Jump to content

Strong pseudoprime

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A strong pseudoprime is a composite number that passes the Miller–Rabin primality test. All prime numbers pass this test, but a small fraction of composites also pass, making them "pseudoprimes".

Unlike the Fermat pseudoprimes, for which there exist numbers that are pseudoprimes to all coprime bases (the Carmichael numbers), there are no composites that are strong pseudoprimes to all bases.

Motivation and first examples

Let us say we want to investigate if n = 31697 is a probable prime (PRP). We pick base a = 3 and, inspired by Fermat's little theorem, calculate:

This shows 31697 is a Fermat PRP (base 3), so we may suspect it is a prime. We now repeatedly halve the exponent:

The first couple of times do not yield anything interesting (the result was still 1 modulo 31697), but at exponent 3962 we see a result that is neither 1 nor minus 1 (i.e. 31696) modulo 31697. This proves 31697 is in fact composite (it equals 29×1093). Modulo a prime, the residue 1 can have no other square roots than 1 and minus 1. This shows that 31697 is not a strong pseudoprime to base 3.

For another example, pick n = 47197 and calculate in the same manner:

In this case, the result continues to be 1 (mod 47197) until we reach an odd exponent. In this situation, we say that 47197 is a strong probable prime to base 3. Because it turns out this PRP is in fact composite (can be seen by picking other bases than 3), we have that 47197 is a strong pseudoprime to base 3.

Finally, consider n = 74593 where we get:

Here, we reach minus 1 modulo 74593, a situation that is perfectly possible with a prime. When this occurs, we stop the calculation (even though the exponent is not odd yet) and say that 74593 is a strong probable prime (and, as it turns out, a strong pseudoprime) to base 3.

Formal definition

An odd composite number n = d · 2s + 1 where d is odd is called a strong (Fermat) pseudoprime to base a if:

or

(If a number n satisfies one of the above conditions and we don't yet know whether it is prime, it is more precise to refer to it as a strong probable prime to base a. But if we know that n is not prime, then we may use the term strong pseudoprime.)

The definition is trivially met if a ≡ ±1 (mod n) so these trivial bases are often excluded.

Guy mistakenly gives a definition with only the first condition, which is not satisfied by all primes.[1]

Properties of strong pseudoprimes

A strong pseudoprime to base a is always an Euler–Jacobi pseudoprime, an Euler pseudoprime[2] and a Fermat pseudoprime to that base, but not all Euler and Fermat pseudoprimes are strong pseudoprimes. Carmichael numbers may be strong pseudoprimes to some bases—for example, 561 is a strong pseudoprime to base 50—but not to all bases.

A composite number n is a strong pseudoprime to at most one quarter of all bases below n;[3][4] thus, there are no "strong Carmichael numbers", numbers that are strong pseudoprimes to all bases. Thus given a random base, the probability that a number is a strong pseudoprime to that base is less than 1/4, forming the basis of the widely used Miller–Rabin primality test. The true probability of a failure is generally vastly smaller. Paul Erdős and Carl Pomerance showed in 1986 that if a random integer n passes the Miller–Rabin primality test to a random base b, then n is almost surely a prime.[5] For example, of the first 25,000,000,000 positive integers, there are 1,091,987,405 integers that are probable primes to base 2, but only 21,853 of them are pseudoprimes, and even fewer of them are strong pseudoprimes, as the latter is a subset of the former.[6] However, Arnault [7] gives a 397-digit Carmichael number that is a strong pseudoprime to every base less than 307. One way to reduce the chance that such a number is wrongfully declared probably prime is to combine a strong probable prime test with a Lucas probable prime test, as in the Baillie–PSW primality test.

There are infinitely many strong pseudoprimes to any base.[2]

Examples

The first strong pseudoprimes to base 2 are

2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, ... (sequence A001262 in the OEIS).

The first to base 3 are

121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139, 74593, 79003, 82513, 87913, 88573, 97567, ... (sequence A020229 in the OEIS).

