Jump to content

Kernel-independent component analysis

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In statistics, kernel-independent component analysis (kernel ICA) is an efficient algorithm for independent component analysis which estimates source components by optimizing a generalized variance contrast function, which is based on representations in a reproducing kernel Hilbert space.[1][2] Those contrast functions use the notion of mutual information as a measure of statistical independence.

Main idea

Kernel ICA is based on the idea that correlations between two random variables can be represented in a reproducing kernel Hilbert space (RKHS), denoted by , associated with a feature map defined for a fixed . The -correlation between two random variables and is defined as

where the functions range over and

for fixed .[1] Note that the reproducing property implies that for fixed and .[3] It follows then that the -correlation between two independent random variables is zero.

This notion of -correlations is used for defining contrast functions that are optimized in the Kernel ICA algorithm. Specifically, if is a prewhitened data matrix, that is, the sample mean of each column is zero and the sample covariance of the rows is the dimensional identity matrix, Kernel ICA estimates a dimensional orthogonal matrix so as to minimize finite-sample -correlations between the columns of .

References

  1. ^ a b Bach, Francis R.; Jordan, Michael I. (2003). "Kernel independent component analysis" (PDF). The Journal of Machine Learning Research. 3: 1–48. doi:10.1162/153244303768966085.
  2. ^ Bach, Francis R.; Jordan, Michael I. (2003). "Kernel independent component analysis". 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03) (PDF). Vol. 4. pp. IV-876-9. doi:10.1109/icassp.2003.1202783. ISBN 978-0-7803-7663-2. S2CID 7691428.
  3. ^ Saitoh, Saburou (1988). Theory of Reproducing Kernels and Its Applications. Longman. ISBN 978-0582035645.