Jump to content

Poincaré–Lelong equation

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, the Poincaré–Lelong equation, studied by Lelong (1964), is the partial differential equation

on a Kähler manifold, where ρ is a positive (1,1)-form.

References

  • Mok, Ngaiming; Siu, Yum Tong; Yau, Shing Tung (1981), "The Poincaré–Lelong equation on complete Kähler manifolds", Compositio Mathematica, 44 (1): 183–218, ISSN 0010-437X, MR 0662462
  • Lelong, Pierre (1964), "Fonctions entières (n variables) et fonctions plurisousharmoniques d'ordre fini dans Cn", Journal d'Analyse Mathématique, 12: 365–407, doi:10.1007/bf02807441, ISSN 0021-7670, MR 0166391