Examine individual changes
Appearance
This page allows you to examine the variables generated by the Edit Filter for an individual change.
Variables generated for this change
Variable | Value |
---|---|
Whether or not the edit is marked as minor (no longer in use) (minor_edit ) | false |
Edit count of the user (user_editcount ) | null |
Name of the user account (user_name ) | '81.99.125.185' |
Age of the user account (user_age ) | 0 |
Groups (including implicit) the user is in (user_groups ) | [
0 => '*'
] |
Global groups that the user is in (global_user_groups ) | [] |
Whether or not a user is editing through the mobile interface (user_mobile ) | false |
Page ID (page_id ) | 673951 |
Page namespace (page_namespace ) | 0 |
Page title without namespace (page_title ) | 'Digital recording' |
Full page title (page_prefixedtitle ) | 'Digital recording' |
Last ten users to contribute to the page (page_recent_contributors ) | [
0 => 'Serols',
1 => '81.99.125.185',
2 => 'Hmains',
3 => 'BD2412bot',
4 => 'ClueBot NG',
5 => '206.57.249.72',
6 => 'Some Gadget Geek',
7 => 'Neoking',
8 => 'OnBeyondZebrax',
9 => 'AnomieBOT'
] |
First user to contribute to the page (page_first_contributor ) | 'Neonstarlight' |
Action (action ) | 'edit' |
Edit summary/reason (summary ) | '/* Timeline */ ' |
Old content model (old_content_model ) | 'wikitext' |
New content model (new_content_model ) | 'wikitext' |
Old page wikitext, before the edit (old_wikitext ) | '{{Refimprove|date=June 2009}}
[[File:Zoom H4n audio recording levels.jpg|thumb|Audio levels display on a digital audio recorder ([[Zoom H4n]])]]
In '''digital recording''', [[audio signal]]s picked up by a [[microphone]] or other [[transducer]] or [[video]] signals picked up by a [[camera]] or similar device are [[Analog to digital conversion|converted]] into a stream of [[discrete number]]s, representing the changes over time in [[air pressure]] for audio, and [[Color|chroma]] and [[luminance]] values for video, then recorded to a storage device. To play back a digital sound recording, the numbers are retrieved and converted back into their original [[analog signal|analog]] waveforms so that they can be heard through a [[loudspeaker]]. To play back a digital video recording, the numbers are retrieved and converted back into their original [[analog signal|analog]] waveforms so that they can be viewed on a [[video monitor]], [[television]] or other display.
== Timeline==
*1938: British scientist [[Alec Reeves]] files the first patent describing [[Pulse-code modulation]] (PCM).<ref>[http://www.privateline.com/TelephoneHistory2/reeves.html Robertson, David. ''Alec Reeves 1902-1971'' Privateline.com: Telephone History.] Accessed Nov 14, 2009</ref> It was first developed as a [[telephony]] technology.<ref name="Fine">{{cite journal |author=Thomas Fine |year=2008 |title=The dawn of commercial digital recording |journal=[[ARSC Journal]] |volume=39 |issue=1 |pages=1–17 |url=http://www.aes.org/aeshc/pdf/fine_dawn-of-digital.pdf}}</ref>
*1943: [[Bell Labs|Bell Telephone Laboratories]] develops the first PCM-based digital scrambled speech transmission system, [[SIGSALY]],<ref>[http://www.nsa.gov/about/cryptologic_heritage/center_crypt_history/publications/sigsaly_story.shtml#3 J. V. Boone, J. V., Peterson R. R.: ''Sigsaly - The Start of the Digital Revolution''] Accessed Nov 14, 2009</ref> in response to German interception of military telephone traffic during [[World War II]]. The twelve transmission points were retired after the war.
*1957: [[Max Mathews]] of Bell develops the process to digitally [[sound recording|record]] sound via [[computer]].
*1967: the first [[monaural]] PCM recorder was developed by [[NHK]]'s research facilities in Japan.<ref name="Fine"/> The 30 kHz 12-bit device used a [[compander]] (similar to [[Dbx (noise reduction)|DBX Noise Reduction]]) to extend the dynamic range, and stored the signals on a [[video tape recorder]].
*1969: NHK expands the PCM's capabilities to 2-channel [[stereo]] and 32 kHz 13-bit resolution.
*1970: [[James Russell (inventor)]] patents the first digital-to-optical recording and playback system, which would later lead to the [[Compact Disc]].<ref>[http://web.mit.edu/invent/iow/russell.html Inventor of the Week, Michigan Institute of Technology] Accessed Nov 14, 2009</ref>
*January 1971: Using NHK'S PCM recording system, engineers at [[Denon]] record the first commercial digital recordings, ''Something'' by [[Steve Marcus]] and ''Uzu: The World Of Stomu Yamash'ta 2'' by [[Stomu Yamashta]].
*1972: [[Denon]] unveils the first 8-channel digital recorder, the DN-023R, which is 47.25 kHz 13-bit PCM resolution using a 4-head open reel broadcast [[video tape recorder]].<ref name="Fine"/> The first recording with this new system is the [[Smetana Quartet]] performing [[Mozart]]'s ''String Quartets [[String Quartet No. 17 (Mozart)|K.458]] and [[String Quartet No. 15 (Mozart)|K.421]]'', recorded in Tokyo April 24–26. Several other digital LPs follow.
*1975: [[University of Utah]] professor [[Thomas Stockham]] develops a PCM digital audio recorder of his own design, using computer tape drives as the storage system. He founds the company [[Soundstream]] to offer it commercially.
*1976: the prototype [[Soundstream]] 37.5 kHz, 16-bit, two channel recorder<ref name="Fine"/> is used to record the [[Santa Fe Opera]] performing [[Virgil Thompson]]'s opera ''[[The Mother of Us All]]'' for [[New World Records]].<ref>[[Soundstream#The company]]</ref> However, the digital recorder is just a backup to the main analog [[multi-track recording|multi-track recorder]] and the superior analog recording is used for the release by New World Records. The digital tape was presented at the 1976 [[Audio Engineering Society|AES]] Convention in New York, but never commercially released.
*1977: Denon develops the smaller portable PCM recording system, the DN-034R. Like the DN-023R it records 8 channels at 47.25 kHz, but it uses 14-bits "with emphasis, making it equivalent to 15.5 bits."
*August 28–31, 1977: Soundstream's PCM system runs in the background of a California [[direct to disc recording]] session by organist [[Virgil Fox]] for [[Crystal Records]]. When initially released the resulting LPs were pressed from the direct-to-disc acetate, though the later CD reissue (1987) comes from the digital backup tapes.<ref>[http://www.amazon.com/Virgil-Fox-Digital-II/dp/B000FJOET4/ref=sr_1_1?ie=UTF8&qid=1424235781&sr=8-1&keywords=virgil+fox+digital Virgil Fox ''The Digital Fox'']</ref>{{failed verification|date=December 2015}}
*November 28, 1977: Denon brings their DN-034R to New York and records [[Archie Shepp]]'s ''On Green Dolphin Street'', making it America's first RELEASED digitally-recorded commercial album.{{citation needed|date=December 2015}} When this is released on CD in 1984 by Nippon Columbia it also becomes one of the earliest digital-only CDs.{{citation needed|date=December 2015}} Six other jazz albums are recorded with the DN-034R in New York before it returns to Japan in December.<ref>http://www.jazzdisco.org/archie-shepp/discography/</ref>{{failed verification|date=December 2015}}
*April 4–5, 1978: [[Telarc International Corporation|Telarc]] uses Soundstream's PCM system to record [[Frederick Fennell]] and his Eastman Wind Ensemble playing [[Gustav Holst]]'s ''Suites for Military Band'' and [[George Frideric Handel]]'s ''[[Music for the Royal Fireworks]].'' When released on LP this became the first US digitally-recorded classical release.<ref>http://www.arkivmusic.com/classical/album.jsp?album_id=3791</ref>
*June 2, 1978: [[Sound 80]] studios in [[Minneapolis]] records the [[Saint Paul Chamber Orchestra]] performing [[Aaron Copland]]'s ''[[Appalachian Spring]]''. This session is set up as a [[direct to disc recording]], with an experimental [[3M]] 50.4 kHz digital recorder in the background capturing the session. It is released on [[LP record]] as Sound80 Records S80-DLR-101<ref>https://www.thespco.org/about-us/recording-discography/</ref> although possibly this release is taken from the direct-to-disc acetate rather than the digital backup. Later the session is re-released on [[Compact Disc]] by ProArte.
*June 1978: [[Sound 80]] records ''[[Flim and the BB's]]'' as another [[direct to disc recording]] again with the experimental [[3M]] recorder in the background. This time the acetate is deemed not as good as the digital backup, so the digital master is used for the [[LP record]] (Sound80 Records S80-DLR-102). This makes it the first U.S. non-classical digital release. Within 6 months the hand-built 3M digital recorder is disassembled, rendering the non-standard master tape unplayable. Therefore, no [[Compact Disc]] reissue is possible.
*1979: the first digital [[Compact Disc]] prototype was created in Japan by a joint venture of [[Sony]] and [[Philips]].
*1979: the first U.S.-recorded digital album of [[popular music]] (with vocals), ''[[Bop 'Til You Drop]]'' by guitarist [[Ry Cooder]], released by [[Warner Bros. Records]]. The album was recorded in [[Los Angeles]] on a 32-track digital machine built by the [[3M]] corporation.{{citation needed|date=December 2015}} Also, [[Stevie Wonder]] digitally recorded his [[soundtrack album]], ''[[Journey Through the Secret Life of Plants]]'', three months after Cooder's album was released, followed by the Grammy-award self-titled [[Christopher Cross (album)|debut album]] of American singer [[Christopher Cross]]. Cross' album is the first digitally recorded album to chart in the US (coincidentally also winning 5 [[Grammy Awards|Grammys]]).
*1982: the first digital [[compact disc]]s are marketed by [[Sony]] and [[Philips]],<ref>Encyclopedia Britannica: ''Compact Disc''. 2003 Deluxe Edition CD-ROM. Encyclopædia Britannica, Inc.</ref> and [[New England Digital]] offers the [[hard disk recorder]] (Sample-to-Disk) option on the [[Synclavier]], the first commercial [[hard disk]] (HDD) recording system.<ref>[http://www.500sound.com/synclavierhistory.html Synclavier history]</ref> Also that same year, [[Peter Gabriel]] releases, [[Security (album)|''Security'']] and ''[[The Nightfly]]'' released by [[Donald Fagen]], which both were the early full digital recordings.
*1984: [[Sony]] released the [[Sony PCM-501ES digital audio processor]], which for the first time allowed consumers to make their own digital recordings, using a [[VHS]] or [[Betamax]] [[video tape recorder]] as the storage media.
*1987: [[Sony]] develops Digital Audio Tape
*1990: [[digital radio]] begins in [[Canada]], using the [[L-Band]].<ref>[http://history.sandiego.edu/GEN/recording/dars.html University of San Diego: ''Digital Audio Radio Service (DARS)''] Accessed Nov 14, 2009</ref>
*1991: [[Alesis]] Digital Audio Tape or [[ADAT]] is a tape format used for simultaneously recording eight tracks of [[digital audio]] at once, onto [[Super VHS]] [[magnetic tape]] - a format similar to that used by consumer [[VCR]]s. The product was announced in January 1991 at the [[NAMM]] convention in [[Anaheim]], [[California]]. The first ADAT recorders shipped over a year later in February or March 1992.<ref>Peterson, George; Robair, Gino [ed.] (1999). ''Alesis ADAT: The Evolution of a Revolution''. Mixbooks. p. 2. ISBN 0-87288-686-7</ref>
*1993: [[RADAR (audio recorder)]] Random Access Digital Audio Recorder or [http://www.izcorp.com/radar RADAR] is the first single box device used for simultaneously recording 24 tracks of [[digital audio]] at once, onto [[hard disk]] drives. The product, manufactured by [[Creation Technologies]] ([http://www.izcorp.com/ iZ Technology Corporation]) was announced in October 1993 at the [[Audio Engineering Society|AES]] convention in [[New York City|New York]], [[New York (state)|New York]]. The first RADAR recorders shipped in August 1994.
*1996: [[optical disc]]s and [[DVD player]]s begin selling in [[Japan]].
== Process ==
'''Recording'''
# The analog signal is transmitted from the [[input device]] to an [[analog-to-digital converter]] (ADC).
# The ADC converts this signal by repeatedly measuring the momentary level of the analog (audio) wave and then assigning a binary number with a given quantity of bits (word length) to each measuring point.
# The frequency at which the ADC measures the level of the analog wave is called the [[sample rate]] or sampling rate.
# A digital audio sample with a given word length represents the audio level at one moment.
# The longer the word length the more exact is the representation of the original audio wave levelwise.
# The higher the sampling rate the higher the upper cutoff frequency of the digitized audio signal.
# The ADC outputs a sequence of samples that make up a continuous stream of 0s and 1s.
# These numbers are stored onto recording media such as [[hard drive]], [[optical drive]] or [[solid state memory]].
'''Playback'''
# The sequence of numbers is transmitted from storage into a [[digital-to-analog converter]] (DAC), which converts the numbers back to an analog signal by sticking together the level information stored in each digital sample, thus rebuilding the original analog wave form.
# This signal is amplified and transmitted to the [[loudspeaker]]s or video screen.
== Recording of bits ==
Even after getting the signal converted to bits, it is still difficult to record; the hardest part is finding a scheme that can record the bits fast enough to keep up with the signal. For example, to record two channels of audio at [[44.1 kHz]] sample rate with a 16 bit word size, the recording software has to handle 1,411,200 bits per second.
===Techniques to record to commercial media===
For [[digital cassettes]], the read/write head moves as well as the tape in order to maintain a high enough speed to keep the bits at a manageable size.
For [[optical disc recording technologies]] such as [[CD]]s or [[DVD]]s, a [[laser]] is used to burn microscopic holes into the dye layer of the medium. A weaker laser is used to read these signals. This works because the metallic substrate of the disc is reflective, and the unburned dye prevents reflection while the holes in the dye permit it, allowing digital data to be represented.
== Concerns with digital audio recording ==
===Word size===
The number of [[bit]]s used to represent a single [[sound wave|audio wave]] (the ''[[word size]]'') directly affects the achievable noise level of a signal recorded with added [[dither]], or the [[distortion]] of an undithered signal.
The number of possible voltage levels at the output is simply the number of values that may be represented by the largest possible number. There are no “in between” values allowed. If there are more bits in the number the waveform is more accurately traced, because each added bit doubles the number of possible values. The distortion is roughly the percentage that the least significant bit represents out of the average value. Distortion in digital systems increases as signal levels decrease, which is the opposite of the behavior of analog systems.<ref>{{Cite web|title = Digital Recording|url = http://artsites.ucsc.edu/ems/music/tech_background/TE-16/teces_16.html|website = artsites.ucsc.edu|accessdate = 2015-09-29}}</ref>
===Sample rate===
The [[Sampling rate|sample rate]] is just as important a consideration as the word size. If the sample rate is too low, the sampled signal cannot be reconstructed to the original sound signal.
To overcome aliasing, the sound signal (or other signal) must be sampled at a rate at least twice that of the highest frequency component in the signal. This is known as the [[Nyquist-Shannon sampling theorem]].
For recording music-quality audio the following PCM sampling rates are the most common:
44.1 kHz
48 kHz
88.2 kHz
96 kHz
176.4 kHz
192 kHz
When making a recording, experienced audio recording and mastering engineers will normally do a master recording at a higher sampling rate (i.e. 88.2, 96, 176.4 or 192 kHz) and then do any editing or mixing at that same higher frequency. High resolution PCM recordings have been released on DVD-Audio (also known as DVD-A), DAD (Digital Audio Disc—which utilizes the stereo PCM audio tracks of a regular DVD), DualDisc (utilizing the DVD-Audio layer), or Blu-ray (Profile 3.0 is the Blu-ray audio standard, although as of mid-2009 it is unclear whether this will ever really be used as an audio-only format). In addition it is nowadays also possible and common to release a high resolution recording directly as either an uncompressed WAV or lossless compressed FLAC file<ref>[http://flac.sourceforge.net/news.html]</ref> (usually at 24 bits) without down-converting it .
However, if a CD (the CD Red Book standard is 44.1 kHz 16 bit) is to be made from a recording, then doing the initial recording using a sampling rate of 44.1 kHz is obviously one approach. Another approach that is usually preferred is to use a higher sample rate and then [[Sample rate conversion|downsample]] to the final format's sample rate. This is usually done as part of the [[Audio mastering|mastering]] process. One advantage to the latter approach is that way a high resolution recording can be released, as well as a CD and/or lossy compressed file such as mp3—all from the same master recording.
Beginning in the 1980s, music that was recorded, mixed and mastered digitally was often labelled using the [[SPARS code]] to describe which processes were analog and which were digital.
===Error rectification===
{{Main article|Digital data}}
One of the advantages of digital recording over analog recording is its resistance to errors.
==See also==
*[[Compact disc]]s use [[Reed-Solomon error correction]]
*[[Cyclic redundancy check]] (CRC)
*[[Digital audio workstation]]
*[[Direct to disk recording]]
*[[Magnetic storage]]
*[[Multitrack recording]]
*[[Parity bit|Parity Computation]]
*Many bits are stored on [[RAID|RAID storage systems]]
*[[4D Audio Recording system]]
==References==
{{Reflist}}
{{Audio formats}}
{{Music technology}}
{{DEFAULTSORT:Digital Recording}}
[[Category:Digital audio recording| ]]
[[Category:Sound]]
[[Category:Video]]' |
New page wikitext, after the edit (new_wikitext ) | '{{Refimprove|date=June 2009}}
[[File:Zoom H4n audio recording levels.jpg|thumb|Audio levels display on a digital audio recorder ([[Zoom H4n]])]]
In '''digital recording''', [[audio signal]]s picked up by a [[microphone]] or other [[transducer]] or [[video]] signals picked up by a [[camera]] or similar device are [[Analog to digital conversion|converted]] into a stream of [[discrete number]]s, representing the changes over time in [[air pressure]] for audio, and [[Color|chroma]] and [[luminance]] values for video, then recorded to a storage device. To play back a digital sound recording, the numbers are retrieved and converted back into their original [[analog signal|analog]] waveforms so that they can be heard through a [[loudspeaker]]. To play back a digital video recording, the numbers are retrieved and converted back into their original [[analog signal|analog]] waveforms so that they can be viewed on a [[video monitor]], [[television]] or other display.
== Timeline==
*1938: British scientist [[Alec Reeves]] files the first patent describing [[Pulse-code modulation]] (PCM).<ref>[http://www.privateline.com/TelephoneHistory2/reeves.html Robertson, David. ''Alec Reeves 1902-1971'' Privateline.com: Telephone History.] Accessed Nov 14, 2009</ref> It was first developed as a [[telephony]] technology.<ref name="Fine">{{cite journal |author=Thomas Fine |year=2008 |title=The dawn of commercial digital recording |journal=[[ARSC Journal]] |volume=39 |issue=1 |pages=1–17 |url=http://www.aes.org/aeshc/pdf/fine_dawn-of-digital.pdf}}</ref>
*1943: [[Bell Labs|Bell Telephone Laboratories]] develops the first PCM-based digital scrambled speech transmission system, [[SIGSALY]],<ref>[http://www.nsa.gov/about/cryptologic_heritage/center_crypt_history/publications/sigsaly_story.shtml#3 J. V. Boone, J. V., Peterson R. R.: ''Sigsaly - The Start of the Digital Revolution''] Accessed Nov 14, 2009</ref> in response to German interception of military telephone traffic during [[World War II]]. The twelve transmission points were retired after the war.
*1957: [[Max Mathews]] of Bell develops the process to digitally [[sound recording|record]] sound via [[computer]].
*1967: the first [[monaural]] PCM recorder was developed by [[NHK]]'s research facilities in Japan.<ref name="Fine"/> The 30 kHz 12-bit device used a [[compander]] (similar to [[Dbx (noise reduction)|DBX Noise Reduction]]) to extend the dynamic range, and stored the signals on a [[video tape recorder]].
*1969: NHK expands the PCM's capabilities to 2-channel [[stereo]] and 32 kHz 13-bit resolution.
*1970: [[James Russell (inventor)]] patents the first digital-to-optical recording and playback system, which would later lead to the [[Compact Disc]].<ref>[http://web.mit.edu/invent/iow/russell.html Inventor of the Week, Michigan Institute of Technology] Accessed Nov 14, 2009</ref>
*January 1971: Using NHK'S PCM recording system, engineers at [[Denon]] record the first commercial digital recordings, ''Something'' by [[Steve Marcus]] and ''Uzu: The World Of Stomu Yamash'ta 2'' by [[Stomu Yamashta]].
*1972: [[Denon]] unveils the first 8-channel digital recorder, the DN-023R, which is 47.25 kHz 13-bit PCM resolution using a 4-head open nigger reel broadcast [[video tape recorder]].<ref name="Fine"/> The first recording with this new system is the [[Smetana Quartet]] performing [[Mozart]]'s ''String Quartets [[String Quartet No. 17 (Mozart)|K.458]] and [[String Quartet No. 15 (Mozart)|K.421]]'', recorded in Tokyo April 24–26. Several other digital LPs follow.
*1975: [[University of Utah]] professor [[Thomas Stockham]] develops a PCM digital audio recorder of his own design, using computer tape drives as the storage system. He founds the company [[Soundstream]] to offer it commercially.
*1976: the prototype [[Soundstream]] 37.5 kHz, 16-bit, two channel recorder<ref name="Fine"/> is used to record the [[Santa Fe Opera]] performing [[Virgil Thompson]]'s opera ''[[The Mother of Us All]]'' for [[New World Records]].<ref>[[Soundstream#The company]]</ref> However, the digital recorder is just a backup to the main analog [[multi-track recording|multi-track recorder]] and the superior analog recording is used for the release by New World Records. The digital tape was presented at the 1976 [[Audio Engineering Society|AES]] Convention in New York, but never commercially released.
*1977: Denon develops the smaller portable PCM recording system, the DN-034R. Like the DN-023R it records 8 channels at 47.25 kHz, but it uses 14-bits "with emphasis, making it equivalent to 15.5 bits."
*August 28–31, 1977: Soundstream's PCM system runs in the background of a California [[direct to disc recording]] session by organist [[Virgil Fox]] for [[Crystal Records]]. When initially released the resulting LPs were pressed from the direct-to-disc acetate, though the later CD reissue (1987) comes from the digital backup tapes.<ref>[http://www.amazon.com/Virgil-Fox-Digital-II/dp/B000FJOET4/ref=sr_1_1?ie=UTF8&qid=1424235781&sr=8-1&keywords=virgil+fox+digital Virgil Fox ''The Digital Fox'']</ref>{{failed verification|date=December 2015}}
*November 28, 1977: Denon brings their DN-034R to New York and records [[Archie Shepp]]'s ''On Green Dolphin Street'', making it America's first RELEASED digitally-recorded commercial album.{{citation needed|date=December 2015}} When this is released on CD in 1984 by Nippon Columbia it also becomes one of the earliest digital-only CDs.{{citation needed|date=December 2015}} Six other jazz albums are recorded with the DN-034R in New York before it returns to Japan in December.<ref>http://www.jazzdisco.org/archie-shepp/discography/</ref>{{failed verification|date=December 2015}}
*April 4–5, 1978: [[Telarc International Corporation|Telarc]] uses Soundstream's PCM system to record [[Frederick Fennell]] and his Eastman Wind Ensemble playing [[Gustav Holst]]'s ''Suites for Military Band'' and [[George Frideric Handel]]'s ''[[Music for the Royal Fireworks]].'' When released on LP this became the first US digitally-recorded classical release.<ref>http://www.arkivmusic.com/classical/album.jsp?album_id=3791</ref>
*June 2, 1978: [[Sound 80]] studios in [[Minneapolis]] records the [[Saint Paul Chamber Orchestra]] performing [[Aaron Copland]]'s ''[[Appalachian Spring]]''. This session is set up as a [[direct to disc recording]], with an experimental [[3M]] 50.4 kHz digital recorder in the background capturing the session. It is released on [[LP record]] as Sound80 Records S80-DLR-101<ref>https://www.thespco.org/about-us/recording-discography/</ref> although possibly this release is taken from the direct-to-disc acetate rather than the digital backup. Later the session is re-released on [[Compact Disc]] by ProArte.
*June 1978: [[Sound 80]] records ''[[Flim and the BB's]]'' as another [[direct to disc recording]] again with the experimental [[3M]] recorder in the background. This time the acetate is deemed not as good as the digital backup, so the digital master is used for the [[LP record]] (Sound80 Records S80-DLR-102). This makes it the first U.S. non-classical digital release. Within 6 months the hand-built 3M digital recorder is disassembled, rendering the non-standard master tape unplayable. Therefore, no [[Compact Disc]] reissue is possible.
*1979: the first digital [[Compact Disc]] prototype was created in Japan by a joint venture of [[Sony]] and [[Philips]].
*1979: the first U.S.-recorded digital album of [[popular music]] (with vocals), ''[[Bop 'Til You Drop]]'' by guitarist [[Ry Cooder]], released by [[Warner Bros. Records]]. The album was recorded in [[Los Angeles]] on a 32-track digital machine built by the [[3M]] corporation.{{citation needed|date=December 2015}} Also, [[Stevie Wonder]] digitally recorded his [[soundtrack album]], ''[[Journey Through the Secret Life of Plants]]'', three months after Cooder's album was released, followed by the Grammy-award self-titled [[Christopher Cross (album)|debut album]] of American singer [[Christopher Cross]]. Cross' album is the first digitally recorded album to chart in the US (coincidentally also winning 5 [[Grammy Awards|Grammys]]).
*1982: the first digital [[compact disc]]s are marketed by [[Sony]] and [[Philips]],<ref>Encyclopedia Britannica: ''Compact Disc''. 2003 Deluxe Edition CD-ROM. Encyclopædia Britannica, Inc.</ref> and [[New England Digital]] offers the [[hard disk recorder]] (Sample-to-Disk) option on the [[Synclavier]], the first commercial [[hard disk]] (HDD) recording system.<ref>[http://www.500sound.com/synclavierhistory.html Synclavier history]</ref> Also that same year, [[Peter Gabriel]] releases, [[Security (album)|''Security'']] and ''[[The Nightfly]]'' released by [[Donald Fagen]], which both were the early full digital recordings.
*1984: [[Sony]] released the [[Sony PCM-501ES digital audio processor]], which for the first time allowed consumers to make their own digital recordings, using a [[VHS]] or [[Betamax]] [[video tape recorder]] as the storage media.
*1987: [[Sony]] develops Digital Audio Tape
*1990: [[digital radio]] begins in [[Canada]], using the [[L-Band]].<ref>[http://history.sandiego.edu/GEN/recording/dars.html University of San Diego: ''Digital Audio Radio Service (DARS)''] Accessed Nov 14, 2009</ref>
*1991: [[Alesis]] Digital Audio Tape or [[ADAT]] is a tape format used for simultaneously recording eight tracks of [[digital audio]] at once, onto [[Super VHS]] [[magnetic tape]] - a format similar to that used by consumer [[VCR]]s. The product was announced in January 1991 at the [[NAMM]] convention in [[Anaheim]], [[California]]. The first ADAT recorders shipped over a year later in February or March 1992.<ref>Peterson, George; Robair, Gino [ed.] (1999). ''Alesis ADAT: The Evolution of a Revolution''. Mixbooks. p. 2. ISBN 0-87288-686-7</ref>
*1993: [[RADAR (audio recorder)]] Random Access Digital Audio Recorder or [http://www.izcorp.com/radar RADAR] is the first single box device used for simultaneously recording 24 tracks of [[digital audio]] at once, onto [[hard disk]] drives. The product, manufactured by [[Creation Technologies]] ([http://www.izcorp.com/ iZ Technology Corporation]) was announced in October 1993 at the [[Audio Engineering Society|AES]] convention in [[New York City|New York]], [[New York (state)|New York]]. The first RADAR recorders shipped in August 1994.
*1996: [[optical disc]]s and [[DVD player]]s begin selling in [[Japan]].
== Process ==
'''Recording'''
# The analog signal is transmitted from the [[input device]] to an [[analog-to-digital converter]] (ADC).
# The ADC converts this signal by repeatedly measuring the momentary level of the analog (audio) wave and then assigning a binary number with a given quantity of bits (word length) to each measuring point.
# The frequency at which the ADC measures the level of the analog wave is called the [[sample rate]] or sampling rate.
# A digital audio sample with a given word length represents the audio level at one moment.
# The longer the word length the more exact is the representation of the original audio wave levelwise.
# The higher the sampling rate the higher the upper cutoff frequency of the digitized audio signal.
# The ADC outputs a sequence of samples that make up a continuous stream of 0s and 1s.
# These numbers are stored onto recording media such as [[hard drive]], [[optical drive]] or [[solid state memory]].
'''Playback'''
# The sequence of numbers is transmitted from storage into a [[digital-to-analog converter]] (DAC), which converts the numbers back to an analog signal by sticking together the level information stored in each digital sample, thus rebuilding the original analog wave form.
# This signal is amplified and transmitted to the [[loudspeaker]]s or video screen.
== Recording of bits ==
Even after getting the signal converted to bits, it is still difficult to record; the hardest part is finding a scheme that can record the bits fast enough to keep up with the signal. For example, to record two channels of audio at [[44.1 kHz]] sample rate with a 16 bit word size, the recording software has to handle 1,411,200 bits per second.
===Techniques to record to commercial media===
For [[digital cassettes]], the read/write head moves as well as the tape in order to maintain a high enough speed to keep the bits at a manageable size.
For [[optical disc recording technologies]] such as [[CD]]s or [[DVD]]s, a [[laser]] is used to burn microscopic holes into the dye layer of the medium. A weaker laser is used to read these signals. This works because the metallic substrate of the disc is reflective, and the unburned dye prevents reflection while the holes in the dye permit it, allowing digital data to be represented.
== Concerns with digital audio recording ==
===Word size===
The number of [[bit]]s used to represent a single [[sound wave|audio wave]] (the ''[[word size]]'') directly affects the achievable noise level of a signal recorded with added [[dither]], or the [[distortion]] of an undithered signal.
The number of possible voltage levels at the output is simply the number of values that may be represented by the largest possible number. There are no “in between” values allowed. If there are more bits in the number the waveform is more accurately traced, because each added bit doubles the number of possible values. The distortion is roughly the percentage that the least significant bit represents out of the average value. Distortion in digital systems increases as signal levels decrease, which is the opposite of the behavior of analog systems.<ref>{{Cite web|title = Digital Recording|url = http://artsites.ucsc.edu/ems/music/tech_background/TE-16/teces_16.html|website = artsites.ucsc.edu|accessdate = 2015-09-29}}</ref>
===Sample rate===
The [[Sampling rate|sample rate]] is just as important a consideration as the word size. If the sample rate is too low, the sampled signal cannot be reconstructed to the original sound signal.
To overcome aliasing, the sound signal (or other signal) must be sampled at a rate at least twice that of the highest frequency component in the signal. This is known as the [[Nyquist-Shannon sampling theorem]].
For recording music-quality audio the following PCM sampling rates are the most common:
44.1 kHz
48 kHz
88.2 kHz
96 kHz
176.4 kHz
192 kHz
When making a recording, experienced audio recording and mastering engineers will normally do a master recording at a higher sampling rate (i.e. 88.2, 96, 176.4 or 192 kHz) and then do any editing or mixing at that same higher frequency. High resolution PCM recordings have been released on DVD-Audio (also known as DVD-A), DAD (Digital Audio Disc—which utilizes the stereo PCM audio tracks of a regular DVD), DualDisc (utilizing the DVD-Audio layer), or Blu-ray (Profile 3.0 is the Blu-ray audio standard, although as of mid-2009 it is unclear whether this will ever really be used as an audio-only format). In addition it is nowadays also possible and common to release a high resolution recording directly as either an uncompressed WAV or lossless compressed FLAC file<ref>[http://flac.sourceforge.net/news.html]</ref> (usually at 24 bits) without down-converting it .
However, if a CD (the CD Red Book standard is 44.1 kHz 16 bit) is to be made from a recording, then doing the initial recording using a sampling rate of 44.1 kHz is obviously one approach. Another approach that is usually preferred is to use a higher sample rate and then [[Sample rate conversion|downsample]] to the final format's sample rate. This is usually done as part of the [[Audio mastering|mastering]] process. One advantage to the latter approach is that way a high resolution recording can be released, as well as a CD and/or lossy compressed file such as mp3—all from the same master recording.
Beginning in the 1980s, music that was recorded, mixed and mastered digitally was often labelled using the [[SPARS code]] to describe which processes were analog and which were digital.
===Error rectification===
{{Main article|Digital data}}
One of the advantages of digital recording over analog recording is its resistance to errors.
