Jump to content

Sheaf on an algebraic stack

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In algebraic geometry, a quasi-coherent sheaf on an algebraic stack is a generalization of a quasi-coherent sheaf on a scheme. The most concrete description is that it is a data that consists of, for each a scheme S in the base category and in , a quasi-coherent sheaf on S together with maps implementing the compatibility conditions among 's.

For a Deligne–Mumford stack, there is a simpler description in terms of a presentation : a quasi-coherent sheaf on is one obtained by descending a quasi-coherent sheaf on U.[1] A quasi-coherent sheaf on a Deligne–Mumford stack generalizes an orbibundle (in a sense).

Constructible sheaves (e.g., as ℓ-adic sheaves) can also be defined on an algebraic stack and they appear as coefficients of cohomology of a stack.

Definition

The following definition is (Arbarello, Cornalba & Griffiths 2011, Ch. XIII., Definition 2.1.)

Let be a category fibered in groupoids over the category of schemes of finite type over a field with the structure functor p. Then a quasi-coherent sheaf on is the data consisting of:

  1. for each object , a quasi-coherent sheaf on the scheme ,
  2. for each morphism in and in the base category, an isomorphism
satisfying the cocycle condition: for each pair ,
equals .

(cf. equivariant sheaf.)

Examples

ℓ-adic formalism

The ℓ-adic formalism (theory of ℓ-adic sheaves) extends to algebraic stacks.

See also

  • Hopf algebroid - encodes the data of quasi-coherent sheaves on a prestack presentable as a groupoid internal to affine schemes (or projective schemes using graded Hopf algebroids)

Notes

References

  • Arbarello, Enrico; Griffiths, Phillip (2011). Geometry of algebraic curves. Vol. II, with a contribution by Joseph Daniel Harris. Grundlehren der mathematischen Wissenschaften. Vol. 268. doi:10.1007/978-3-540-69392-5. ISBN 978-3-540-42688-2. MR 2807457.
  • Behrend, Kai A. (2003). "Derived 𝑙-adic categories for algebraic stacks". Memoirs of the American Mathematical Society. 163 (774). doi:10.1090/memo/0774.
  • Laumon, Gérard; Moret-Bailly, Laurent (2000). Champs algébriques. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Vol. 39. Berlin, New York: Springer-Verlag. doi:10.1007/978-3-540-24899-6. ISBN 978-3-540-65761-3. MR 1771927.
  • Olsson, Martin (2007). "Sheaves on Artin stacks". Journal für die reine und angewandte Mathematik (Crelle's Journal). 2007 (603): 55–112. doi:10.1515/CRELLE.2007.012. S2CID 15445962. Editorial note: This paper corrects a mistake in Laumon and Moret-Bailly's Champs algébriques.
  • Rydh, David (2016). "Approximation of Sheaves on Algebraic Stacks". International Mathematics Research Notices. 2016 (3): 717–737. arXiv:1408.6698. doi:10.1093/imrn/rnv142.