Jump to content

Examine individual changes

This page allows you to examine the variables generated by the Edit Filter for an individual change.

Variables generated for this change

VariableValue
Whether or not the edit is marked as minor (no longer in use) (minor_edit)
false
Name of the user account (user_name)
'205.251.148.114'
Whether or not a user is editing through the mobile interface (user_mobile)
false
Page ID (page_id)
26569537
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Recent African origin of modern humans'
Full page title (page_prefixedtitle)
'Recent African origin of modern humans'
Action (action)
'edit'
Edit summary/reason (summary)
'1 gorrillion years ago we came from africa ZOMG'
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{about|modern humans|migrations of early humans|Early hominin expansions out of Africa}} {{See also|Early human migrations}} {{use dmy dates|date=July 2016}} [[File:Map-of-human-migrations.jpg|thumb|400px|right|Map of the migration of modern humans out of Africa, based on [[mitochondrial DNA]]. Colored rings indicate thousand years before present.]] In [[paleoanthropology]], the '''recent African origin of modern humans''', also called the "'''Out of Africa'''" '''theory''' ('''OOA'''), '''recent single-origin hypothesis''' ('''RSOH'''), '''replacement hypothesis''', or '''recent African origin model''' ('''RAO'''), is the dominant{{r|pmid16826514Quo|pmid12802315}} model of the geographic origin and [[Early human migrations|early migration]] of [[anatomically modern human]]s (''[[Homo sapiens]]''). The model proposes a "single origin" of ''[[Homo sapiens]]'' in the taxonomic sense, precluding [[parallel evolution]] of traits considered [[anatomically modern humans|anatomically modern]] in other regions,{{r|pmid10766948}} but not precluding limited [[Archaic human admixture with modern humans|admixture]] between ''H. sapiens'' and archaic humans in Europe and Asia.{{refn|group=note|name="JurmainKilgore2008"|From 1984 to 2003, an alternative scientific hypothesis was the [[multiregional origin of modern humans]], which envisioned a wave of ''Homo sapiens'' migrating earlier from Africa and interbreeding with local ''[[Homo erectus]]'' populations in varied regions of the globe.{{cite book|author1=Robert Jurmain |author2=Lynn Kilgore |author3=Wenda Trevathan |title=Essentials of Physical Anthropology |url=https://books.google.com/books?id=TSaSPza9LMYC&pg=PA266 |accessdate=14 June 2011 |date=20 March 2008 |publisher=Cengage Learning |isbn=978-0-495-50939-4 |pages=266–}}}} ''H. sapiens'' most likely developed in the [[Horn of Africa]] between 300,000 and 200,000 years ago. The "recent African origin" model proposes that all modern non-African populations are substantially descended from populations of ''H. sapiens'' that left Africa after that time. There were at least several "out-of-Africa" dispersals of modern humans, possibly beginning as early as 270,000 years ago, and certainly during 130,000 to 115,000 ago via northern Africa.{{r|pmid21273486|pmid21212332|pmid21601174|pmid17372199}}<ref name="SCI-20171208">{{cite journal |last1=Bae |first1=Christopher J. |last2=Douka |first2=Katerina |last3=Petraglia |first3=Michael D. |title=On the origin of modern humans: Asian perspectives |url=http://science.sciencemag.org/content/358/6368/eaai9067 |journal=[[Science (journal)|Science]] |date=8 December 2017 |volume=358 |issue=6368 |page=eaai9067 |doi=10.1126/science.aai9067 |accessdate=10 December 2017 }}</ref><ref name="QZ-20171210">{{cite web |last=Kuo |first=Lily |title=Early humans migrated out of Africa much earlier than we thought |url=https://qz.com/1151816/early-humans-migrated-out-of-africa-much-earlier-than-we-thought/ |date=10 December 2017 |work=[[Quartz (publication)|Quartz]] |accessdate=10 December 2017 }}</ref> These early waves appear to have mostly died out or retreated by 80,000 years ago.<ref name="Liu2015">{{harvp|Liu, Martinón-Torres et al.|2015}}.<br>See also [http://dienekes.blogspot.nl/2015/10/modern-humans-in-china-80000-years-ago.html ''Modern humans in China ~80,000 years ago (?)''], Dieneks' Anthropology Blog.</ref> The most significant "recent" wave took place about 70,000 years ago, via the so-called "[[Southern Dispersal|Southern Route]]", spreading rapidly along the coast of Asia and reaching [[Prehistoric Australia|Australia]] by around 43,000 years (oldest remains found at lake mungo) which coincides with the rapid Extinction rate of Australian megafauna clearly hunted to extinction but some think 65,000 by dating a rock claming to be a axe head or gridding stone but it doesn't fit as no homo sapien remains yet to be found dating to this time. Also homo erectus (first humanoid to leave Africa) was still around in Indonesia, Java to 55,000 years ago and not forgetting the toda volcanic eruption between 69,000-77,000 that could have almost wiped out homo sapiens and reduce the numbers to around 10,000 worldwide and Australia was connected to Indonesia, West Papua and Papua New Guinea at that time as of the ice age resulting in sea levels being over 100m lower then today allowing a land bridge until about 11,000 years ago, while Europe was populated by an early offshoot which settled the Near East and Europe less than 55,000 years ago. g, while Europe was populated by an early offshoot which settled the Near East and Europe less than 55,000 years ago. while Europe was populated by an early offshoot which settled the Near East and Europe less than 55,000 years ago.{{sfn|Young McChesney|2015}}<ref name="Macaulay2005">{{harvp|Macaulay et al.|2005}}.</ref><ref name="Posth2016">{{harvp|Posth et al.|2016}}.<br>See also [http://dienekes.blogspot.nl/2016/02/mtdna-from-55-hunter-gatherers-across.html ''mtDNA from 55 hunter-gatherers across 35,000 years in Europe''], Dienekes' Anthroplogy Bog.</ref> In the 2010s, studies in [[population genetics]] have uncovered evidence of [[Archaic human admixture with modern humans|interbreeding]] of ''H. sapiens'' with [[archaic humans]] both in Africa and in Eurasia,<ref name="pruf13comal">{{cite journal| last=Prüfer| first=K.|author2=Racimo, F. |author3=Patterson, N. |author4=Jay, F. |author5=Sankararaman, S. |author6=Sawyer, S. | title=The complete genome sequence of a Neanderthal from the Altai Mountains| journal=Nature| date=2014 | origyear=Online 2013 | volume=505| issue=7481| pages=43–49| doi=10.1038/nature12886|display-authors=etal | bibcode=2014Natur.505...43P | pmid=24352235 | pmc=4031459}}</ref> which means that all modern population groups, both African and non-African, while mostly derived from early ''H. sapiens'', to a lesser extent are also descended from regional variants of [[archaic humans]]. ==Proposed waves== :''See [[Early hominin expansions out of Africa]] for archaic humans (''H. erectus, H. heidelbergensis, Neanderthals, Denisovans).'' {{see|Skhul and Qafzeh hominins}} "Recent African origin," or ''Out of Africa II'', refers to the migration of [[anatomically modern humans]] (''[[Homo sapiens]]'') out of Africa after their emergence at c. 300,000 to 200,000 years ago, in contrast to "[[Out of Africa I]]", the migration of archaic humans from Africa to Eurasia between roughly 1.8 to 0.5 million years ago. Since the early 21st century, the picture of "recent single-origin" migrations has become significantly more complex, not just due to the discovery of modern-archaic admixture but also due to the increasing evidence that the "recent out-of-Africa" migration took place in a number of waves spread over a long time period. As of 2010, there were two main accepted dispersal route for the out-of-Africa migration of early anatomically modern humans: via the "Northern Route" (via Nile Valley and Sinai) and the "Southern Route" via the [[Bab al Mandab]] strait.{{sfnp|Beyin|2011}} *Posth et al. (2017) suggest that early ''Homo sapiens'', or "another species in Africa closely related to us," might have first migrated out of Africa around 270,000 years ago.<ref name="NC-20170704">{{cite journal |author=Posth, Cosimo et al. |title=Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals |url=https://www.nature.com/articles/ncomms16046 |date=4 July 2017 |journal=[[Nature Communications]] |doi=10.1038/ncomms16046 |accessdate=4 July 2017 |volume=8 |page=16046}}; see also {{cite news |last=Zimmer |first=Carl |authorlink=Carl Zimmer |title=In Neanderthal DNA, Signs of a Mysterious Human Migration |url=https://www.nytimes.com/2017/07/04/science/neanderthals-dna-homo-sapiens-human-evolution.html |date=4 July 2017 |work=[[New York Times]] |accessdate=4 July 2017 }}.</ref> *Finds at [[Misliya cave]], which include a partial jawbone with eight teeth have been dated to around 185,000 years ago. Layers dating from between 250,000 and 140,000 years ago in the same cave contained tools of the [[Levallois technique|Levallois]] type which could put the date of the first migration even earlier if the tools can be associated with the modern human jawbone finds.<ref>{{Cite news|url=https://www.sciencedaily.com/releases/2018/01/180125140923.htm|title=Scientists discover oldest known modern human fossil outside of Africa: Analysis of fossil suggests Homo sapiens left Africa at least 50,000 years earlier than previously thought|work=ScienceDaily|access-date=2018-01-27|language=en}}</ref><ref>{{Cite news|url=http://www.bbc.co.uk/news/science-environment-42817323|title=Modern humans left Africa much earlier|last=Ghosh|first=Pallab|date=2018|work=BBC News|access-date=2018-01-27|language=en-GB}}</ref> *An Eastward Dispersal from Northeast Africa to Arabia during 150–130 kya based on the finds at [[Jebel Faya]] dated to 127 kya (discovered in 2011).{{r|pmid21273486}}{{r|pmid21212332}} Possibly related to this wave are the finds from [[Zhirendong]] cave, Southern China, dated to more than 100 kya.{{sfnp|Beyin|2011}} Other evidence of modern human presence in China has been dated to 80,000 years ago.{{r|Liu2015}} *The most significant dispersal took place around 70,000 years ago via the so-called [[Southern Dispersal|Southern Route]], either before{{sfnp|Appenzeller|2012}} or after{{r|Macaulay2005|Posth2016}} the [[Toba catastrophe theory|Toba event]], which happened between 69,000 and 77,000 years ago.{{sfnp|Appenzeller|2012}} This dispersal followed the southern coastline of Asia, and reached Australia around 65,000-50,000 years ago. Western Asia was "re-occupied" by a different derivation from this wave around 50,000 years ago, and Europe was populated from Western Asia beginning around 43,000 years ago.{{sfnp|Beyin|2011}} *{{harvp|Wells|2003}} describes an additional wave of migration after the southern coastal route, namely a northern migration into Europe at circa 45,000 years ago.{{refn|group=note|name=McChesney2015|Kay Young McChesney: "Wells (2003) divided the descendants of men who left Africa into a genealogical tree with 11 lineages. Each genetic marker represents a single-point mutation (SNP) at a specific place in the genome. First, genetic evidence suggests that a small band with the marker M168 migrated out of Africa along the coasts of the Arabian Peninsula and India, through Indonesia, and reached Australia very early, between 60,000 and 50,000 years ago. This very early migration into Australia is also supported by Rasmussen et al. (2011). Second, a group bearing the marker M89 moved out of northeastern Africa into the Middle East 45,000 years ago. From there, the M89 group split into two groups. One group that developed the marker M9 went into Asia about 40,000 years ago. The Asian (M9) group split three ways: into Central Asia (M45), 35,000 years ago; into India (M20), 30,000 years ago; and into China (M122), 10,000 years ago. The Central Asian (M45) group split into two groups: toward Europe (M173), 30,000 years ago and toward Siberia (M242), 20,000 years ago. Finally, the Siberian group (M242) went on to populate North and South America (M3), about 10,000 years ago.{{sfn|Young McChesney|2015}}}} This possibility is ruled out by {{harvp|Macaulay et al.|2005}} and {{harvp|Posth et al.|2016}}, arguing for a single coastal dispersal, with an early offshoot into Europe. ==Northern Route dispersal{{anchor|Early northern Africa dispersal}}== {{see|Skhul and Qafzeh hominins}} Beginning 135,000 years ago, tropical Africa experienced [[megadrought]]s which drove the humans from the land and towards the sea shores, and forced them to cross over to other continents.<ref name="U of AZ"/>{{refn|group=note|The researchers used radiocarbon dating techniques on pollen grains trapped in lake-bottom mud to establish vegetation over the ages of the [[Malawi]] lake in Africa, taking samples at 300-year-intervals. Samples from the megadrought times had little pollen or charcoal, suggesting sparse vegetation with little to burn. The area around [[Lake Malawi]], today heavily forested, was a desert approximately 135,000 to 90,000 years ago.<ref name="U of AZ">{{cite web | url=https://uanews.arizona.edu/story/newfound-ancient-african-megadroughts-may-have-driven-evolution-of-humans-and-fish| title= Newfound Ancient African Megadroughts May Have Driven Evolution of Humans and Fish. The findings provide new insights into humans' migration out of Africa and the evolution of fishes in Africa's Great Lakes.| publisher=The University of Arizona| language=English|date=8 October 2007 | accessdate=25 September 2017 | author=Mari N. Jensen}}</ref>}} Modern humans crossed the Straits of Bab el Mandab in the southern [[Red Sea]], and moved along the green coastlines around Arabia, and thence to the rest of Eurasia. Fossils of early ''Homo sapiens'' were found in [[Qafzeh]] cave in Israel and have been dated 80,000 to 100,000 years ago. These humans seem to have either become extinct or retreated back to Africa 70,000 to 80,000 years ago, possibly replaced by southbound Neanderthals escaping the colder regions of ice-age Europe.{{sfnp|Finlayson|2009|p=68}} Hua Liu ''et al.'' analyzed autosomal microsatellite markers dating to about 56,000 years ago. They interpret the [[paleontological]] fossil as an isolated early offshoot that retracted back to Africa.{{sfnp|Liu, Prugnolle et al.|2006}} The discovery of stone tools in the [[United Arab Emirates]] in 2011 indicated the presence of modern humans at least 100,000 and 125,000 years ago,{{r|pmid21273486}} leading to a resurgence of the "long-neglected" North African route.{{r|pmid21212332}}<ref>{{cite journal|title = Earliest evidence for the structure of ''Homo sapiens'' populations in Africa|url = http://www.sciencedirect.com/science/article/pii/S0277379114003023|journal = Quaternary Science Reviews|date = 1 October 2014|pages = 207–216|volume = 101|doi = 10.1016/j.quascirev.2014.07.019|first = Eleanor M. L.|last = Scerri|first2 = Nick A.|last2 = Drake|first3 = Richard|last3 = Jennings|first4 = Huw S.|last4 = Groucutt}}</ref>{{r|pmid21601174|pmid17372199}} In [[History of Oman|Oman]], a site was discovered by Bien Joven in 2011 containing more than 100 surface scatters of stone tools belonging to the late Nubian Complex, known previously only from [[Archaeological record|archaeological excavations]] in the [[Sudan]]. Two optically stimulated luminescence age estimates place the Arabian Nubian Complex at approximately 106,000 years old. This provides evidence for a distinct [[stone age]] technocomplex in southern Arabia, around the earlier part of the [[Marine Isotope Stage 5]].<ref>{{cite journal | pmc = 3227647 | pmid=22140561 | doi=10.1371/journal.pone.0028239 | volume=6 | title=The Nubian Complex of Dhofar, Oman: an African middle stone age industry in Southern Arabia | year=2011 | journal=PLoS ONE | pages=e28239 | last1 = Rose | first1 = JI | last2 = Usik | first2 = VI | last3 = Marks | first3 = AE | last4 = Hilbert | first4 = YH | last5 = Galletti | first5 = CS | last6 = Parton | first6 = A | last7 = Geiling | first7 = JM | last8 = Cerný | first8 = V | last9 = Morley | first9 = MW | last10 = Roberts | first10 = RG}}</ref> According to Kuhlwilm and his co-authors, [[Neanderthal]]s [[Archaic human admixture with modern humans|contributed to modern humans genetically]] around 100,000 years ago, from humans which split off from other modern humans around 200,000 years ago.<ref name=DAB-EastNeandertals>{{harvp|Kuhlwilm et al.|2016}}.<br>See also [http://dienekes.blogspot.nl/2016/02/ancestors-of-eastern-neandertals.html ''Ancestors of Eastern Neandertals admixed with modern humans 100 thousand years ago''], Dienekes'Anthropology Blog.</ref> They found that "the ancestors of Neanderthals from the Altai Mountains and early modern humans met and interbred, possibly in the Near East, many thousands of years earlier than previously thought".