==See also==
*[[Compact disc]]s use [[Reed-Solomon error correction]]
*[[Cyclic redundancy check]] (CRC)
*[[Digital audio workstation]]
*[[Direct to disk recording]]
*[[Magnetic storage]]
*[[Multitrack recording]]
*[[Parity bit|Parity Computation]]
*Many bits are stored on [[RAID|RAID storage systems]]
*[[4D Audio Recording system]]
==References==
{{Reflist}}
{{Audio formats}}
{{Music technology}}
{{DEFAULTSORT:Digital Recording}}
[[Category:Digital audio recording| ]]
[[Category:Sound]]
[[Category:Video]]' |
Unified diff of changes made by edit (edit_diff ) | '@@ -11,5 +11,5 @@
*1970: [[James Russell (inventor)]] patents the first digital-to-optical recording and playback system, which would later lead to the [[Compact Disc]].<ref>[http://web.mit.edu/invent/iow/russell.html Inventor of the Week, Michigan Institute of Technology] Accessed Nov 14, 2009</ref>
*January 1971: Using NHK'S PCM recording system, engineers at [[Denon]] record the first commercial digital recordings, ''Something'' by [[Steve Marcus]] and ''Uzu: The World Of Stomu Yamash'ta 2'' by [[Stomu Yamashta]].
-*1972: [[Denon]] unveils the first 8-channel digital recorder, the DN-023R, which is 47.25 kHz 13-bit PCM resolution using a 4-head open reel broadcast [[video tape recorder]].<ref name="Fine"/> The first recording with this new system is the [[Smetana Quartet]] performing [[Mozart]]'s ''String Quartets [[String Quartet No. 17 (Mozart)|K.458]] and [[String Quartet No. 15 (Mozart)|K.421]]'', recorded in Tokyo April 24–26. Several other digital LPs follow.
+*1972: [[Denon]] unveils the first 8-channel digital recorder, the DN-023R, which is 47.25 kHz 13-bit PCM resolution using a 4-head open nigger reel broadcast [[video tape recorder]].<ref name="Fine"/> The first recording with this new system is the [[Smetana Quartet]] performing [[Mozart]]'s ''String Quartets [[String Quartet No. 17 (Mozart)|K.458]] and [[String Quartet No. 15 (Mozart)|K.421]]'', recorded in Tokyo April 24–26. Several other digital LPs follow.
*1975: [[University of Utah]] professor [[Thomas Stockham]] develops a PCM digital audio recorder of his own design, using computer tape drives as the storage system. He founds the company [[Soundstream]] to offer it commercially.
*1976: the prototype [[Soundstream]] 37.5 kHz, 16-bit, two channel recorder<ref name="Fine"/> is used to record the [[Santa Fe Opera]] performing [[Virgil Thompson]]'s opera ''[[The Mother of Us All]]'' for [[New World Records]].<ref>[[Soundstream#The company]]</ref> However, the digital recorder is just a backup to the main analog [[multi-track recording|multi-track recorder]] and the superior analog recording is used for the release by New World Records. The digital tape was presented at the 1976 [[Audio Engineering Society|AES]] Convention in New York, but never commercially released.
' |
New page size (new_size ) | 16784 |
Old page size (old_size ) | 16777 |
Size change in edit (edit_delta ) | 7 |
Lines added in edit (added_lines ) | [
0 => '*1972: [[Denon]] unveils the first 8-channel digital recorder, the DN-023R, which is 47.25 kHz 13-bit PCM resolution using a 4-head open nigger reel broadcast [[video tape recorder]].<ref name="Fine"/> The first recording with this new system is the [[Smetana Quartet]] performing [[Mozart]]'s ''String Quartets [[String Quartet No. 17 (Mozart)|K.458]] and [[String Quartet No. 15 (Mozart)|K.421]]'', recorded in Tokyo April 24–26. Several other digital LPs follow.'
] |
Lines removed in edit (removed_lines ) | [
0 => '*1972: [[Denon]] unveils the first 8-channel digital recorder, the DN-023R, which is 47.25 kHz 13-bit PCM resolution using a 4-head open reel broadcast [[video tape recorder]].<ref name="Fine"/> The first recording with this new system is the [[Smetana Quartet]] performing [[Mozart]]'s ''String Quartets [[String Quartet No. 17 (Mozart)|K.458]] and [[String Quartet No. 15 (Mozart)|K.421]]'', recorded in Tokyo April 24–26. Several other digital LPs follow.'
] |
New page wikitext, pre-save transformed (new_pst ) | '{{Refimprove|date=June 2009}}
[[File:Zoom H4n audio recording levels.jpg|thumb|Audio levels display on a digital audio recorder ([[Zoom H4n]])]]
In '''digital recording''', [[audio signal]]s picked up by a [[microphone]] or other [[transducer]] or [[video]] signals picked up by a [[camera]] or similar device are [[Analog to digital conversion|converted]] into a stream of [[discrete number]]s, representing the changes over time in [[air pressure]] for audio, and [[Color|chroma]] and [[luminance]] values for video, then recorded to a storage device. To play back a digital sound recording, the numbers are retrieved and converted back into their original [[analog signal|analog]] waveforms so that they can be heard through a [[loudspeaker]]. To play back a digital video recording, the numbers are retrieved and converted back into their original [[analog signal|analog]] waveforms so that they can be viewed on a [[video monitor]], [[television]] or other display.
== Timeline==
*1938: British scientist [[Alec Reeves]] files the first patent describing [[Pulse-code modulation]] (PCM).<ref>[http://www.privateline.com/TelephoneHistory2/reeves.html Robertson, David. ''Alec Reeves 1902-1971'' Privateline.com: Telephone History.] Accessed Nov 14, 2009</ref> It was first developed as a [[telephony]] technology.<ref name="Fine">{{cite journal |author=Thomas Fine |year=2008 |title=The dawn of commercial digital recording |journal=[[ARSC Journal]] |volume=39 |issue=1 |pages=1–17 |url=http://www.aes.org/aeshc/pdf/fine_dawn-of-digital.pdf}}</ref>
*1943: [[Bell Labs|Bell Telephone Laboratories]] develops the first PCM-based digital scrambled speech transmission system, [[SIGSALY]],<ref>[http://www.nsa.gov/about/cryptologic_heritage/center_crypt_history/publications/sigsaly_story.shtml#3 J. V. Boone, J. V., Peterson R. R.: ''Sigsaly - The Start of the Digital Revolution''] Accessed Nov 14, 2009</ref> in response to German interception of military telephone traffic during [[World War II]]. The twelve transmission points were retired after the war.
*1957: [[Max Mathews]] of Bell develops the process to digitally [[sound recording|record]] sound via [[computer]].
*1967: the first [[monaural]] PCM recorder was developed by [[NHK]]'s research facilities in Japan.<ref name="Fine"/> The 30 kHz 12-bit device used a [[compander]] (similar to [[Dbx (noise reduction)|DBX Noise Reduction]]) to extend the dynamic range, and stored the signals on a [[video tape recorder]].
*1969: NHK expands the PCM's capabilities to 2-channel [[stereo]] and 32 kHz 13-bit resolution.
