Jump to content

Isotopes of silver

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Isotopes of silver (47Ag)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
105Ag synth 41.3 d ε 105Pd
γ
106mAg synth 8.28 d ε 106Pd
γ
107Ag 51.8% stable
108mAg synth 439 y ε 108Pd
IT 108Ag
γ
109Ag 48.2% stable
110m2Ag synth 249.86 d β 110Cd
γ
111Ag synth 7.43 d β 111Cd
γ
Standard atomic weight Ar°(Ag)

Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant (51.839% natural abundance). Notably, silver is the only element with all stable istopes having nuclear spins of 1/2. Thus both 107Ag and 109Ag nuclei produce narrow lines in nuclear magnetic resonance spectra.[4]

40 radioisotopes have been characterized with the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.43 days, and 112Ag with a half-life of 3.13 hours.

All of the remaining radioactive isotopes have half-lives that are less than an hour, and the majority of these have half-lives that are less than 3 minutes. This element has numerous meta states, with the most stable being 108mAg (half-life 439 years), 110mAg (half-life 249.86 days) and 106mAg (half-life 8.28 days).

Isotopes of silver range in atomic weight from 92Ag to 132Ag. The primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes and the primary products after are cadmium (element 48) isotopes.

The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high enough palladium/silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.

The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus 107Ag correlations observed in bodies, which have clearly been melted since the accretion of the Solar System, must reflect the presence of live short-lived nuclides in the early Solar System.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion[1] Range of variation
92Ag 47 45 91.95971(43)# 1# ms
[>400 ns]
β+? 92Pd
p? 91Pd
93Ag 47 46 92.95019(43)# 228(16) ns β+? 93Pd 9/2+#
p? 92Pd
β+, p? 92Rh
94Ag 47 47 93.94374(43)# 27(2) ms β+ (>99.8%) 94Pd 0+#
β+, p (<0.2%) 93Rh
94m1Ag 1350(400)# keV 470(10) ms β+ (83%) 94Pd (7+)
β+, p (17%) 93Rh
94m2Ag 6500(550)# keV 400(40) ms β+ (~68.4%) 94Pd (21+)
β+, p (~27%) 93Rh
p (4.1%) 93Pd
2p (0.5%) 92Rh
95Ag 47 48 94.93569(43)# 1.78(6) s β+ (97.7%) 95Pd (9/2+)
β+, p (2.3%) 94Rh
95m1Ag 344.2(3) keV <0.5 s IT 95Ag (1/2−)
95m2Ag 2531.3(15) keV <16 ms IT 95Ag (23/2+)
95m3Ag 4860.0(15) keV <40 ms IT 95Ag (37/2+)
96Ag 47 49 95.93074(10) 4.45(3) s β+ (95.8%) 96Pd (8)+
β+, p (4.2%) 95Rh
96m1Ag[n 9] 0(50)# keV 6.9(5) s β+ (85.1%) 96Pd (2+)
β+, p (14.9%) 95Rh
96m2Ag 2461.4(3) keV 103.2(45) μs IT 96Ag (13−)
96m3Ag 2686.7(4) keV 1.561(16) μs IT 96Ag (15+)
96m4Ag 6951.8(14) keV 132(17) ns IT 96Ag (19+)
97Ag 47 50 96.923881(13) 25.5(3) s β+ 97Pd (9/2)+
