Solar eclipse of June 10, 2002
Solar eclipse of June 10, 2002 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | 0.1993 |
Magnitude | 0.9962 |
Maximum eclipse | |
Duration | 23 s (0 min 23 s) |
Coordinates | 34°30′N 178°36′W / 34.5°N 178.6°W |
Max. width of band | 13 km (8.1 mi) |
Times (UTC) | |
Greatest eclipse | 23:45:22 |
References | |
Saros | 137 (35 of 70) |
Catalog # (SE5000) | 9513 |
An annular solar eclipse occurred at the Moon's ascending node of orbit between Monday, June 10 and Tuesday, June 11, 2002,[1] with a magnitude of 0.9962. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.4 days after apogee (on June 4, 2002, at 14:00 UTC), the Moon's apparent diameter was smaller.[2]
This was the second annular solar eclipse visible over the Pacific Ocean within 6 months.
Annularity was visible in Indonesia, Palau (Kayangel Atoll), and the Northern Mariana Islands on June 11 (Tuesday), and the western tip of Jalisco, Mexico, on June 10 (Monday). A partial eclipse was visible for parts of eastern Asia, northeastern Australia, North America, and Hawaii.
It was partially visible in some areas of the United States; in Ventura, in southern California, some observation stations were set up for public viewing.[3] In Palm Desert, in the Coachella Valley, it was clearly visible, and it "got dark, it got cool, and it got eerie".[4]A "solar eclipse party" in Fresno drew around 400 attendees,[5] and as far north as Napa Valley, dozens of people went outside to watch the eclipse.,[6] and it was visible in Utah.[7] Canada's National Post predicted a "substantial crowd" for Vancouver, despite the eclipse there being less than 60%;[8] even in Victoria, where the eclipse was as low as 30%, dozens attended a show at the Dominion Astrophysical Observatory.[9]
Observations
During this eclipse, the apex of the moon's umbral cone was close to the Earth's surface, and the magnitude was large. The edges of the moon and the sun were close to each other as seen from the Earth. Baily's beads on the lunar limb, which are usually only visible during a total solar eclipse, could also be seen. Since the path of annularity was mostly on the sea and covered very little land, and the Maluku sectarian conflict prevented many observers from going to the Maluku Islands, Indonesia, observations were mainly concentrated in Palau, Northern Mariana Islands and Mexico. A Japanese team made a live webcast on Tinian Island.[10] The local weather was clear at sunrise. The sun was completely covered by clouds 20 minutes before the maximum eclipse, but finally came out from the clouds shortly before the maximum.[11][12] In Mexico,because the annular eclipse occurred shortly before sunrise and the solar zenith angle was extremely low on land, many people observed at sea off the ports including Puerto Vallarta. However, the eclipse was mostly clouded out due to the Tropical Storm Boris, and it even rained in some places. The sun only appeared occasionally.[13]
Images
Eclipse details
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[14]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2002 June 10 at 20:52:54.3 UTC |
First Umbral External Contact | 2002 June 10 at 21:54:55.3 UTC |
First Central Line | 2002 June 10 at 21:55:34.4 UTC |
Greatest Duration | 2002 June 10 at 21:55:34.4 UTC |
First Umbral Internal Contact | 2002 June 10 at 21:56:13.5 UTC |
First Penumbral Internal Contact | 2002 June 10 at 23:00:25.2 UTC |
Greatest Eclipse | 2002 June 10 at 23:45:22.2 UTC |
Ecliptic Conjunction | 2002 June 10 at 23:47:35.5 UTC |
Equatorial Conjunction | 2002 June 10 at 23:49:19.1 UTC |
Last Penumbral Internal Contact | 2002 June 11 at 00:30:14.5 UTC |
Last Umbral Internal Contact | 2002 June 11 at 01:34:30.4 UTC |
Last Central Line | 2002 June 11 at 01:35:06.6 UTC |
Last Umbral External Contact | 2002 June 11 at 01:35:42.7 UTC |
Last Penumbral External Contact | 2002 June 11 at 02:37:41.9 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.99623 |
Eclipse Obscuration | 0.99246 |
Gamma | 0.19933 |
Sun Right Ascension | 05h16m04.1s |
Sun Declination | +23°03'18.9" |
Sun Semi-Diameter | 15'45.1" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 05h15m55.6s |
Moon Declination | +23°14'25.0" |
Moon Semi-Diameter | 15'27.1" |
Moon Equatorial Horizontal Parallax | 0°56'42.5" |
ΔT | 64.3 s |
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
May 26 Descending node (full moon) |
June 10 Ascending node (new moon) |
June 24 Descending node (full moon) |
---|---|---|
Penumbral lunar eclipse Lunar Saros 111 |
Annular solar eclipse Solar Saros 137 |
Penumbral lunar eclipse Lunar Saros 149 |
Related eclipses
Eclipses in 2002
- A penumbral lunar eclipse on May 26.
