antagonism of 5-hydroxytryptamine(2a) receptors attenuates the behavioral effects of cocaine in rats". J Pharmacol Exp Ther. 297 (1): 357–363. PMID 11259563.
  26. ^ Herges S, Taylor DA (March 1998). "Involvement of serotonin in the modulation of cocaine-induced locomotor activity in the rat". Pharmacol Biochem Behav. 59 (3): 595–611. doi:10.1016/s0091-3057(97)00473-5. PMID 9512061.
  27. ^ Ayd FJ, Settle EC (1982). "Trazodone: a novel, broad-spectrum antidepressant". Mod Probl Pharmacopsychiatry. Modern Trends in Pharmacopsychiatry. 18: 49–69. doi:10.1159/000406236. ISBN 978-3-8055-3428-4. PMID 6124884.
  28. ^ Rawls WN (January 1982). "Trazodone (Desyrel, Mead-Johnson Pharmaceutical Division)". Drug Intell Clin Pharm. 16 (1): 7–13. doi:10.1177/106002808201600102. PMID 7032872.
  29. ^ Al-Yassiri MM, Ankier SI, Bridges PK (June 1981). "Trazodone--a new antidepressant". Life Sci. 28 (22): 2449–2458. doi:10.1016/0024-3205(81)90586-5. PMID 7019617.
  30. ^ Baran L, Maj J, Rogóz Z, Skuza G (1979). "On the central antiserotonin action of trazodone". Pol J Pharmacol Pharm. 31 (1): 25–33. PMID 482164.
  31. ^ Gleason SD, Lucaites VL, Shannon HE, Nelson DL, Leander JD (December 2001). "m-CPP hypolocomotion is selectively antagonized by compounds with high affinity for 5-HT(2C) receptors but not 5-HT(2A) or 5-HT(2B) receptors". Behav Pharmacol. 12 (8): 613–620. doi:10.1097/00008877-200112000-00005. PMID 11856898.
  32. ^ Cooper, Ignatius Alvarez; Beecher, Kate; Bartlett, Selena E.; Belmer, Arnauld (2021). "Role of the Serotonin 2B Receptor in the Reinforcing Effects of Psychostimulants". 5-HT2B Receptors. Vol. 35. Cham: Springer International Publishing. pp. 309–322. doi:10.1007/978-3-030-55920-5_18. ISBN 978-3-030-55919-9.
  33. ^ Wang Q, Zhou Y, Huang J, Huang N (January 2021). "Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor". Pharmaceuticals (Basel). 14 (2): 76. doi:10.3390/ph14020076. PMC 7909583. PMID 33498477.
  34. ^ Auclair AL, Cathala A, Sarrazin F, Depoortère R, Piazza PV, Newman-Tancredi A, Spampinato U (September 2010). "The central serotonin 2B receptor: a new pharmacological target to modulate the mesoaccumbens dopaminergic pathway activity". J Neurochem. 114 (5): 1323–1332. doi:10.1111/j.1471-4159.2010.06848.x. PMID 20534001.
  35. ^ Devroye C, Cathala A, Di Marco B, Caraci F, Drago F, Piazza PV, Spampinato U (October 2015). "Central serotonin(2B) receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow". Neuropharmacology. 97: 329–337. doi:10.1016/j.neuropharm.2015.06.012. PMID 26116760.
  36. ^ Rothman RB, Blough BE, Baumann MH (December 2006). "Dual dopamine-5-HT releasers: potential treatment agents for cocaine addiction". Trends Pharmacol Sci. 27 (12): 612–618. doi:10.1016/j.tips.2006.10.006. PMID 17056126.
  37. ^ Rothman RB, Baumann MH (August 2006). "Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs". Ann N Y Acad Sci. 1074: 245–260. doi:10.1196/annals.1369.064. PMID 17105921.
  38. ^ a b Callaway CW, Wing LL, Nichols DE, Geyer MA (1993). "Suppression of behavioral activity by norfenfluramine and related drugs in rats is not mediated by serotonin release". Psychopharmacology (Berl). 111 (2): 169–178. doi:10.1007/BF02245519. PMID 7870948.
