Jump to content

File:Numerical integration illustration, h=0.25.png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (1,500 × 2,183 pixels, file size: 85 KB, MIME type: image/png)

File:Numerical integration illustration step=0.25.svg is a vector version of this file. It should be used in place of this PNG file when not inferior.

File:Numerical integration illustration, h=0.25.png → File:Numerical integration illustration step=0.25.svg

For more information, see Help:SVG.

In other languages
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  中文(臺灣)  +/−
New SVG image

Summary

Description Illustration of Numerical ordinary differential equations
Source Own work
Author Oleg Alexandrov
 
This diagram was created with MATLAB.
Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Source code (MATLAB)

 

% illustration of numerical integration
% compare the Forward Euler method, which is globally O(h) 
% with Midpoint method, which is globally O(h^2)
% and the exact solution

function main()

   f = inline ('y', 't', 'y'); % will solve y' = f(t, y)

   a=0; b=4; % endpoints of the interval where we will solve the ODE
   N = 17; T = linspace(a, b, N); h = T(2)-T(1); % the grid
   y0 = 1; % initial condition

   % solve the ODE
   Y_euler = solve_ODE (N, f, y0,  h, T, 1); % Forward Euler method
   Y_midpt = solve_ODE (N, f, y0,  h, T, 2); % midpoint method
   T_highres = a:0.1:b; Y_exact = exp(T_highres);
   
%  prepare the plotting window
   lw = 3; % curves linewidth
   fs = 20; % font size
   figure(1); clf; set(gca, 'fontsize', fs);   hold on;

   % colors
   red=[0.867 0.06 0.14];
   blue = [0, 129, 205]/256;
   green = [0, 200,  70]/256;

% plot the solutions
   plot(T, Y_euler, 'color', blue,  'linewidth', lw)
   plot(T, Y_midpt, 'color', green, 'linewidth', lw)
   plot(T_highres, Y_exact, 'color', red,   'linewidth', lw)

   % axes aspect ratio
   pbaspect([1 1.5 1]);

% save to disk
   disp(sprintf('Grid size is %0.9g', h))
   saveas(gcf, sprintf('Numerical_integration_illustration,_h=%0.2g.eps', h), 'psc2');
   
function Y = solve_ODE (N, f, y0,  h, T, method)

   Y = 0*T;
   
   Y(1)=y0;
   for i=1:(N-1)
	  t = T(i); y = Y(i);

	  if method == 1 % forward Euler method
		 
		 Y(i+1) = y + h*f(t, y);
		 
	  elseif method == 2 % explicit one step midpoint method
		 
		 K = y + 0.5*h*f(t, y);
		 Y(i+1) =  y + h*f(t+h/2, K);
		 
	  else
		 disp ('Don`t know this type of method');
		 return;
		 
	  end
   end

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current03:02, 25 May 2007Thumbnail for version as of 03:02, 25 May 20071,500 × 2,183 (85 KB)Oleg AlexandrovMake exact solution smooth
05:00, 20 May 2007Thumbnail for version as of 05:00, 20 May 20071,500 × 2,183 (84 KB)Oleg AlexandrovHigher resolution. Same license.
03:19, 20 May 2007Thumbnail for version as of 03:19, 20 May 2007375 × 546 (16 KB)Oleg Alexandrov{{Information |Description=Illustration of Numerical ordinary differential equations |Source=self-made |Date= |Author= User:Oleg Alexandrov }} Category:Numerical analysis {{PD-self}}
No pages on the English Wikipedia use this file (pages on other projects are not listed).

Global file usage

The following other wikis use this file: