Jump to content

List of impossible puzzles

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This is a list of puzzles that cannot be solved. An impossible puzzle is a puzzle that cannot be resolved, either due to lack of sufficient information, or any number of logical impossibilities.

See also

References

  1. ^ Archer, Aaron F. (November 1999). "A Modern Treatment of the 15 Puzzle". The American Mathematical Monthly. 106 (9): 793–799. doi:10.1080/00029890.1999.12005124. ISSN 0002-9890.
  2. ^ Bakst, Aaron; Gardner, Martin (May 1962). "The Second Scientific American Book of Mathematical Puzzles and Diversions". The American Mathematical Monthly. 69 (5): 455. doi:10.2307/2312171. ISSN 0002-9890.
  3. ^ Hofstadter, Douglas R. (1999). Gödel, Escher, Bach: an eternal golden braid (20th anniversary ed.). New York: Basic Books. ISBN 978-0-394-75682-0.
  4. ^ Starikova, Irina; Paul, Jean; Bendegem, Van (2020). "Revisiting the mutilated chessboard or the many roles of a picture". Logique et Analyse. doi:10.13140/RG.2.2.31980.80007.
  5. ^ Holton, Derek Allan; Sheehan, J. (1993). The Petersen graph. Australian Mathematical Society lecture series. Cambridge [England]: Cambridge University Press. ISBN 978-0-521-43594-9.
  6. ^ Euler, Leonhard (1953). "Leonhard Euler and the Koenigsberg Bridges". Scientific American. 189 (1): 66–72. ISSN 0036-8733.
  7. ^ Kasner, Edward (1933). "Squaring the Circle". The Scientific Monthly. 37 (1): 67–71. ISSN 0096-3771.
  8. ^ Sanford, A. J. (1987). The mind of man: models of human understanding. New Haven: Yale University Press. ISBN 978-0-300-03960-3.
  9. ^ Kullman, David E. (November 1979). "The Utilities Problem". Mathematics Magazine. 52 (5): 299–302. doi:10.1080/0025570X.1979.11976807. ISSN 0025-570X.
  10. ^ Huczynska, Sophie (October 2006). "Powerline communication and the 36 officers problem". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 364 (1849): 3199–3214. doi:10.1098/rsta.2006.1885. ISSN 1364-503X.