  39. ^ Callaway, C. W.; Nichols, D. E.; Paulus, M. P.; Geyer, M. A. (1991). "Serotonin Release is Responsible for the Locomotor Hyperactivity in Rats Induced by Derivatives of Amphetamine Related to MDMA". Serotonin: Molecular Biology, Receptors and Functional Effects. Basel: Birkhäuser Basel. pp. 491–505. doi:10.1007/978-3-0348-7259-1_49. ISBN 978-3-0348-7261-4.
  40. ^ a b c d Stove CP, De Letter EA, Piette MH, Lambert WE (August 2010). "Mice in ecstasy: advanced animal models in the study of MDMA". Curr Pharm Biotechnol. 11 (5): 421–433. doi:10.2174/138920110791591508. PMID 20420576.
  41. ^ a b c Aguilar MA, García-Pardo MP, Parrott AC (January 2020). "Of mice and men on MDMA: A translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine ('Ecstasy')". Brain Res. 1727: 146556. doi:10.1016/j.brainres.2019.146556. PMID 31734398.
  42. ^ Fantegrossi WE, Godlewski T, Karabenick RL, Stephens JM, Ullrich T, Rice KC, Woods JH (March 2003). "Pharmacological characterization of the effects of 3,4-methylenedioxymethamphetamine ("ecstasy") and its enantiomers on lethality, core temperature, and locomotor activity in singly housed and crowded mice". Psychopharmacology (Berl). 166 (3): 202–211. doi:10.1007/s00213-002-1261-5. PMID 12563544.
  43. ^ a b c d Martinez-Price, Diana; Krebs-Thomson, Kirsten; Geyer, Mark (1 January 2002). "Behavioral Psychopharmacology of MDMA and MDMA-Like Drugs: A Review of Human and Animal Studies". Addiction Research & Theory. 10 (1). Informa UK Limited: 43–67. doi:10.1080/16066350290001704. ISSN 1606-6359.
  44. ^ a b Fox MA, Andrews AM, Wendland JR, Lesch KP, Holmes A, Murphy DL (December 2007). "A pharmacological analysis of mice with a targeted disruption of the serotonin transporter". Psychopharmacology (Berl). 195 (2): 147–166. doi:10.1007/s00213-007-0910-0. PMID 17712549.
  45. ^ a b Doly S, Valjent E, Setola V, Callebert J, Hervé D, Launay JM, Maroteaux L (March 2008). "Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro". J Neurosci. 28 (11): 2933–2940. doi:10.1523/JNEUROSCI.5723-07.2008. PMC 6670669. PMID 18337424.
  46. ^ Rempel NL, Callaway CW, Geyer MA (May 1993). "Serotonin1B receptor activation mimics behavioral effects of presynaptic serotonin release". Neuropsychopharmacology. 8 (3): 201–211. doi:10.1038/npp.1993.22. PMID 8099482.
  47. ^ Scearce-Levie K, Viswanathan SS, Hen R (January 1999). "Locomotor response to MDMA is attenuated in knockout mice lacking the 5-HT1B receptor". Psychopharmacology (Berl). 141 (2): 154–161. doi:10.1007/s002130050819. PMID 9952039.
  48. ^ Liechti ME, Vollenweider FX (December 2001). "Which neuroreceptors mediate the subjective effects of MDMA in humans? A summary of mechanistic studies". Hum Psychopharmacol. 16 (8): 589–598. doi:10.1002/hup.348. PMID 12404538.
  49. ^ a b c Bankson MG, Cunningham KA (January 2002). "Pharmacological studies of the acute effects of (+)-3,4-methylenedioxymethamphetamine on locomotor activity: role of 5-HT(1B/1D) and 5-HT(2) receptors". Neuropsychopharmacology. 26 (1): 40–52. doi:10.1016/S0893-133X(01)00345-1. PMID 11751031.