- An annular solar eclipse on June 10.
- A penumbral lunar eclipse on June 24.
- A penumbral lunar eclipse on November 20.
- A total solar eclipse on December 4.
Metonic
- Preceded by: Solar eclipse of August 22, 1998
- Followed by: Solar eclipse of March 29, 2006
Tzolkinex
- Preceded by: Solar eclipse of April 29, 1995
- Followed by: Solar eclipse of July 22, 2009
Half-Saros
- Preceded by: Lunar eclipse of June 4, 1993
- Followed by: Lunar eclipse of June 15, 2011
Tritos
- Preceded by: Solar eclipse of July 11, 1991
- Followed by: Solar eclipse of May 10, 2013
Solar Saros 137
- Preceded by: Solar eclipse of May 30, 1984
- Followed by: Solar eclipse of June 21, 2020
Inex
- Preceded by: Solar eclipse of June 30, 1973
- Followed by: Solar eclipse of May 21, 2031
Triad
- Preceded by: Solar eclipse of August 10, 1915
- Followed by: Solar eclipse of April 10, 2089
Solar eclipses of 2000–2003
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[15]
The partial solar eclipses on February 5, 2000 and July 31, 2000 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 2000 to 2003 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
117 | July 1, 2000 Partial |
−1.28214 | 122 Partial projection in Minneapolis, MN, USA |
December 25, 2000 Partial |
1.13669 | |
127 Totality in Lusaka, Zambia |
June 21, 2001 Total |
−0.57013 | 132 Partial in Minneapolis, MN, USA |
December 14, 2001 Annular |
0.40885 | |
137 Partial in Los Angeles, CA, USA |
June 10, 2002 Annular |
0.19933 | 142 Totality in Woomera, South Australia |
December 4, 2002 Total |
−0.30204 | |
147 Annularity in Culloden, Scotland |
May 31, 2003 Annular |
0.99598 | 152 |
November 23, 2003 Total |
−0.96381 |
Saros 137
This eclipse is a part of Saros series 137, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 25, 1389. It contains total eclipses from August 20, 1533 through December 6, 1695; the first set of hybrid eclipses from December 17, 1713 through February 11, 1804; the first set of annular eclipses from February 21, 1822 through March 25, 1876; the second set of hybrid eclipses from April 6, 1894 through April 28, 1930; and the second set of annular eclipses from May 9, 1948 through April 13, 2507. The series ends at member 70 as a partial eclipse on June 28, 2633. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 11 at 2 minutes, 55 seconds on September 10, 1569, and the longest duration of annularity will be produced by member 59 at 7 minutes, 5 seconds on February 28, 2435. All eclipses in this series occur at the Moon’s ascending node of orbit.[16]
Series members 24–46 occur between 1801 and 2200: | ||
---|---|---|
24 | 25 | 26 |
February 11, 1804 |
February 21, 1822 |
March 4, 1840 |
27 | 28 | 29 |
March 15, 1858 |
March 25, 1876 |
April 6, 1894 |
30 | 31 | 32 |
April 17, 1912 |
April 28, 1930 |
May 9, 1948 |
33 | 34 | 35 |
May 20, 1966 |
May 30, 1984 |
June 10, 2002 |
36 | 37 | 38 |
June 21, 2020 |
July 2, 2038 |
July 12, 2056 |
39 | 40 | 41 |
July 24, 2074 |
August 3, 2092 |
August 15, 2110 |
42 | 43 | 44 |
August 25, 2128 |
September 6, 2146 |
September 16, 2164 |
45 | 46 | |
September 27, 2182 |
October 9, 2200 |
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
20 eclipse events between June 10, 1964 and August 21, 2036 | ||||
---|---|---|---|---|
June 10–11 | March 28–29 | January 14–16 | November 3 | August 21–22 |
117 | 119 | 121 | 123 | 125 |
June 10, 1964 |
March 28, 1968 |
January 16, 1972 |
November 3, 1975 |
August 22, 1979 |
127 | 129 | 131 | 133 | 135 |
June 11, 1983 |
March 29, 1987 |
January 15, 1991 |
November 3, 1994 |
August 22, 1998 |
137 | 139 | 141 | 143 | 145 |
June 10, 2002 |
March 29, 2006 |
January 15, 2010 |
November 3, 2013 |