{{r|DAB-EastNeandertals}} According to co-author Ilan Gronau, "This actually complements archaeological evidence of the presence of early modern humans out of Africa around and before 100 ka by providing the first genetic evidence of such populations."{{r|DAB-EastNeandertals}} Similar [[genetic admixture]] events have been [[Archaic human admixture with modern humans|noted in other regions]] as well.<ref name="Denovisans">{{Cite journal|url =http://www.sciencemag.org/news/2017/03/ancient-skulls-may-belong-elusive-humans-called-denisovans |title = Ancient skulls may belong to elusive humans called Denisovans|last = Gibbons|first = Ann|date = 2 March 2017|journal = Science |accessdate = 25 September 2017}}</ref> In China, the [[Liujiang man]] ({{zh|c=柳江人}}) is among the earliest modern humans found in [[East Asia]].<ref name="liujiang hominid site">{{Cite journal | last1 = Shen | first1 = G. | last2 = Wang | first2 = W. | last3 = Wang | first3 = Q. | last4 = Zhao | first4 = J. | last5 = Collerson | first5 = K. | last6 = Zhou | first6 = C. | last7 = Tobias | first7 = P. V. | title = U-Series dating of Liujiang hominid site in Guangxi, Southern China | doi = 10.1006/jhev.2002.0601 | journal = Journal of Human Evolution | volume = 43 | issue = 6 | pages = 817–829 | year = 2002 | pmid = 12473485| pmc = }}</ref> The date most commonly attributed to the remains is 67,000 years ago.<ref name=":0">{{Cite journal|url = |title = A Late Pleistocene Human Skeleton from Liujiang, China Suggests Regional Population Variation in Sexual Dimorphism in the Human Pelvis|last = Rosenburg|first = Karen|date = 2002|journal = Variability and Evolution|doi = |pmid = |access-date = }}</ref> High rates of variability yielded by various dating techniques carried out by different researchers place the most widely accepted range of dates with 67,000 BP as a minimum, but does not rule out dates as old as 159,000 BP.<ref name=":0" /> {{harvp|Liu, Martinón-Torres et al.|2015}} claim that modern human teeth have been found in China dating to at least 80,000 years ago.<ref name=":1">{{Cite journal|url = |title = Fossil Record of Early Modern Humans in East Asia|last = Kaifu|first = Yousuke|date = 2012|journal = Palaeoenvironmental Changes and Human Dispersals in North and East Asia during MIS3 and MIS2|doi = |pmid = |access-date = }}</ref> ==Southern Route dispersal{{anchor|Southern Dispersal}}== {{main|Great Coastal Migration}} {{see|List of first human settlements}} ===Coastal route=== [[File:Red Sea2.png|thumb|[[Red Sea]] crossing]] By some 70,000 years ago, a part of the bearers of mitochondrial haplogroup [[Haplogroup L3 (mtDNA)|L3]] migrated from [[East Africa]] into the [[Near East]]. It has been estimated that from a population of 2,000 to 5,000 individuals in Africa, only a small group, possibly as few as 150 to 1,000 people, crossed the Red Sea.<ref>{{cite journal|year=2003|last=Zhivotovsky|title=Features of Evolution and Expansion of Modern Humans, Inferred from Genomewide Microsatellite Markers | pmc=1180270 |volume=72 |issue=5 |pmid=12690579 |last2=Rosenberg |first2=NA| last3=Feldman |first3=MW |pages=1171–86 |doi=10.1086/375120|journal=American Journal of Human Genetics|display-authors=etal}}</ref><ref>{{cite web |year=2008 |first=Gary |last=Stix |url=http://www.scientificamerican.com/article.cfm?id=the-migration-history-of-humans|title=The Migration History of Humans: DNA Study Traces Human Origins Across the Continents|accessdate=14 June 2011}}</ref> The group that crossed the Red Sea travelled along the coastal route around [[Arabia]] and [[Persia]] to India, which appears to be the first major settling point.{{r|pmid15339343}} {{harvp|Wells|2003}} argued for the route along the southern coastline of Asia, across about {{convert|250|km|0|abbr=out}}{{dubious|date=February 2018}}, reaching Australia by around 50,000 years ago. Today at the [[Bab-el-Mandeb straits]], the [[Red Sea]] is about {{convert|20|km|0|abbr=out}} wide but 50,000 years ago sea levels were {{convert|70|m|0|abbr=on}} lower (owing to glaciation) and the water was much narrower. Though the straits were never completely closed, they were narrow enough and there may have been islands in between to have enabled crossing using simple rafts.<ref>{{cite journal|title = Absence of post-Miocene Red Sea land bridges: biogeographic implications|date = June 2006|doi = 10.1111/j.1365-2699.2006.01478.x|url = http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2699.2006.01478.x/full|last = Fernandes et. al|journal = Journal of Biogeography|issue = 6|volume = 33|pages = 961–966}}</ref>{{sfnp|Beyin|2011}} Shell [[middens]] 125,000 years old have been found in [[Eritrea]],<ref name="pmid10811218">{{cite journal |vauthors=Walter RC, Buffler RT, Bruggemann JH, Guillaume MM, Berhe SM, Negassi B, Libsekal Y, Cheng H, Edwards RL, von Cosel R, Néraudeau D, Gagnon M | title = Early human occupation of the Red Sea coast of Eritrea during the last interglacial | journal = Nature | volume = 405 | issue = 6782 | pages = 65–9 |date=May 2000 | pmid = 10811218 | doi = 10.1038/35011048 | ref = harv }}</ref> indicating the diet of early humans included seafood obtained by [[beachcombing]]. {{See also|Toba catastrophe theory}} The dating of the Southern Dispersal is a matter of dispute.{{sfnp|Appenzeller|2012}} It may have happened either pre- or post-Toba, a catastrophic volcanic eruption that took place between 69,000 and 77,000 years ago at the site of present-day [[Lake Toba]]. Stone tools discovered below the layers of ash disposed in India may point to a pre-Toba dispersal but the source of the tools is disputed.{{sfnp|Appenzeller|2012}} An indication for post-Toba is haplo-group L3, that originated before the dispersal of humans out of Africa and can be dated to 60,000–70,000 years ago, "suggesting that humanity left Africa a few thousand years after Toba".{{sfnp|Appenzeller|2012}} New research showing slower than expected genetic mutations in human DNA was published in 2012, indicating a revised dating for the migration to between 90,000 and 130,000 years ago.<ref name="ourtruedawn">{{cite journal | author = Catherine Brahic | title = Our True Dawn | journal = New Scientist | issue = 2892 | pages = 34–7 | date = 24 November 2012 | ISSN= 0262-4079 | publisher = Reed Business Information }}</ref> ===Western Asia=== A fossil of a modern human dated to 54,700 years ago was found in [[Manot Cave]] in Israel, named [[Manot 1]],<ref>{{harvp|Hershkovitz et al.|2015}}<br>See also [http://www.sci-news.com/othersciences/anthropology/science-55000-year-old-skull-fossil-manot-cave-israel-02443.html 55,000-Year-Old Skull Fossil Sheds New Light on Human Migration out of Africa], Science News.</ref> though the dating was questioned by {{harvp|Groucutt et al.|2015}}. ===South-Asia and Australia=== It is thought that Australia was inhabited around 65,000-50,000 years ago. As of 2017, the earliest evidence of humans in Australia is at least 65,000 years old,<ref name="Clarkson2017">{{cite journal|last1=Clarkson|first1=Chris|last2=et al|display-authors=1|year=2017|title=Human occupation of northern Australia by 65,000 years ago|url=https://www.nature.com/nature/journal/v547/n7663/full/nature22968.html|journal=Nature|volume=547|issue=|pages=306–310|doi=10.1038/nature22968}}</ref><ref name="StFleur2017">{{cite news|url=https://www.nytimes.com/2017/07/19/science/humans-reached-australia-aboriginal-65000-years.html|title=Humans First Arrived in Australia 65,000 Years Ago, Study Suggests|last1=St. Fleu|first1=Nicholas|date=July 19, 2017|publisher=New York Times}}</ref> while McChesney stated that {{quote|...genetic evidence suggests that a small band with the marker M168 migrated out of Africa along the coasts of the Arabian Peninsula and India, through Indonesia, and reached Australia very early, between 60,000 and 50,000 years ago. This very early migration into Australia is also supported by Rasmussen et al. (2011).{{sfn|Young McChesney|2015}}}} Fossils from [[Mungo Lake remains|Lake Mungo, Australia]], have been dated to about 42,000 years ago.<ref>{{cite journal |last1=Bowler |first1=James M. |last2=Johnston |first2=Harvey |last3=Olley |first3=John M. |last4=Prescott |first4=John R. |last5=Roberts |first5=Richard G. |last6=Shawcross |first6=Wilfred |last7=Spooner |first7=Nigel A. |year=2003 |title=New ages for human occupation and climatic change at Lake Mungo, Australia |journal=Nature |volume=421 |issue=6925 |pp=837–40 |pmid=12594511 |doi=10.1038/nature01383 |bibcode=2003Natur.421..837B }}</ref><ref name = "doisj.quascirev.2005.07.022">{{cite journal|vauthors=Olleya JM, Roberts RG, Yoshida H, Bowler JM |title =Single-grain optical dating of grave-infill associated with human burials at Lake Mungo, Australia | journal =Quaternary Science Reviews |volume = 25 |issue =19–20 | year = 2006 | pages = 2469–2474 | pmid = | doi = 10.1016/j.quascirev.2005.07.022 | url=| ref = harv |bibcode = 2006QSRv...25.2469O }}</ref> Other fossils from a site called [[Madjedbebe]] have been dated to at least 65,000 years ago.<ref name=StFleur2017/> ===East Asia=== [[Tianyuan man]] from [[China]] has a probable date range between 38,000 and 42,000 years ago, while [[Liujiang man]] from the same region has a probable date range between 67,000 and 159,000 years ago. According to 2013 DNA tests, Tianyuan man is related "to many present-day [[Asian people|Asians]] and [[Indigenous peoples of the Americas|Native Americans]]".<ref>{{cite web|url=http://www.mpg.de/6842535/dna-Tianyuan-cave|title=A relative from the Tianyuan Cave|publisher=[[Max Planck Society]]|date=2013-01-21}}</ref><ref name=daily>{{cite web|url=https://www.sciencedaily.com/releases/2013/01/130121161802.htm|title=A relative from the Tianyuan Cave: Humans living 40,000 years ago likely related to many present-day Asians and Native Americans|work=[[Science Daily]]|date=2013-01-21}}</ref><ref>{{cite web|url=http://www.sci-news.com/othersciences/anthropology/article00842.html|title=DNA Analysis Reveals Common Origin of Tianyuan Humans and Native Americans, Asians|work=Sci-News|date=2013-01-24}}</ref><ref>{{cite web|url=https://www.sciencenews.org/article/ancient-human-dna-suggests-minimal-interbreeding|title=Ancient human DNA suggests minimal interbreeding|publisher=''[[Science News]]''|date=2013-01-21}}</ref><ref>{{cite web|url=http://cavingnews.com/20130131-ancient-bone-dna-shows-ancestry-of-modern-asians-native-americans|title=Ancient Bone DNA Shows Ancestry of Modern Asians & Native Americans|publisher=Caving News|date=2013-01-31}}</ref> Tianyuan is similar in [[morphology (biology)|morphology]] to [[Minatogawa Man]], modern humans dated between 17,000 and 19,000 years ago and found on [[Okinawa]] Island, [[Japan]].<ref>{{cite journal |last1=Hu |first1=Yaowu |last2=Shang |first2=Hong |last3=Tong |first3=Haowen |last4=Nehlich |first4=Olaf |last5=Liu |first5=Wu |last6=Zhao |first6=Chaohong |last7=Yu |first7=Jincheng |last8=Wang |first8=Changsui |last9=Trinkaus |first9=Erik |last10=Richards |first10=Michael P. |date=July 2009 |title=Stable isotope dietary analysis of the Tianyuan 1 early modern human |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=106 |issue=27 |pp=10971–4 |pmid=19581579 |pmc=2706269 |doi=10.1073/pnas.0904826106 |bibcode=2009PNAS..10610971H }}</ref><ref>{{cite journal |last=Brown |first=Peter |date=August 1992 |title=Recent human evolution in East Asia and Australasia |journal=Philos. Trans. R. Soc. Lond. B Biol. Sci. |volume=337 |issue=1280 |pp=235–42 |pmid=1357698 |doi=10.1098/rstb.1992.0101 }}</ref> ===Europe=== According to {{harvp|Macaulay et al.|2005}}, an early offshoot from the southern dispersal with haplogroup N followed the Nile from East Africa, heading northwards and crossing into [[Asia]] through the [[Sinai]]. This group then branched, some moving into Europe and others heading east into Asia.{{r|Macaulay2005}} This hypothesis is supported by the relatively late date of the arrival of modern humans in Europe as well as by archaeological and DNA evidence.{{r|Macaulay2005}} Based on an analysis of 55 human mitochondrial genomes (mtDNAs) of hunter-gatherers, {{harvp|Posth et al.|2016}} argue for a "rapid single dispersal of all non-Africans less than 55,000 years ago." ==Genetic reconstruction== === Mitochondrial haplogroups === ====Within Africa==== {{Further|Most recent common ancestor|Archaeogenetics|Human mitochondrial DNA haplogroup}} [[File:African Mitochondrial descent.PNG|thumb|Map of early diversification of modern humans according to [[Mitochondrial DNA|mitochondrial]] [[population genetics]] ''(see: [[Macro-haplogroup L (mtDNA)|Haplogroup L]])''.]] The first lineage to branch off from [[Mitochondrial Eve]] is [[Haplogroup L0 (mtDNA)|L0]]. This haplogroup is found in high proportions among the [[san people|San]] of Southern Africa and the [[Sandawe people|Sandawe]] of East Africa. It is also found among the [[Mbuti]] people.{{r|pmid17194802|pmid10739760}} These groups branched off early in human history and have remained relatively genetically isolated since then. [[Haplogroup L1 (mtDNA)|Haplogroups L1]], [[Haplogroup L2 (mtDNA)|L2]] and [[Haplogroup L3 (mtDNA)|L3]] are descendants of L1-6 and are largely confined to Africa. The macro haplogroups [[Haplogroup M (mtDNA)|M]] and [[Haplogroup N (mtDNA)|N]], which are the lineages of the rest of the world outside Africa, descend from L3. L3 is about 84,000 years old and haplogroup M and N are about 63,000 years old.{{r|Macaulay2005}} The relationship between such gene trees and demographic history is still debated when applied to dispersals.{{sfnp|Groucutt et al.|2015}} Of all the lineages present in Africa, only the female descendants of one lineage, [[haplogroup L3 (mtDNA)|mtDNA haplogroup L3]], are found outside Africa. If there had been several migrations, one would expect descendants of more than one lineage to be found. L3's female descendants, the [[Haplogroup M (mtDNA)|M]] and [[Haplogroup N (mtDNA)|N]] haplogroup lineages, are found in very low frequencies in Africa (although [[Haplogroup M (mtDNA)#Haplogroup M1|haplogroup M1]] populations are very ancient and diversified in [[North Africa|North]] and [[Horn of Africa|North-east Africa]]) and appear to be more recent arrivals. A possible explanation is that these mutations occurred in East Africa shortly before the exodus and became the dominant haplogroups after the departure through the [[founder effect]]. Alternatively, the mutations may have arisen shortly afterwards. ====Southern Route and haplogroups M and N==== Results from mtDNA collected from aboriginal Malaysians called [[Orang Asli]] and the creation of a phylogentic tree indicate that the hapologroups M and N share characteristics with original African groups from approximately 85,000 years ago and share characteristics with sub-haplogroups among coastal south-east Asian regions, such as Australasia, the Indian subcontinent and throughout continental Asia, which had dispersed and separated from its African origins approximately 65,000 years ago. This southern coastal dispersion would have occurred before the dispersion through the Levant approximately 45,000 years ago.{{r|Macaulay2005}} This hypothesis attempts to explain why haplogroup N is predominant in Europe and why haplogroup M is absent in Europe. Evidence of the coastal migration is thought to have been destroyed by the rise in sea levels during the [[Holocene]] epoch.<ref>{{cite journal |last1=Maca-Meyer |first1=Nicole |last2=González |first2=Ana M. |last3=Larruga |first3=José M. |last4=Flores |first4=Carlos |last5=Cabrera |first5=Vicente M. |date=13 August 2001 |title=Major genomic mitochondrial lineages delineate early human expansions |journal=BMC Genet. |volume=2 |p=13 |url=http://bmcgenet.biomedcentral.com/articles/10.1186/1471-2156-2-13 |doi=10.1186/1471-2156-2-13 |pmid=11553319 |pmc=55343}}</ref> Alternatively, a small European founder population that had expressed haplogroup M and N at first, could have lost haplogroup M through random [[genetic drift]] resulting from a [[Population bottleneck|bottleneck]] (i.e. a [[founder effect]]). The group that crossed the Red Sea travelled along the coastal route around [[Arabia]] and [[Persia]] until reaching India.{{r|pmid15339343}} [[Haplogroup M (mtDNA)|Haplogroup M]] is found in high frequencies along the southern coastal regions of [[Pakistan]] and India and it has the greatest diversity in India, indicating that it is here where the mutation may have occurred.