  50. ^ a b c d e Baumann MH, Clark RD, Rothman RB (August 2008). "Locomotor stimulation produced by 3,4-methylenedioxymethamphetamine (MDMA) is correlated with dialysate levels of serotonin and dopamine in rat brain". Pharmacol Biochem Behav. 90 (2): 208–217. doi:10.1016/j.pbb.2008.02.018. PMC 2491560. PMID 18403002.
  51. ^ Conductier G, Crosson C, Hen R, Bockaert J, Compan V (June 2005). "3,4-N-methlenedioxymethamphetamine-induced hypophagia is maintained in 5-HT1B receptor knockout mice, but suppressed by the 5-HT2C receptor antagonist RS102221". Neuropsychopharmacology. 30 (6): 1056–1063. doi:10.1038/sj.npp.1300662. PMID 15668722.
  52. ^ Ball KT, Rebec GV (October 2005). "Role of 5-HT2A and 5-HT2C/B receptors in the acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on striatal single-unit activity and locomotion in freely moving rats". Psychopharmacology (Berl). 181 (4): 676–687. doi:10.1007/s00213-005-0038-z. PMID 16001122.
  53. ^ Rothman RB, Blough BE, Baumann MH (2008). "Dopamine/Serotonin releasers as medications for stimulant addictions". Serotonin–Dopamine Interaction: Experimental Evidence and Therapeutic Relevance. Progress in Brain Research. Vol. 172. pp. 385–406. doi:10.1016/S0079-6123(08)00919-9. ISBN 978-0-444-53235-0. PMID 18772043. {{cite book}}: |journal= ignored (help)
  54. ^ Rothman RB, Blough BE, Baumann MH (December 2008). "Dual dopamine/serotonin releasers: potential treatment agents for stimulant addiction". Exp Clin Psychopharmacol. 16 (6): 458–474. doi:10.1037/a0014103. PMC 2683464. PMID 19086767.
  55. ^ Canal CE, Murnane KS (January 2017). "The serotonin 5-HT2C receptor and the non-addictive nature of classic hallucinogens". J Psychopharmacol. 31 (1): 127–143. doi:10.1177/0269881116677104. PMC 5445387. PMID 27903793.
  56. ^ Baumann MH, Wang X, Rothman RB (January 2007). "3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings". Psychopharmacology (Berl). 189 (4): 407–424. doi:10.1007/s00213-006-0322-6. PMC 1705495. PMID 16541247.
  57. ^ a b Pritchard LM, Hensleigh E (2012). "Psychopharmacology and Neurotoxicology of Methamphetamine and 3,4-Methylenedioxymethamphetamine". In Rincón A (ed.). Amphetamines: Neurobiological Mechanisms, Pharmacology and Effects. Hauppauge [NY]: Nova Biomedical Books. pp. 1–43. ISBN 9781614703051. OCLC 726822553. OL 16643844W.
  58. ^ a b c Sáez-Briones P, Hernández A (September 2013). "MDMA (3,4-Methylenedioxymethamphetamine) Analogues as Tools to Characterize MDMA-Like Effects: An Approach to Understand Entactogen Pharmacology". Curr Neuropharmacol. 11 (5): 521–534. doi:10.2174/1570159X11311050007. PMC 3763760. PMID 24403876.
  59. ^ Selken J, Nichols DE (April 2007). "Alpha1-adrenergic receptors mediate the locomotor response to systemic administration of (+/-)-3,4-methylenedioxymethamphetamine (MDMA) in rats". Pharmacol Biochem Behav. 86 (4): 622–630. doi:10.1016/j.pbb.2007.02.006. PMC 1976288. PMID 17363047.
  60. ^ Baggott M, Galloway GP, Jang M, Didier R, Mendelson JE (June 2008). Alpha-1 noradrenergic receptors contribute to psychostimulant-like effects of MDMA in humans (Poster 14) (PDF). CPDD 70th Annual Scientific Meeting, The Caribe Hilton, San Juan, Puerto Rico, June 14-19, 2008. Archived from the original (PDF) on 30 July 2016.
  61. ^ Baggott M, Galloway GP, Jang M, Didier R, Pournajafi-Nazarloo H, Carter CS (June 2008). 3, 4-methylenedioxymethamphetamine (MDMA,'Ecstasy') and prazosin interactions in humans. 70th Annual Meeting of the College on Problems of Drug Dependence, San Juan, Puerto Rico.