97mAg 620(40) keV 100# ms IT? 97Ag 1/2−#
98Ag 47 51 97.92156(4) 47.5(3) s β+ 98Pd (6)+
β+, p (.0012%) 97Rh
98mAg 107.28(10) keV 161(7) ns IT 98Ag (4+)
99Ag 47 52 98.917646(7) 2.07(5) min β+ 99Pd (9/2)+
99mAg 506.2(4) keV 10.5(5) s IT 99Ag (1/2−)
100Ag 47 53 99.916115(5) 2.01(9) min β+ 100Pd (5)+
100mAg 15.52(16) keV 2.24(13) min IT? 100Ag (2)+
β+? 100Pd
101Ag 47 54 100.912684(5) 11.1(3) min β+ 101Pd 9/2+
101mAg 274.1(3) keV 3.10(10) s IT 101Ag (1/2)−
102Ag 47 55 101.911705(9) 12.9(3) min β+ 102Pd 5+
102mAg 9.40(7) keV 7.7(5) min β+ (51%) 102Pd 2+
IT (49%) 102Ag
103Ag 47 56 102.908961(4) 65.7(7) min β+ 103Pd 7/2+
103mAg 134.45(4) keV 5.7(3) s IT 103Ag 1/2−
104Ag 47 57 103.908624(5) 69.2(10) min β+ 104Pd 5+
104mAg 6.90(22) keV 33.5(20) min β+ (>99.93%) 104Pd 2+
IT (<0.07%) 104Ag
105Ag 47 58 104.906526(5) 41.29(7) d β+ 105Pd 1/2−
105mAg 25.468(16) keV 7.23(16) min IT (99.66%) 105Ag 7/2+
β+ (.34%) 105Pd
106Ag 47 59 105.906663(3) 23.96(4) min β+ 106Pd 1+
β? 106Cd
106mAg 89.66(7) keV 8.28(2) d β+ 106Pd 6+
IT? 106Ag
107Ag[n 10] 47 60 106.9050915(26) Stable 1/2− 0.51839(8)
107mAg 93.125(19) keV 44.3(2) s IT 107Ag 7/2+
108Ag[6] 47 61 107.9059502(26) 2.382(11) min β (97.15%) 108Cd 1+
EC (2.57%) 108Pd
β+ (0.283%) 108Pd
108mAg[6] 109.466(7) keV 439(9) y EC (91.3%) 108Pd 6+
IT (8.96%) 108Ag
109Ag[n 11] 47 62 108.9047558(14) Stable 1/2− 0.48161(8)
109mAg 88.0337(10) keV 39.79(21) s IT 109Ag 7/2+
110Ag 47 63 109.9061107(14) 24.56(11) s β (99.70%) 110Cd 1+
EC (0.30%) 110Pd
110m1Ag 1.112(16) keV 660(40) ns IT 110Ag 2−
110m2Ag 117.59(5) keV 249.863(24) d β (98.67%) 110Cd 6+
IT (1.33%) 110Ag
111Ag[n 11] 47 64 110.9052968(16) 7.433(10) d β 111Cd 1/2−
111mAg 59.82(4) keV 64.8(8) s IT (99.3%) 111Ag 7/2+
β (0.7%) 111Cd
112Ag 47 65 111.9070485(26) 3.130(8) h β 112Cd 2(−)
113Ag 47 66 112.906573(18) 5.37(5) h β 113mCd 1/2−
113mAg 43.50(10) keV 68.7(16) s IT (64%) 113Ag 7/2+
β (36%) 113Cd
114Ag 47 67 113.908823(5) 4.6(1) s β 114Cd 1+
114mAg 198.9(10) keV 1.50(5) ms IT 114Ag (6+)
115Ag 47 68 114.908767(20) 20.0(5) min β 115mCd 1/2−
115mAg 41.16(10) keV 18.0(7) s β (79.0%) 115Cd 7/2+
IT (21.0%) 115Ag
116Ag 47 69 115.911387(4) 3.83(8) min β 116Cd (0−)
116m1Ag 47.90(10) keV 20(1) s β (93%) 116Cd (3+)
IT (7%) 116Ag
116m2Ag 129.80(22) keV 9.3(3) s β (92%) 116Cd (6−)
IT (8%) 116Ag
117Ag 47 70 116.911774(15) 73.6(14) s β 117mCd 1/2−#
117mAg 28.6(2) keV 5.34(5) s β (94.0%) 117mCd 7/2+#
IT (6.0%) 117Ag
118Ag 47 71 117.9145955(27) 3.76(15) s β 118Cd (2−)
118m1Ag 45.79(9) keV ~0.1 μs IT 118Ag (1,2)−
118m2Ag 127.63(10) keV 2.0(2) s β (59%) 118Cd (5+)
IT (41%) 118Ag
118m3Ag 279.37(20) keV ~0.1 μs IT 118Ag (3+)
119Ag 47 72 118.915570(16) 2.1(1) s β 119Cd (7/2+)