{{r|pmid15339343}} Sixty percent of the Indian population belong to [[Haplogroup M (mtDNA)|Haplogroup M]]. The indigenous people of the [[Andaman Islands]] also belong to the M lineage. The Andamanese are thought to be offshoots of some of the earliest inhabitants in Asia because of their long isolation from the mainland. They are evidence of the coastal route of early settlers that extends from India to [[Thailand]] and Indonesia all the way to [[Papua New Guinea]]. Since M is found in high frequencies in highlanders from New Guinea and the Andamanese and New Guineans have dark skin and [[Hair|Afro-textured hair]], some scientists think they are all part of the same wave of migrants who departed across the Red Sea ~60,000 years ago in the [[Great Coastal Migration]]. The proportion of haplogroup M increases eastwards from [[Arabia]] to India; in eastern India, M outnumbers N by a ratio of 3:1. Crossing into Southeast Asia, haplogroup N (mostly in the form of derivatives of its R subclade) reappears as the predominant lineage.{{citation needed|date=October 2017}} M is predominant in East Asia, but amongst [[Indigenous Australians]], N is the more common lineage.{{citation needed|date=October 2017}} This haphazard distribution of Haplogroup N from Europe to Australia can be explained by [[founder effect]]s and [[population bottleneck]]s.<ref name="pmid12840039">{{cite journal |vauthors=Ingman M, Gyllensten U | title = Mitochondrial genome variation and evolutionary history of Australian and New Guinean aborigines | journal = Genome Res. | volume = 13 | issue = 7 | pages = 1600–6 |date=July 2003 | pmid = 12840039 | pmc = 403733 | doi = 10.1101/gr.686603 | ref = harv }}</ref> ===Autosomal DNA=== {{see|Human genetic variation|Human genetic clustering}} A 2002 study of African, European and Asian populations, found greater genetic diversity among Africans than among Eurasians, and that genetic diversity among Eurasians is largely a subset of that among Africans, supporting the out of Africa model.<ref>{{cite journal|url=http://www.genetics.org/content/161/1/269.full|title=Larger Genetic Differences Within Africans Than Between Africans and Eurasians|first=Ning|last=Yu|journal=Genetics|publisher=Genetics Society of America|date=May 2002|accessdate=7 April 2013|displayauthors=etal }}</ref> A large study by Coop ''et al''. (2009) found evidence for [[natural selection]] in [[autosome|autosomal]] DNA outside of Africa. The study distinguishes non-African sweeps (notably [[Stem cell factor|KITLG]] variants associated with [[skin color]]), West-Eurasian sweeps ([[SLC24A5]]) and East-Asian sweeps ([[Melanocortin 1 receptor|MC1R]], relevant to skin color). Based on this evidence, the study concluded that human populations encountered novel selective pressures as they expanded out of Africa.<ref name="coop2009">{{cite journal | title = The role of geography in human adaptation | journal = PLoS Genet. | volume = 5 | issue = 6 | pages = e1000500 |date=June 2009 | pmid = 19503611 | pmc = 2685456 | doi = 10.1371/journal.pgen.1000500 | ref = harv | editor1-last = Schierup | editor1-first = Mikkel H. | last2 = Pickrell | last3 = Novembre | last4 = Kudaravalli | last5 = Li | last6 = Absher | last7 = Myers | last8 = Cavalli-Sforza | last9 = Feldman | last10 = Pritchard |name-list-format=vanc|author1 = Coop G}}; summary in Kliman (ed.), ''Encyclopedia of Evolutionary Biology'' (2016), [https://books.google.com/books?id=_r4OCAAAQBAJ&pg=PA451#v=onepage&q&f=false p. 451]</ref> [[MC1R]] and its relation to skin color had already been discussed by {{harvp|Liu, Harding et al.|2000|p=135}}. According to this study, Papua New Guineans continued to be exposed to selection for dark skin color so that, although these groups are distinct from Africans in other places, the allele for dark skin color shared by contemporary Africans, Andamanese and New Guineans is an archaism. {{harvp|Endicott et al.|2003}} suggest [[convergent evolution]]. A 2014 study by Gurdasani et al. indicate that higher genetic diversity in Africa was caused by relatively recent Eurasian migrations ''into'' Africa.<ref>{{cite journal|url=http://www.nature.com/nature/journal/v517/n7534/full/nature13997.html|title=The African Genome Variation Project shapes medical genetics in Africa|first=Deepti|last=Gurdasani|journal=Nature|date=July 2015|accessdate=14 June 2017|displayauthors=etal|volume=517|doi=10.1038/nature13997|pages=327–332|pmc=4297536}}</ref> ===Pathogen DNA=== Another promising route towards reconstructing human genetic genealogy is via the [[JC virus]] (JCV), a type of human [[polyomavirus]] which is carried by 70–90 percent of humans and which is usually transmitted vertically, from parents to offspring, suggesting codivergence with human populations. For this reason, JCV has been used as a genetic marker for human evolution and migration.<ref>Elizabeth Matisoo-Smith, K. Ann Horsburgh, ''DNA for Archaeologists'', Routledge (2016).</ref> This method does not appear to be reliable for the migration out of Africa, in contrast to human genetics, JCV strains associated with African populations are not basal. From this {{harvp|Shackelton et al.|2006}} conclude that either a basal African strain of JCV has become extinct or that the original infection with JCV post-dates the migration from Africa. ===Admixture of archaic and modern humans=== {{main|Archaic human admixture with modern humans}} Evidence for [[archaic human]] species (descended from ''[[Homo heidelbergensis]]'') having [[Archaic human admixture with modern humans|interbred]] with modern humans outside of Africa, was discovered in the 2010s. This concerns primarily [[Neanderthals|Neanderthal]] admixture in all modern populations except for [[Sub-Saharan Africans]] but evidence has also been presented for [[Denisova hominin]] admixture in [[Australasia]] (i.e. in [[Melanesians]], [[Aboriginal Australians]] and some [[Negritos]]).<ref>{{cite journal | last=Rasmussen | first=M. |author2=Guo, X. |author3=Wang, Y. |author4=Lohmueller, K.E. |author5=Rasmussen, S. |author6=Albrechtsen, A. | title=An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia | journal=Science | year=2011 | volume=334 | issue=6052 | pages=94–98 | doi=10.1126/science.1211177|display-authors=etal | pmid=21940856 | pmc=3991479}}</ref> The rate of admixture of Neanderthal admixture to European and Asian populations as of 2017 has been estimated at between about 2%&ndash;3%.<ref>East Asians 2.3-2.6%, Western Eurasians 1.8-2.4% ({{cite journal| last1=Prüfer|first1=K.| last2=de Filippo|first2=C.| last3=Grote|first3=S.| last4=Mafessoni|first4=F.| last5=Korlević|first5=P.| last6=Hajdinjak|first6=M.|title=A high-coverage Neandertal genome from Vindija Cave in Croatia| journal=Science| date=2017| doi=10.1126/science.aao1887 |display-authors=etal| volume=358| pages=655–658}})</ref> Archaic admixture in some Sub-Saharan African populations hunter-gatherer groups ([[Aka people|Biaka]] Pygmies and [[San people|San]]), derived from archaic hominins that broke away from the modern human lineage around 700,000 years, was discovered in 2011. The rate of admixture was estimated at around 2%.<ref name=hamgenev>{{cite journal | last=Hammer | first=M.F.|author2=Woerner, A.E.|author3= Mendez, F.L.|author4= Watkins, J.C.|author5= Wall, J.D. | title=Genetic evidence for archaic admixture in Africa | journal=Proceedings of the National Academy of Sciences | year=2011 | volume=108 | issue=37 | pages=15123–15128 | doi=10.1073/pnas.1109300108 | pmid=21896735 | pmc=3174671}}</ref> Admixture from archaic hominins of still earlier divergence times, estimated at 1.2 to 1.3 million years ago, was found in [[Pygmy peoples|Pygmies]], [[Hadza people|Hadza]] and five [[Sandawe people|Sandawe]] in 2012.<ref>{{cite web | last=Callaway | first=E. | title=Hunter-gatherer genomes a trove of genetic diversity | work=Nature | url=http://www.nature.com/news/hunter-gatherer-genomes-a-trove-of-genetic-diversity-1.11076 | doi=10.1038/nature.2012.11076 | date=2012}}</ref><ref name=lac12adaafr>{{cite journal| last=Lachance| first=J.|author2=Vernot, B. |author3=Elbers, C.C. |author4=Ferwerda, B. |author5=Froment, A. |author6=Bodo, J.M. | title=Evolutionary History and Adaptation from High-Coverage Whole-Genome Sequences of Diverse African Hunter-Gatherers| journal=Cell| date= 2012| volume=150| issue=3| pages=457–469| doi=10.1016/j.cell.2012.07.009|display-authors=etal | pmid=22840920 | pmc=3426505}}</ref> Archaic admixture in West African agricultural populations ([[Mende people|Mende]] and [[Yoruba people|Yoruba]]) was found in 2017.<ref>{{cite journal|author1=Xu, D.