*1970: [[James Russell (inventor)]] patents the first digital-to-optical recording and playback system, which would later lead to the [[Compact Disc]].<ref>[http://web.mit.edu/invent/iow/russell.html Inventor of the Week, Michigan Institute of Technology] Accessed Nov 14, 2009</ref>
*January 1971: Using NHK'S PCM recording system, engineers at [[Denon]] record the first commercial digital recordings, ''Something'' by [[Steve Marcus]] and ''Uzu: The World Of Stomu Yamash'ta 2'' by [[Stomu Yamashta]].
*1972: [[Denon]] unveils the first 8-channel digital recorder, the DN-023R, which is 47.25 kHz 13-bit PCM resolution using a 4-head open nigger reel broadcast [[video tape recorder]].<ref name="Fine"/> The first recording with this new system is the [[Smetana Quartet]] performing [[Mozart]]'s ''String Quartets [[String Quartet No. 17 (Mozart)|K.458]] and [[String Quartet No. 15 (Mozart)|K.421]]'', recorded in Tokyo April 24–26. Several other digital LPs follow.
*1975: [[University of Utah]] professor [[Thomas Stockham]] develops a PCM digital audio recorder of his own design, using computer tape drives as the storage system. He founds the company [[Soundstream]] to offer it commercially.
*1976: the prototype [[Soundstream]] 37.5 kHz, 16-bit, two channel recorder<ref name="Fine"/> is used to record the [[Santa Fe Opera]] performing [[Virgil Thompson]]'s opera ''[[The Mother of Us All]]'' for [[New World Records]].<ref>[[Soundstream#The company]]</ref> However, the digital recorder is just a backup to the main analog [[multi-track recording|multi-track recorder]] and the superior analog recording is used for the release by New World Records. The digital tape was presented at the 1976 [[Audio Engineering Society|AES]] Convention in New York, but never commercially released.
*1977: Denon develops the smaller portable PCM recording system, the DN-034R. Like the DN-023R it records 8 channels at 47.25 kHz, but it uses 14-bits "with emphasis, making it equivalent to 15.5 bits."
*August 28–31, 1977: Soundstream's PCM system runs in the background of a California [[direct to disc recording]] session by organist [[Virgil Fox]] for [[Crystal Records]]. When initially released the resulting LPs were pressed from the direct-to-disc acetate, though the later CD reissue (1987) comes from the digital backup tapes.<ref>[http://www.amazon.com/Virgil-Fox-Digital-II/dp/B000FJOET4/ref=sr_1_1?ie=UTF8&qid=1424235781&sr=8-1&keywords=virgil+fox+digital Virgil Fox ''The Digital Fox'']</ref>{{failed verification|date=December 2015}}
*November 28, 1977: Denon brings their DN-034R to New York and records [[Archie Shepp]]'s ''On Green Dolphin Street'', making it America's first RELEASED digitally-recorded commercial album.{{citation needed|date=December 2015}} When this is released on CD in 1984 by Nippon Columbia it also becomes one of the earliest digital-only CDs.{{citation needed|date=December 2015}} Six other jazz albums are recorded with the DN-034R in New York before it returns to Japan in December.<ref>http://www.jazzdisco.org/archie-shepp/discography/</ref>{{failed verification|date=December 2015}}
*April 4–5, 1978: [[Telarc International Corporation|Telarc]] uses Soundstream's PCM system to record [[Frederick Fennell]] and his Eastman Wind Ensemble playing [[Gustav Holst]]'s ''Suites for Military Band'' and [[George Frideric Handel]]'s ''[[Music for the Royal Fireworks]].'' When released on LP this became the first US digitally-recorded classical release.<ref>http://www.arkivmusic.com/classical/album.jsp?album_id=3791</ref>
*June 2, 1978: [[Sound 80]] studios in [[Minneapolis]] records the [[Saint Paul Chamber Orchestra]] performing [[Aaron Copland]]'s ''[[Appalachian Spring]]''. This session is set up as a [[direct to disc recording]], with an experimental [[3M]] 50.4 kHz digital recorder in the background capturing the session. It is released on [[LP record]] as Sound80 Records S80-DLR-101<ref>https://www.thespco.org/about-us/recording-discography/</ref> although possibly this release is taken from the direct-to-disc acetate rather than the digital backup. Later the session is re-released on [[Compact Disc]] by ProArte.
*June 1978: [[Sound 80]] records ''[[Flim and the BB's]]'' as another [[direct to disc recording]] again with the experimental [[3M]] recorder in the background. This time the acetate is deemed not as good as the digital backup, so the digital master is used for the [[LP record]] (Sound80 Records S80-DLR-102). This makes it the first U.S. non-classical digital release. Within 6 months the hand-built 3M digital recorder is disassembled, rendering the non-standard master tape unplayable. Therefore, no [[Compact Disc]] reissue is possible.
*1979: the first digital [[Compact Disc]] prototype was created in Japan by a joint venture of [[Sony]] and [[Philips]].
*1979: the first U.S.-recorded digital album of [[popular music]] (with vocals), ''[[Bop 'Til You Drop]]'' by guitarist [[Ry Cooder]], released by [[Warner Bros. Records]]. The album was recorded in [[Los Angeles]] on a 32-track digital machine built by the [[3M]] corporation.{{citation needed|date=December 2015}} Also, [[Stevie Wonder]] digitally recorded his [[soundtrack album]], ''[[Journey Through the Secret Life of Plants]]'', three months after Cooder's album was released, followed by the Grammy-award self-titled [[Christopher Cross (album)|debut album]] of American singer [[Christopher Cross]]. Cross' album is the first digitally recorded album to chart in the US (coincidentally also winning 5 [[Grammy Awards|Grammys]]).
*1982: the first digital [[compact disc]]s are marketed by [[Sony]] and [[Philips]],<ref>Encyclopedia Britannica: ''Compact Disc''. 2003 Deluxe Edition CD-ROM. Encyclopædia Britannica, Inc.</ref> and [[New England Digital]] offers the [[hard disk recorder]] (Sample-to-Disk) option on the [[Synclavier]], the first commercial [[hard disk]] (HDD) recording system.<ref>[http://www.500sound.com/synclavierhistory.html Synclavier history]</ref> Also that same year, [[Peter Gabriel]] releases, [[Security (album)|''Security'']] and ''[[The Nightfly]]'' released by [[Donald Fagen]], which both were the early full digital recordings.
*1984: [[Sony]] released the [[Sony PCM-501ES digital audio processor]], which for the first time allowed consumers to make their own digital recordings, using a [[VHS]] or [[Betamax]] [[video tape recorder]] as the storage media.