August 21, 2017 |
147 | 149 | 151 | 153 | 155 |
June 10, 2021 |
March 29, 2025 |
January 14, 2029 |
November 3, 2032 |
August 21, 2036 |
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
December 21, 1805 (Saros 119) |
November 19, 1816 (Saros 120) |
October 20, 1827 (Saros 121) |
September 18, 1838 (Saros 122) |
August 18, 1849 (Saros 123) |
July 18, 1860 (Saros 124) |
June 18, 1871 (Saros 125) |
May 17, 1882 (Saros 126) |
April 16, 1893 (Saros 127) |
March 17, 1904 (Saros 128) |
February 14, 1915 (Saros 129) |
January 14, 1926 (Saros 130) |
December 13, 1936 (Saros 131) |
November 12, 1947 (Saros 132) |
October 12, 1958 (Saros 133) |
September 11, 1969 (Saros 134) |
August 10, 1980 (Saros 135) |
July 11, 1991 (Saros 136) |
June 10, 2002 (Saros 137) |
May 10, 2013 (Saros 138) |
April 8, 2024 (Saros 139) |
March 9, 2035 (Saros 140) |
February 5, 2046 (Saros 141) |
January 5, 2057 (Saros 142) |
December 6, 2067 (Saros 143) |
November 4, 2078 (Saros 144) |
October 4, 2089 (Saros 145) |
September 4, 2100 (Saros 146) |
August 4, 2111 (Saros 147) |
July 4, 2122 (Saros 148) |
June 3, 2133 (Saros 149) |
May 3, 2144 (Saros 150) |
April 2, 2155 (Saros 151) |
March 2, 2166 (Saros 152) |
January 29, 2177 (Saros 153) |
December 29, 2187 (Saros 154) |
November 28, 2198 (Saros 155) |
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
October 9, 1828 (Saros 131) |
September 18, 1857 (Saros 132) |
August 29, 1886 (Saros 133) |
August 10, 1915 (Saros 134) |
July 20, 1944 (Saros 135) |
June 30, 1973 (Saros 136) |
June 10, 2002 (Saros 137) |
May 21, 2031 (Saros 138) |
April 30, 2060 (Saros 139) |
April 10, 2089 (Saros 140) |
March 22, 2118 (Saros 141) |
March 2, 2147 (Saros 142) |
February 10, 2176 (Saros 143) |
References
- ^ "June 10–11, 2002 Annular Solar Eclipse". timeanddate. Retrieved 11 August 2024.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 11 August 2024.
- ^ "Eclipse observation station being set up in Grant Park today". Ventura County Star. Ventura, California. 2002-06-10. p. 11. Retrieved 2023-10-15 – via Newspapers.com.
- ^ Velush, Lukas (2002-06-11). "Solar phenomenon awes local residents". The Desert Sun. p. 11. Retrieved 2023-10-24 – via Newspapers.com.
- ^ Yahaira Castro (2002-06-11). "Discovery Center's solar eclipse party proves popular". The Fresno Bee.
- ^ Roseann Langlois (2002-06-11). "Solar eclipse covers Napa Valley". The Napa Valley Register.
- ^ "Solar eclipse tonight last to be visible in Utah for 10 years". The Daily Spectrum. Saint George, Utah. 2002-06-10. p. 1. Retrieved 2023-10-15 – via Newspapers.com.
- ^ "West will have best view of solar eclipse". National Post. Ontario, Canada. 2002-06-10. p. 2. Retrieved 2023-10-15 – via Newspapers.com.
- ^ Gerard Young (2002-06-11). "Celestial show draws curious". Times Colonist. Victoria, British Columbia.
- ^ "Ringförmige Sonnenfinsternis am 10.06.2002" (in German). Sonnenfinsternis.org. Archived from the original on 4 March 2016.
- ^ "The 2002 Annular Solar Eclipse in the Marianas Islands". Eclipse Tours. Archived from the original on 22 December 2015.
- ^ "闇を支配するリング" (in Japanese). Archived from the original on 22 December 2015.
- ^ "Eclipse Expedition to Mexico 2002". Argelander-Instituts für Astronomie. Archived from the original on 30 June 2013.
- ^ "Annular Solar Eclipse of 2002 Jun 10". EclipseWise.com. Retrieved 11 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 137". eclipse.gsfc.nasa.gov.
External links
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
Photos:
- A Partial Eclipse Over the Golden Gate Bridge, APOD June 12, 2002
- Photos and videos of annular solar eclipse (Japanese)
- Spaceweather.com: June 10, 2002 solar eclipse