| author2 = Pavlidis, P. | author3= Taskent, O.R. | author4= Alachiotis, N. | author5= Flanagan, C. | author6= DeGiorgio, M. | title=Archaic Hominin Introgression in Africa Contributes to Functional Salivary MUC7 Genetic Variation| journal=Molecular Biology and Evolution |date=2017 |volume=34|issue=10| pages=2704–2715|url=https://academic.oup.com/mbe/article/34/10/2704/3988100/Archaic-Hominin-Introgression-in-Africa | display-authors=etal | doi=10.1093/molbev/msx206}}</ref><ref>{{cite journal|last1=Skoglund et al.|title=Reconstructing Prehistoric African Population Structure|journal=Cell|date=21 September 2017|volume=171|pages=59–71|doi=10.1016/j.cell.2017.08.049|url=http://www.cell.com/cell/fulltext/S0092-8674(17)31008-5|accessdate=6 November 2017}}</ref> ===Stone tools=== {{see|Aterian|Baradostian|Microlith}} In addition to genetic analysis, Petraglia ''et al.'' also examines the small stone tools ([[microlith]]ic materials) from Indian subcontinent and explains the expansion of population based on the reconstruction of paleoenvironment. He proposed that the stone tools could be dated to 35 ka in South Asia, and the new technology might be influenced by environmental change and population pressure.<ref>{{cite journal | last1 = Petraglia | first1 = M. | last2 = Clarkson | first2 = C. | last3 = Boivin | first3 = N. | last4 = Haslam | first4 = M. | last5 = Korisettar | first5 = R. | last6 = Chaubey | first6 = G. | last7 = Arnold | first7 = L. | year = 2009 | title = Population increase and environmental deterioration correspond with microlithic innovations in South Asia ca. 35,000 years ago | journal = Proceedings of the National Academy of Sciences | volume = 106 | issue = 30| pages = 12261–12266 | doi=10.1073/pnas.0810842106 | pmid=19620737 | pmc=2718386 }}</ref> ==History of the theory== ===Classical paleoanthropology=== {{further|Timeline of human evolution|Paleoanthropology#History_of_paleoanthropology}} [[File:Huxley - Mans Place in Nature.jpg|thumb|The frontispiece to Huxley's ''[[Evidence as to Man's Place in Nature]]'' (1863): the image compares the skeleton of a human to other apes.]] The cladistic relationship of humans with the African [[apes]] was suggested by [[Charles Darwin]] after studying the behaviour of African [[apes]], one of which was displayed at the [[London Zoo]].<ref name="Lafreniere2010">{{cite book|author=Peter Lafreniere|title=Adaptive Origins: Evolution and Human Development|url=https://books.google.com/books?id=3F-Ms0mWKVYC&pg=PA90|accessdate=14 June 2011|date=22 September 2010|publisher=Taylor & Francis|isbn=978-0-8058-6012-2|page=90}}</ref> The anatomist [[Thomas Huxley]] had also supported the hypothesis and suggested that African apes have a close evolutionary relationship with humans.<ref name="isbn0-470-01315-X">{{cite book |vauthors=Robinson D, Ash PM | title = The Emergence of Humans: An Exploration of the Evolutionary Timeline | publisher = Wiley | location = New York | year = 2010 | pages = | isbn = 0-470-01315-X }}</ref> These views were opposed by the German biologist [[Ernst Haeckel]], who was a proponent of the [[Out of Asia theory]]. Haeckel argued that humans were more closely related to the primates of South-east Asia and rejected Darwin's African hypothesis.<ref name="isbn0-520-24827-9">{{cite book | author = Palmer D | title = Prehistoric Past Revealed: The Four Billion Year History of Life on Earth | publisher = University of California Press | location = Berkeley | year = 2006 | pages = | isbn = 0-520-24827-9 | page = 43 }}</ref><ref name="isbn1-85109-418-0">{{cite book | author = Regal B | title = Human evolution: a guide to the debates | publisher = ABC-CLIO | location = Santa Barbara, Calif | year = 2004 | isbn = 1-85109-418-0 | pages = 73–75 }}</ref> In the ''[[Descent of Man]]'', Darwin speculated that humans had descended from apes, which still had small brains but walked upright, freeing their hands for uses which favoured intelligence; he thought such apes were African: {{quote|In each great region of the world the living [[mammals]] are closely related to the extinct species of the same region. It is, therefore, probable that Africa was formerly inhabited by extinct apes closely allied to the [[gorilla]] and [[chimpanzee]]; and as these two species are now man's nearest allies, it is somewhat more probable that our early progenitors lived on the African continent than elsewhere. But it is useless to speculate on this subject, for an ape nearly as large as a man, namely the [[Dryopithecus]] of Lartet, which was closely allied to the anthropomorphous [[Hylobates]], existed in Europe during the [[Upper Miocene]] period; and since so remote a period the earth has certainly undergone many great revolutions, and there has been ample time for migration on the largest scale.|Charles Darwin|Descent of Man<ref>{{cite web | url = http://darwin-online.org.uk/content/frameset?viewtype=text&itemID=F937.1&pageseq=212 | title = The descent of man Chapter 6 – On the Affinities and Genealogy of Man | publisher = Darwin-online.org.uk | accessdate = 11 January 2011 }}</ref>}} In 1871 there were hardly any human fossils of ancient hominins available. Almost fifty years later, Darwin's speculation was supported when anthropologists began finding fossils of ancient small-brained hominins in several areas of Africa ([[list of hominina fossils]]). The hypothesis of ''recent'' (as opposed to [[Out of Africa I|archaic]]) African origin developed in the 20th century. The "Recent African origin" of modern humans means "single origin" (monogenism) and has been used in various contexts as an antonym to polygenism. The debate in anthropology had swung in favour of monogenism by the mid-20th century. Isolated proponents of polygenism held forth in the mid-20th century, such as [[Carleton S. Coon|Carleton Coon]], who thought as late as 1962 that ''H. sapiens'' arose five times from ''H. erectus'' in five places.<ref name=Jackson_2001>{{cite journal | author = Jackson JP Jr | title = 'In Ways Unacademical': The Reception of Carleton S. Coon's The Origin of Races | journal = Journal of the History of Biology | year = 2001 | volume = 34 | issue = 2 | pages = 247–285 | doi = 10.1023/A:1010366015968 | url = http://comm.colorado.edu/~jacksonj/research/coon.pdf | format = pdf | deadurl = yes | archiveurl = https://web.archive.org/web/20130514075459/http://comm.colorado.edu/~jacksonj/research/coon.pdf | archivedate = 14 May 2013 | df = dmy-all }}</ref> ===Multiregional origin hypothesis=== {{Main article|Multiregional origin of modern humans}} The historical alternative to the recent origin model is the [[multiregional origin of modern humans]], initially proposed by [[Milford Wolpoff]] in the 1980s. This view proposes that the derivation of anatomically modern human populations from ''H. erectus'' at the beginning of the [[Pleistocene]] 1.8 million years BP, has taken place within a continuous world population. The hypothesis necessarily rejects the assumption of an [[species barrier|infertility barrier]] between ancient Eurasian and African populations of ''Homo''. The hypothesis was controversially debated during the late 1980s and the 1990s.<ref>{{cite journal | last1 = Stringer | first1 = C. B. | last2 = Andrews | first2 = P. | year = 1988 | title = Genetic and fossil evidence for the origin of modern humans | url = http://www.sciencemag.org/content/239/4845/1263.abstract | journal = Science | volume = 239 | issue = 4845| pages = 1263–1268 | doi=10.1126/science.3125610 | pmid=3125610}} {{cite journal | last1 = Stringer | first1 = C. | last2 = Bräuer | first2 = G. | year = 1994 | title = Methods, misreading, and bias | url = | journal = American Anthropologist | volume = 96 | issue = 2| pages = 416–424 | doi=10.1525/aa.1994.96.2.02a00080}}<br> Stringer, C. B. (1992). "Replacement, continuity and the origin of Homo sapiens". In: ''Continuity or replacement? Controversies in Homo sapiens evolution''. F. H. Smith (ed). Rotterdam: Balkema. pp. 9–24.<br> Bräuer, G.; Stringer, C. (1997). "Models, polarization, and perspectives on modern human origins". In: ''Conceptual issues in modern human origins research''. New York: Aldine de Gruyter. pp. 191–201.</ref> The now-current terminology of "recent-origin" and "Out of Africa" became current in the context of this debate in the 1990s.<ref>Liu Wu in Zhisheng, Weijian Zhou (eds.), ''Quaternary Geology'' VSP (1997), [https://books.google.com/books?id=QZym919tNigC&pg=PA24 p. 24].</ref> Originally seen as an antithetical alternative to the recent origin model, the multiregional hypothesis in its original "strong" form is obsolete, while its various modified weaker variants have become variants of a view of "recent origin" combined with [[Archaic human admixture with modern humans|archaic admixture]].