  62. ^ Hysek CM, Fink AE, Simmler LD, Donzelli M, Grouzmann E, Liechti ME (October 2013). "α₁-Adrenergic receptors contribute to the acute effects of 3,4-methylenedioxymethamphetamine in humans". J Clin Psychopharmacol. 33 (5): 658–666. doi:10.1097/JCP.0b013e3182979d32. PMID 23857311.
  63. ^ Hysek CM, Simmler LD, Ineichen M, Grouzmann E, Hoener MC, Brenneisen R, Huwyler J, Liechti ME (August 2011). "The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA ("ecstasy") in humans". Clin Pharmacol Ther. 90 (2): 246–255. doi:10.1038/clpt.2011.78. PMID 21677639.
  64. ^ Kaur, Harpreet; Karabulut, Sedat; Gauld, James W.; Fagot, Stephen A.; Holloway, Kalee N.; Shaw, Hannah E.; Fantegrossi, William E. (1 September 2023). "Balancing Therapeutic Efficacy and Safety of MDMA and Novel MDXX Analogues as Novel Treatments for Autism Spectrum Disorder". Psychedelic Medicine. 1 (3): 166–185. doi:10.1089/psymed.2023.0023. ISSN 2831-4425. The role of DA in the abuse-related effects of psychostimulants is well established in animal models. Still, deletions of DA D1, D2, and D3 receptor genes in mice had minimal impact on MDMA-induced locomotor activity,97 and DAT inhibition did not affect neurocognitive effects of MDMA in cynomolgus monkeys.98 In humans, D2 receptor antagonists reduced amphetamine-induced and MDMA-induced euphoria only at doses that produced dysphoria on their own.99 Therefore, it seems likely that systems unrelated to DA may be principally responsible for the acute effects of MDMA.40
  65. ^ Risbrough VB, Masten VL, Caldwell S, Paulus MP, Low MJ, Geyer MA (November 2006). "Differential contributions of dopamine D1, D2, and D3 receptors to MDMA-induced effects on locomotor behavior patterns in mice". Neuropsychopharmacology. 31 (11): 2349–2358. doi:10.1038/sj.npp.1301161. PMID 16855533.
  66. ^ Bankson MG, Cunningham KA (June 2001). "3,4-Methylenedioxymethamphetamine (MDMA) as a unique model of serotonin receptor function and serotonin-dopamine interactions". J Pharmacol Exp Ther. 297 (3): 846–852. PMID 11356903.
  67. ^ Marona-Lewicka D, Nichols DE (June 1994). "Behavioral effects of the highly selective serotonin releasing agent 5-methoxy-6-methyl-2-aminoindan". Eur J Pharmacol. 258 (1–2): 1–13. doi:10.1016/0014-2999(94)90051-5. PMID 7925587.
  68. ^ Volgin AD, Yakovlev OA, Demin KA, Alekseeva PA, Kyzar EJ, Collins C, Nichols DE, Kalueff AV (January 2019). "Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models". ACS Chem Neurosci. 10 (1): 143–154. doi:10.1021/acschemneuro.8b00433. PMID 30252437.
  69. ^ Lakstygal AM, Kolesnikova TO, Khatsko SL, Zabegalov KN, Volgin AD, Demin KA, Shevyrin VA, Wappler-Guzzetta EA, Kalueff AV (May 2019). "DARK Classics in Chemical Neuroscience: Atropine, Scopolamine, and Other Anticholinergic Deliriant Hallucinogens". ACS Chem Neurosci. 10 (5): 2144–2159. doi:10.1021/acschemneuro.8b00615. PMID 30566832.
  70. ^ McCarson KE (2020). "Strategies for Behaviorally Phenotyping the Transgenic Mouse". Transgenic Mouse. Methods Mol Biol. Vol. 2066. pp. 171–194. doi:10.1007/978-1-4939-9837-1_15. ISBN 978-1-4939-9836-4. PMID 31512217.