The first to base 5 are

781, 1541, 5461, 5611, 7813, 13021, 14981, 15751, 24211, 25351, 29539, 38081, 40501, 44801, 53971, 79381, ... (sequence A020231 in the OEIS).

For base 4, see OEISA020230, and for base 6 to 100, see OEISA020232 to OEISA020326. By testing the above conditions to several bases, one gets somewhat more powerful primality tests than by using one base alone. For example, there are only 13 numbers less than 25·109 that are strong pseudoprimes to bases 2, 3, and 5 simultaneously. They are listed in Table 7 of.[2] The smallest such number is 25326001. This means that, if n is less than 25326001 and n is a strong probable prime to bases 2, 3, and 5, then n is prime.

Carrying this further, 3825123056546413051 is the smallest number that is a strong pseudoprime to the 9 bases 2, 3, 5, 7, 11, 13, 17, 19, and 23.[8][9] So, if n is less than 3825123056546413051 and n is a strong probable prime to these 9 bases, then n is prime.

By judicious choice of bases that are not necessarily prime, even better tests can be constructed. For example, there is no composite that is a strong pseudoprime to all of the seven bases 2, 325, 9375, 28178, 450775, 9780504, and 1795265022.[10]

Smallest strong pseudoprime to base a

a Least SPSP a Least SPSP a Least SPSP a Least SPSP
1 9 33 545 65 33 97 49
2 2047 34 33 66 65 98 9
3 121 35 9 67 33 99 25
4 341 36 35 68 25 100 9
5 781 37 9 69 35 101 25
6 217 38 39 70 69 102 133
7 25 39 133 71 9 103 51
8 9 40 39 72 85 104 15
9 91 41 21 73 9 105 451
10 9 42 451 74 15 106 15
11 133 43 21 75 91 107 9
12 91 44 9 76 15 108 91
13 85 45 481 77 39 109 9
14 15 46 9 78 77 110 111
15 1687 47 65 79 39 111 55
16 15 48 49 80 9 112 65
17 9 49 25 81 91 113 57
18 25 50 49 82 9 114 115
19 9 51 25 83 21 115 57
20 21 52 51 84 85 116 9
21 221 53 9 85 21 117 49
22 21 54 55 86 85 118 9
23 169 55 9 87 247 119 15
24 25 56 55 88 87 120 91
25 217 57 25 89 9 121 15
26 9 58 57 90 91 122 65
27 121 59 15 91 9 123 85
28 9 60 481 92 91 124 25
29 15 61 15 93 25 125 9
30 49 62 9 94 93 126 25
31 15 63 529 95 1891 127 9
32 25 64 9 96 95 128 49

References

  1. ^ Guy, Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes. §A12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 27-30, 1994.
  2. ^ a b c Carl Pomerance; John L. Selfridge; Samuel S. Wagstaff Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7.
  3. ^ Louis Monier (1980). "Evaluation and Comparison of Two Efficient Probabilistic Primality Testing Algorithms". Theoretical Computer Science. 12: 97–108. doi:10.1016/0304-3975(80)90007-9.
  4. ^ Rabin, Probabilistic Algorithm for Testing Primality. Journal of Number Theory, 12 pp. 128–138, 1980.
  5. ^ "Probable primes: How probable?". Retrieved October 23, 2020.
  6. ^ "The Prime Glossary: probable prime".
  7. ^ F. Arnault (August 1995). "Constructing Carmichael Numbers Which Are Strong Pseudoprimes to Several Bases". Journal of Symbolic Computation. 20 (2): 151–161. doi:10.1006/jsco.1995.1042.
  8. ^ Zhenxiang Zhang; Min Tang (2003). "Finding Strong Pseudoprimes to Several Bases. II". Mathematics of Computation. 72 (244): 2085–2097. doi:10.1090/S0025-5718-03-01545-X.
  9. ^ Jiang, Yupeng; Deng, Yingpu (2012). "Strong pseudoprimes to the first 9 prime bases". arXiv:1207.0063v1 [math.NT].
  10. ^ "SPRP Records". Retrieved 3 June 2015.