<ref>{{cite journal | last1 = Stringer | first1 = C. | year = 2001 | title = Modern human origins—distinguishing the models | url = | journal = Afr. Archaeol. Rev | volume = 18 | issue = | pages = 67–75 }}</ref> Stringer (2014) distinguishes the original or "classic" Multiregional model as having existed from 1984 (its formulation) until 2003, to a "weak" post-2003 variant that has "shifted close to that of the Assimilation Model".<ref>{{cite journal | last1 = Stringer | first1 = C | year = 2002 | title = Modern human origins: progress and prospects | url = | journal = Philosophical Transactions of the Royal Society of London | volume = 357 | issue = 1420| pages = 563–579 | doi=10.1098/rstb.2001.1057}}</ref><ref>{{cite journal | last1 = Stringer | first1 = C. | year = 2014 | title = Why we are not all multiregionalists now | url = http://www.sciencedirect.com/science/article/pii/S0169534714000470 | journal = Trends in Ecology & Evolution | volume = 29 | issue = 5| pages = 248–251 | doi=10.1016/j.tree.2014.03.001}}</ref> ===Genetics=== In the 1980s, [[Allan Wilson]] together with [[Rebecca L. Cann]] and [[Mark Stoneking]] worked on genetic dating of the matrilineal most recent common ancestor of modern human populations (dubbed "[[Mitochondrial Eve]]"). To identify informative [[genetic marker]]s for tracking human evolutionary history, Wilson concentrated on [[mitochondrial DNA]] (mtDNA), passed from mother to child. This DNA material mutates quickly, making it easy to plot changes over relatively short times. With his discovery that human mtDNA is genetically much less diverse than chimpanzee mtDNA, Wilson concluded that modern human populations had diverged recently from a single population while older human species such as [[Neanderthal]]s and ''[[Homo erectus]]'' had become extinct.<ref name="url_Allan_Wilson">{{cite web | url = http://www.nzedge.com/heroes/wilson.html | title = Allan Wilson: Revolutionary Evolutionist | work = New Zealanders Heroes | accessdate = }}</ref> With the advent of [[archaeogenetics]] in the 1990s, the dating of mitochondrial and [[Human Y-chromosome DNA haplogroup|Y-chromosomal haplogroups]] became possible with some confidence. By 1999, estimates ranged around 150,000 years for the [[mt-MRCA]] and 60,000 to 70,000 years for the migration out of Africa.<ref>{{cite journal |last1=Wallace |first1=D |last2=Brown |first2=MD |last3=Lott |first3=MT |title=Mitochondrial DNA variation in human evolution and disease |journal=Gene |volume=238 |issue=1 |pages=211–30 |year=1999 |pmid=10570998 |doi=10.1016/S0378-1119(99)00295-4}} "evidence that our species arose in Africa about 150 000 years before present (YBP), migrated out of Africa into Asia about 60 000 to 70 000 YBP and into Europe about 40 000 to 50 000 YBP, and migrated from Asia and possibly Europe to the Americas about 20 000 to 30 000 YBP."</ref> From 2000–2003, there was controversy about the mitochondrial DNA of "[[Mungo Man|Mungo Man 3]]" (LM3) and its possible bearing on the multiregional hypothesis. LM3 was found to have more than the expected number of sequence differences when compared to modern human DNA ([[Cambridge Reference Sequence|CRS]]).<ref name="Adcock">{{cite journal|vauthors=Adcock GJ, Dennis ES, Easteal S, Huttley GA, Jarmiin LS, Peacock WJ, Thorne A |title = Mitochondrial DNA sequences in ancient Australians: Implications for modern human origins | journal = PNAS |volume= 98|issue = 2|pages=537–542 |year =2001|pmid = 11209053|doi = 10.1073/pnas.98.2.537|pmc = 14622 |url=http://www.pnas.org/content/98/2/537.full?sid=8f289c70-86e5-43cf-9d98-2c7b22612d47}}</ref> Comparison of the mitochondrial DNA with that of ancient and modern aborigines, led to the conclusion that Mungo Man fell outside the range of genetic variation seen in Aboriginal Australians and was used to support the multiregional origin hypothesis. A reanalysis on LM3 and other ancient specimens from the area published in 2016, showed it to be akin to modern Aboriginal Australian sequences, inconsistent with the results of the earlier study.<ref>{{cite journal| vauthors=Heupink TH, Subramanian S, Wright JL, Endicott P, Carrington Westaway M, Huynen L, Parson W, Millar C, Willerslev E, Lambert DM | title= Ancient mtDNA sequences from the First Australians revisited| journal=PNAS|volume= 113|issue = |pages=6892–7 |year =2016|doi = 10.1073/pnas.1521066113 |url=http://www.pnas.org/content/early/2016/06/01/1521066113.full#T1 | pmid=27274055 | pmc=4922152}}</ref> ==See also== {{Div col}} * [[Archaeogenetics of the Near East]] * [[Behavioral modernity]] * [[Coastal migration]] * [[Dawn of Humanity (film)|''Dawn of Humanity'' (2015 PBS film)]] * [[Early human migrations]] * [[Genetics and archaeogenetics of South Asia]] * [[Genetic history of Europe]] * [[Genetic history of indigenous peoples of the Americas]] * [[Genetic history of Italy]] * [[Genetic history of North Africa]] * [[Genetic history of the British Isles]] * [[Genetic history of the Iberian Peninsula]] * [[Hofmeyr Skull]] * [[Template:Human timeline|Human timeline]] * [[Identical ancestors point]] * [[Indo-Aryan migration theory]] * [[Sahara pump theory]] * ''[[The Incredible Human Journey]]'' * [[Timeline of human evolution]] * [[Human origins (disambiguation)|Human origins]] * [[Human evolution]] {{div col end}} ==Notes== {{reflist|group=note|35em}} ==References== {{reflist|colwidth=25em|refs= <ref name=pmid16826514Quo>{{harvp|Liu, Prugnolle et al.|2006}}. "Currently available genetic and archaeological evidence is supportive of a recent single origin of modern humans in East Africa. However, this is where the consensus on human settlement history ends, and considerable uncertainty clouds any more detailed aspect of human colonization history."</ref> <ref name=pmid12802315>{{cite journal |author=Stringer, Chris |date=June 2003 |title=Human evolution: Out of Ethiopia |journal=[[Nature (journal)|Nature]] |volume=423 |issue= 6941 |pp =692–3, 695 |pmid=12802315 |doi=10.1038/423692a |bibcode=2003Natur.423..692S }}</ref> <ref name=pmid10766948>{{cite journal |last1=Wolpoff |first1=Milford H. |last2=Hawks |first2=John |last3=Caspari |first3=Rachel |date=May 2000 |title=Multiregional, not multiple origins |volume=112 |issue=1 |journal=[[American Journal of Physical Anthropology|Am. J. Phys. Anthropol.]] |pp=129–36 |pmid=10766948 |doi=10.1002/(SICI)1096-8644(200005)112:1<129::AID-AJPA11>3.0.CO;2-K }}</ref> <ref name=pmid21273486>{{cite journal |last1=Armitage |first1=Simon J. |last2=Jasim |first2=Sabah A. |last3=Marks |first3=Anthony E. |last4=Parker |first4=Adrian G. |last5=Usik |first5=Vitaly I. |last6=Uerpmann |first6=Hans-Peter |date=January 2011 |title=The southern route "out of Africa": evidence for an early expansion of modern humans into Arabia |journal=[[Science (journal)|Science]] |volume=331 |issue=6016 |pp=453–6 |pmid=21273486 |doi=10.1126/science.1199113 |bibcode=2011Sci...331..453A }}</ref> <ref name=pmid21212332>{{cite journal |author=Balter Michael |date=January 2011 |title=Was North Africa the launch pad for modern human migrations? |journal=Science |volume=331 |issue=6013 |pp= 20–3 |pmid=21212332| doi=10.1126/science.331.6013.20 |bibcode=2011Sci...331...20B |url=https://www.springer.com/cda/content/document/cda_downloaddocument/North+Africa+(+Aterian)+possible+source+of+Eurasian+modern+humans--Balter+Science+news.pdf?SGWID=0-0-45-1058837-p173624756 }}</ref> <ref name=pmid21601174>{{cite journal |last1=Cruciani |first1=Fulvio |last2=Trombetta |first2=Beniamino |last3=Massaia |first3=Andrea |last4=Destro-Bisol |first4=Giovanni |last5=Sellitto |first5=Daniele |last6=Scozzari |first6=Rosaria |date=June 2011 |title=A revised root for the human Y chromosomal phylogenetic tree: the origin of patrilineal diversity in Africa |journal=[[American Journal of Human Genetics|AJHG]] |volume=88 |issue=6 |pp= 814–8 |pmid=21601174 |pmc=3113241 |doi=10.1016/j.ajhg.2011.05.002 }}</ref> <ref name=pmid17372199>{{cite journal |last1=Smith |first1=Tanya M. |last2=Tafforeau |first2=Paul |last3=Reid |first3=Donald J. |last4=Grün |first4=Rainer |last5=Eggins |first5=Stephen |last6=Boutakiout |first6=Mohamed |last7=Hublin |first7=Jean-Jacques |date=April 2007 |title=Earliest evidence of modern human life history in North African early ''Homo sapiens'' |journal=[[Proceedings