119mAg 33.5(3) keV[7] 6.0(5) s β 119Cd (1/2−)
120Ag 47 73 119.918785(5) 1.52(7) s β 120Cd 4(+)
β, n (<.003%) 119Cd
120m1Ag[n 9] 0(50)# keV 940(100) ms β? 120Cd (0−, 1−)
IT? 120Ag
β, n? 119Cd
120m2Ag 203.2(2) keV 384(22) ms IT (68%) 120Sn 7(−)
β (32%) 120Cd
β, n? 119Cd
121Ag 47 74 120.920125(13) 777(10) ms β (99.92%) 121Cd 7/2+#
β, n (0.080%) 120Cd
122Ag[8] 47 75 121.9235420(56) 550(50) ms β 122Cd (1−)
β, n? 121Cd
122m1Ag[8] 303.7(50) keV 200(50) ms β 122Cd (9−)
β, n? 121Cd
IT? 122Ag
122m2Ag 171(50)# keV 6.3(1) μs IT 122Ag (1+)
123Ag 47 76 122.92532(4) 294(5) ms β (99.44%) 123Cd (7/2+)
β, n (0.56%) 122Cd
123m1Ag 59.5(5) keV 100# ms β 123Cd (1/2−)
β, n? 122Cd
123m2Ag 1450(14)# keV 202(20) ns IT 123Ag
123m3Ag 1472.8(8) keV 393(16) ns IT 123Ag (17/2−)
124Ag 47 77 123.92890(27)# 177.9(26) ms β (98.7%) 124Cd (2−)
β, n (1.3%) 123Cd
124m1Ag[n 9] 50(50)# keV 144(20) ms β 124Cd 9−#
β, n? 123Cd
124m2Ag 155.6(5) keV 140(50) ns IT 124Ag (1+)
124m3Ag 231.1(7) keV 1.48(15) μs IT 124Ag (1−)
125Ag 47 78 124.93074(47) 160(5) ms β (88.2%) 125Cd (9/2+)
β, n (11.8%) 124Cd
125m1Ag 97.1(5) keV 50# ms β? 125Cd (1/2−)
IT? 125Ag
β, n? 124Cd
125m2Ag 1501.2(6) keV 491(20) ns IT 125Ag (17/2−)
126Ag 47 79 125.93481(22)# 52(10) ms β (86.3%) 126Cd 3+#
β, n (13.7%) 125Cd
126m1Ag 100(100)# keV 108.4(24) ms β 126Cd 9−#
IT? 126Ag
β, n? 125Cd
126m2Ag 254.8(5) keV 27(6) μs IT 126Ag 1−#
127Ag 47 80 126.93704(22)# 89(2) ms β (85.4%) 127Cd (9/2+)
β, n (14.6%) 126Cd
127mAg 1938(17) keV 67.5(9) ms β (91.2%) 127Cd (27/2+)
IT (8.8%) 127Ag
128Ag 47 81 127.94127(32)# 60(3) ms β (80%) 128Cd 3+#
β, n (20%) 127Cd
β, 2n? 126Cd
129Ag 47 82 128.94432(43)# 49.9(35) ms β (>80%) 129Cd 9/2+#
β, n (<20%) 128Cd
130Ag 47 83 129.95073(46)# 40.6(45) ms β 130Cd 1−#
β, n? 129Cd
β, 2n? 128Cd
131Ag 47 84 130.95625(54)# 35(8) ms β (90%) 131Cd 9/2+#
β, 2n (10%) 129Cd
β, n? 130Cd
132Ag 47 85 131.96307(54)# 30(14) ms β 132Cd 6−#
β, n? 131Cd
β, 2n? 130Cd
This table header & footer:
  1. ^ mAg – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ a b c Order of ground state and isomer is uncertain.
  10. ^ Used to date certain events in the early history of the Solar System
  11. ^ a b Fission product

References

  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Silver". CIAAW. 1985.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ "(Ag) Silver NMR".
  5. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ a b Blachot, Jean (October 2000). "Nuclear Data Sheets for A = 108". Nuclear Data Sheets. 91 (2): 135–296. doi:10.1006/ndsh.2000.0017.
  7. ^ Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "β - and γ -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316.
  8. ^ a b Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710.