*1987: [[Sony]] develops Digital Audio Tape
*1990: [[digital radio]] begins in [[Canada]], using the [[L-Band]].<ref>[http://history.sandiego.edu/GEN/recording/dars.html University of San Diego: ''Digital Audio Radio Service (DARS)''] Accessed Nov 14, 2009</ref>
*1991: [[Alesis]] Digital Audio Tape or [[ADAT]] is a tape format used for simultaneously recording eight tracks of [[digital audio]] at once, onto [[Super VHS]] [[magnetic tape]] - a format similar to that used by consumer [[VCR]]s. The product was announced in January 1991 at the [[NAMM]] convention in [[Anaheim]], [[California]]. The first ADAT recorders shipped over a year later in February or March 1992.<ref>Peterson, George; Robair, Gino [ed.] (1999). ''Alesis ADAT: The Evolution of a Revolution''. Mixbooks. p. 2. ISBN 0-87288-686-7</ref>
*1993: [[RADAR (audio recorder)]] Random Access Digital Audio Recorder or [http://www.izcorp.com/radar RADAR] is the first single box device used for simultaneously recording 24 tracks of [[digital audio]] at once, onto [[hard disk]] drives. The product, manufactured by [[Creation Technologies]] ([http://www.izcorp.com/ iZ Technology Corporation]) was announced in October 1993 at the [[Audio Engineering Society|AES]] convention in [[New York City|New York]], [[New York (state)|New York]]. The first RADAR recorders shipped in August 1994.
*1996: [[optical disc]]s and [[DVD player]]s begin selling in [[Japan]].
== Process ==
'''Recording'''
# The analog signal is transmitted from the [[input device]] to an [[analog-to-digital converter]] (ADC).
# The ADC converts this signal by repeatedly measuring the momentary level of the analog (audio) wave and then assigning a binary number with a given quantity of bits (word length) to each measuring point.
# The frequency at which the ADC measures the level of the analog wave is called the [[sample rate]] or sampling rate.
# A digital audio sample with a given word length represents the audio level at one moment.
# The longer the word length the more exact is the representation of the original audio wave levelwise.
# The higher the sampling rate the higher the upper cutoff frequency of the digitized audio signal.
# The ADC outputs a sequence of samples that make up a continuous stream of 0s and 1s.
# These numbers are stored onto recording media such as [[hard drive]], [[optical drive]] or [[solid state memory]].
'''Playback'''
# The sequence of numbers is transmitted from storage into a [[digital-to-analog converter]] (DAC), which converts the numbers back to an analog signal by sticking together the level information stored in each digital sample, thus rebuilding the original analog wave form.
# This signal is amplified and transmitted to the [[loudspeaker]]s or video screen.
== Recording of bits ==
Even after getting the signal converted to bits, it is still difficult to record; the hardest part is finding a scheme that can record the bits fast enough to keep up with the signal. For example, to record two channels of audio at [[44.1 kHz]] sample rate with a 16 bit word size, the recording software has to handle 1,411,200 bits per second.
===Techniques to record to commercial media===
For [[digital cassettes]], the read/write head moves as well as the tape in order to maintain a high enough speed to keep the bits at a manageable size.
For [[optical disc recording technologies]] such as [[CD]]s or [[DVD]]s, a [[laser]] is used to burn microscopic holes into the dye layer of the medium. A weaker laser is used to read these signals. This works because the metallic substrate of the disc is reflective, and the unburned dye prevents reflection while the holes in the dye permit it, allowing digital data to be represented.
== Concerns with digital audio recording ==
===Word size===
The number of [[bit]]s used to represent a single [[sound wave|audio wave]] (the ''[[word size]]'') directly affects the achievable noise level of a signal recorded with added [[dither]], or the [[distortion]] of an undithered signal.
The number of possible voltage levels at the output is simply the number of values that may be represented by the largest possible number. There are no “in between” values allowed. If there are more bits in the number the waveform is more accurately traced, because each added bit doubles the number of possible values. The distortion is roughly the percentage that the least significant bit represents out of the average value. Distortion in digital systems increases as signal levels decrease, which is the opposite of the behavior of analog systems.<ref>{{Cite web|title = Digital Recording|url = http://artsites.ucsc.edu/ems/music/tech_background/TE-16/teces_16.html|website = artsites.ucsc.edu|accessdate = 2015-09-29}}</ref>
===Sample rate===
The [[Sampling rate|sample rate]] is just as important a consideration as the word size. If the sample rate is too low, the sampled signal cannot be reconstructed to the original sound signal.
To overcome aliasing, the sound signal (or other signal) must be sampled at a rate at least twice that of the highest frequency component in the signal. This is known as the [[Nyquist-Shannon sampling theorem]].
For recording music-quality audio the following PCM sampling rates are the most common:
44.1 kHz
48 kHz
88.2 kHz
96 kHz
176.4 kHz
192 kHz
When making a recording, experienced audio recording and mastering engineers will normally do a master recording at a higher sampling rate (i.e. 88.2, 96, 176.4 or 192 kHz) and then do any editing or mixing at that same higher frequency. High resolution PCM recordings have been released on DVD-Audio (also known as DVD-A), DAD (Digital Audio Disc—which utilizes the stereo PCM audio tracks of a regular DVD), DualDisc (utilizing the DVD-Audio layer), or Blu-ray (Profile 3.0 is the Blu-ray audio standard, although as of mid-2009 it is unclear whether this will ever really be used as an audio-only format). In addition it is nowadays also possible and common to release a high resolution recording directly as either an uncompressed WAV or lossless compressed FLAC file<ref>[http://flac.sourceforge.net/news.html]</ref> (usually at 24 bits) without down-converting it .
However, if a CD (the CD Red Book standard is 44.1 kHz 16 bit) is to be made from a recording, then doing the initial recording using a sampling rate of 44.1 kHz is obviously one approach. Another approach that is usually preferred is to use a higher sample rate and then [[Sample rate conversion|downsample]] to the final format's sample rate. This is usually done as part of the [[Audio mastering|mastering]] process. One advantage to the latter approach is that way a high resolution recording can be released, as well as a CD and/or lossy compressed file such as mp3—all from the same master recording.
Beginning in the 1980s, music that was recorded, mixed and mastered digitally was often labelled using the [[SPARS code]] to describe which processes were analog and which were digital.
===Error rectification===
{{Main article|Digital data}}
One of the advantages of digital recording over analog recording is its resistance to errors.
==See also==
*[[Compact disc]]s use [[Reed-Solomon error correction]]
*[[Cyclic redundancy check]] (CRC)
*[[Digital audio workstation]]
*[[Direct to disk recording]]
*[[Magnetic storage]]
*[[Multitrack recording]]
*[[Parity bit|Parity Computation]]
*Many bits are stored on [[RAID|RAID storage systems]]
*[[4D Audio Recording system]]
==References==
{{Reflist}}
{{Audio formats}}
{{Music technology}}
{{DEFAULTSORT:Digital Recording}}
[[Category:Digital audio recording| ]]
[[Category:Sound]]
[[Category:Video]]' |
Whether or not the change was made through a Tor exit node (tor_exit_node ) | 0 |
Unix timestamp of change (timestamp ) | 1481745720 |