File:Aleph0.svg
Appearance
Size of this PNG preview of this SVG file: 512 × 526 pixels. Other resolutions: 234 × 240 pixels | 467 × 480 pixels | 748 × 768 pixels | 997 × 1,024 pixels | 1,993 × 2,048 pixels.
Original file (SVG file, nominally 512 × 526 pixels, file size: 2 KB)
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 03:06, 27 February 2022 | 512 × 526 (2 KB) | TSamuel | Careful recompression via SVGOMG, vecta.io/nano & Compress-Or-Die.com of previous version, & verified via SVGCheck: Subscript size issues | |
02:53, 27 February 2022 | 512 × 461 (106 bytes) | TSamuel | Adapted alkyl_iodide.svg for smaller filesize & superior rendering | ||
01:43, 9 May 2012 | 565 × 580 (6 KB) | TAKASUGI Shinji | image size correction | ||
15:45, 23 July 2010 | 687 × 639 (6 KB) | BrideOfKripkenstein | Made subscript zero smaller font size, it was nearly as big as the aleph | ||
00:25, 14 January 2007 | 687 × 639 (4 KB) | Amada44 | {{Information |Description=A little image of aleph_0, smallest infinite cardinal |Source= |Date= |Author=PNG made by Maksim, SVG made by Amada44 |Permission={{PD-ineligible}} |other_versions= }} [[Category:Number |
File usage
The following 6 pages use this file:
Global file usage
The following other wikis use this file:
- Usage on ar.wikipedia.org
- Usage on bn.wikipedia.org
- Usage on ca.wikipedia.org
- Usage on cy.wikipedia.org
- Usage on el.wikipedia.org
- Usage on en.wikiquote.org
- Usage on eo.wikipedia.org
- Usage on es.wikipedia.org
- Usage on et.wikipedia.org
- Usage on eu.wikipedia.org
- Usage on fa.wikipedia.org
- Usage on fr.wikipedia.org
- Usage on fr.wiktionary.org
- Usage on hy.wikipedia.org
- Usage on id.wikipedia.org
- Usage on it.wikipedia.org
- Usage on ja.wikipedia.org
- Usage on ko.wikipedia.org
- Usage on mk.wikipedia.org
- Usage on ms.wikipedia.org
- Usage on nl.wikipedia.org
- Usage on nn.wikipedia.org
- Usage on no.wikipedia.org
- Usage on pl.wikipedia.org
- Liczby naturalne
- Moc zbioru
- Paradoks Hilberta
- Hipoteza continuum
- Zbiór przeliczalny
- Zbiór skończony
- Zbiór nieprzeliczalny
- Paradoks zbioru wszystkich zbiorów
- Twierdzenie Cantora-Bernsteina-Schrödera
- Twierdzenie Cantora
- Arytmetyka liczb kardynalnych
- Następnik liczby kardynalnej
- Funkcja kardynalna
- Skala alefów
- Skala betów
- Liczba nieosiągalna
View more global usage of this file.