of the National Academy of Sciences of the United States of America|PNAS]] |volume=104 |issue=15 |pp=6128–33 |pmid=17372199 |pmc=1828706 |doi=10.1073/pnas.0700747104 |bibcode= 2007PNAS..104.6128S }}</ref> <ref name=pmid15339343>{{cite journal |vauthors=Metspalu M, Kivisild T, Metspalu E, Parik J, Hudjashov G, Kaldma K, Serk P, Karmin M, Behar DM, Gilbert MT, Endicott P, Mastana S, Papiha SS, Skorecki K, Torroni A, Villems R |date=August 2004 |title=Most of the extant mtDNA boundaries in south and southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans |journal=BMC Genet. |volume=5 |issue = |p=26 |pmid=15339343 |pmc=516768 |doi=10.1186/1471-2156-5-26 }}</ref> <ref name=pmid17194802>{{cite journal |last1=Gonder |first1=Mary K. |last2=Mortensen |first2=Holly M. |last3=Reed |first3=Floyd A. |last4=De Sousa |first4=Alexandra |last5=Tishkoff |first5=Sarah A. |date=March 2007 |title=Whole-mtDNA genome sequence analysis of ancient African lineages |journal=[[Molecular Biology and Evolution|Mol. Biol. Evol.]] |volume=24 |issue=3 |pp=757–68 |pmid=17194802 |doi=10.1093/molbev/msl209 }}</ref> <ref name=pmid10739760>{{cite journal |last1=Chen |first1=Yu-Sheng |last2=Olckers |first2=Antonel |last3=Schurr |first3=Theodore G. |last4=Kogelnik |first4=Andreas M. |last5=Huoponen |first5=Kirsi |last6=Wallace |first6=Douglas C. |date=April 2000 |title=mtDNA variation in the South African Kung and Khwe-and their genetic relationships to other African populations |journal=Am. J. Hum. Genet. |volume=66 |issue=4 |pp=1362–83 |pmid=10739760 |pmc=1288201 |doi=10.1086/302848 }}</ref> }} ==Sources== {{refbegin}} * {{cite journal |last=Appenzeller |first=Tim |year=2012 |title=Human migrations: Eastern odyssey. Humans had spread across Asia by 50,000 years ago. Everything else about our original exodus from Africa is up for debate. |journal=Nature |volume=485 |issue=7396 |url=http://www.nature.com/news/human-migrations-eastern-odyssey-1.10560 |ref=harv }} * {{cite journal |last=Beyin |first=Amanuel |year=2011 |title=Upper Pleistocene Human Dispersals out of Africa: A Review of the Current State of the Debate |journal=International Journal of Evolutionary Biology |volume=2011 |issue=615094 |pp=1–17 |doi=10.4061/2011/615094 |ref=harv }} * {{cite journal |last1=Endicott |first1=Phillip|last2=Gilbert |first2=M. Thomas P. |last3=Stringer |first3=Chris |last4=Lalueza-Fox |first4=Carles |last5=Willerslev |first5=Eske |last6=Hansen |first6=Anders J. |last7=Cooper |first7=Alan |date=January 2003 |title=The genetic origins of the Andaman Islanders |journal=[[American Journal of Human Genetics|AJHG]] |volume=72 |issue=1 |pp=178–84 |pmid=12478481 |pmc=378623 |doi=10.1086/345487 |ref=CITEREFEndicott et al.2003 }} * {{cite book |last=Finlayson |first=Clive |year=2009 |title=The humans who went extinct: why Neanderthals died out and we survived |url=https://books.google.com/books?id=EzBV3OPb5mAC&pg=PA68 |publisher=Oxford University Press US |isbn=978-0-19-923918-4 |ref=harv }} * {{cite journal |last=Groucutt |first=Huw S. |year=2015 |title=Rethinking the dispersal of ''Homo sapiens'' out of Africa |journal=Evolutionary Anthropology |volume=24 |issue=4 - July/August |pp=149–164 |display-authors=etal |doi=10.1002/evan.21455 |ref=CITEREFGroucutt et al.2015 }} * {{cite journal |last1=Harding |first1=Rosalind M. |last2=Healy |first2=Eugene |last3=Ray |first3=Amanda J. |last4=Ellis |first4=Nichola S. |last5=Flanagan |first5=Niamh |last6=Todd |first6=Carol |last7=Dixon |first7=Craig |last8=Sajantila |first8=Antti |last9=Jackson |first9=Ian J. |last10=Birch-Machin |first10=Mark A. |last11=Rees |first11=Jonathan L. |date=April 2000 |title=Evidence for variable selective pressures at MC1R |journal=[[American Journal of Human Genetics|AJHG]] |volume=66 |issue=4 |pp= 1351–61 |pmid=10733465 |pmc=1288200 |doi=10.1086/302863 |ref=CITEREFHarding et al.2000 }} * {{cite journal |last1=Hershkovitz |first1=Israel |year=2015 |last2=Marder |first2=Ofer |last3=Ayalon |first3=Avner |last4=Bar-Matthews |first4=Miryam |last5=Yasur |first5=Gal |last6=Boaretto |first6=Elisabetta |last7=Caracuta |first7=Valentina |last8=Alex |first8=Bridget |last9=Frumkin |first9=Amos |last10=Goder-Goldberger |first10=Mae |last11=Gunz |first11=Philipp |last12=Holloway |first12=Ralph L. |last13=Latimer |first13=Bruce |last14=Lavi |first14=Ron |last15=Matthews |first15=Alan |last16=Slon |first16=Viviane |last17=Mayer |first17=Daniella Bar-Yosef |last18=Berna |first18=Francesco |last19=Bar-Oz |first19=Guy |last20=Yeshurun |first20=Reuven |last21=May |first21=Hila |last22=Hans |first22=Mark G. |last23=Weber |first23=Gerhard W. |last24=Barzilai |first24=Omry |title=Levantine cranium from Manot Cave (Israel) foreshadows the first European modern humans |journal=Nature |volume=520 |doi=10.1038/nature14134 |pmid=25629628 |displayauthors=8 |pp=216–9 |ref=CITEREFHershkovitz et al.2015 }} * {{Cite journal |last1=Kuhlwilm |first1=Martin |year=2016 |title=Ancient gene flow from early modern humans into Eastern Neanderthals |journal=Nature |volume=530 |pp=429–33 |doi=10.1038/nature16544 |display-authors=etal |ref=CITEREFKuhlwilm et al.2016 |pmid=26886800 |pmc=4933530}} * {{cite journal |last1=Liu |first1=Hua |last2=Prugnolle |first2=Franck |last3=Manica |first3=Andrea |last4=Balloux |first4=François |date=August 2006 |title=A geographically explicit genetic model of worldwide human-settlement history |journal=[[The American Journal of Human Genetics|AJHG]] |volume=79 |issue=2 |pp=230–7 |pmid=16826514 |pmc=1559480 |doi=10.1086/505436 |ref=CITEREFLiu, Prugnolle et al.2006}} * {{cite journal |last1=Liu |first1=Wu |last2=Martinón-Torres |first2=María |last3=Cai |first3=Yan-jun |last4=Xing |first4=Song |last5=Tong |first5=Hao-wen |last6=Pei |first6=Shu-wen |last7=Sier |first7=Mark Jan |last8=Wu |first8=Xiao-hong |last9=Edwards |first9=R. Lawrence |year=2015 |title=The earliest unequivocally modern humans in southern China |journal=Nature |doi=10.1038/nature15696 |volume=526 |pp=696–9 |url=http://www.nature.com/doifinder/10.1038/nature15696 |ref=CITEREFLiu, Martinón-Torres et al.2015 |pmid=26466566}} * {{cite journal |last1=Macaulay |first1=Vincent |last2=Hill |first2=Catherine |last3=Achilli |first3=Alessandro |last4=Rengo |first4=Chiara |last5=Clarke |first5=Douglas |last6=Meehan |first6=William |last7=Blackburn |first7=James |last8=Semino |first8=Ornella |last9=Scozzari |first9=Rosaria |last10=Cruciani |first10=Fulvio |last11=Taha |first11=Adi |last12=Shaari |first12=Norazila Kassim |last13=Raja |first13=Joseph Maripa |last14=Ismail |first14=Patimah |last15=Zainuddin |first15=Zafarina |last16=Goodwin |first16=William |last17=Bulbeck |first17=David |last18=Bandelt |first18=Hans-Jürgen |last19=Oppenheimer |first19=Stephen |last20=Torroni |first20=Antonio |last21=Richards |first21=Martin |date=13 May 2005 |title=Single, Rapid Coastal Settlement of Asia Revealed by Analysis of Complete Mitochondrial Genomes |journal=Science |volume=308 |issue=5724 |pp=1034–6 |doi=10.1126/science.1109792 |pmid=15890885 |ref=CITEREFMacaulay et al.2005 }} * {{cite book |last=Meredith |first=Martin |authorlink=Martin Meredith |year=2011 |title=Born in Africa: The Quest for the Origins of Human Life |publisher=PublicAffairs |location=New York City |isbn=1-58648-663-2 |url=https://books.google.com/books?id=WrR9OShae2wC&pg=PT148 |ref=harv }} * {{cite journal |last1=Posth |first1=Cosimo |last2=Renaud |first2=Gabriel |last3=Mittnik |first3=Alissa |last4=Drucker |first4=Dorothée G. |year=2016 |title=Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe |journal=Current Biology |display-authors=etal |ref=CITEREFPosth et al.2016 |url=http://www.cell.com/current-biology/abstract/S0960-9822%2816%2900087-7?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982216000877%3Fshowall%3Dtrue |doi=10.1016/j.cub.2016.01.037 |volume=26 |pages=827–833 |pmid=26853362}} * {{cite journal |last1=Shackelton |first1=Laura A. |last2=Rambaut |first2=Andrew |last3=Pybus |first3=Oliver G. |last4=Holmes |first4=Edward C. |year=2006 |title=JC Virus Evolution and Its Association with Human Populations |journal=Journal of Virology |volume=80 |pp=9928–33 |doi=10.1128/JVI.00441-06 |pmid=17005670 |pmc=1617318 |ref=CITEREFShackelton et al.2006 }} * {{cite journal |last1=Shen |first1=Guanjun |last2=Wang |first2=Wei |last3=Wang |first3=Qian |last4=Zhao |first4=Jianxin |last5=Collerson |first5=Kenneth |last6=Zhou |first6=Chunlin |last7=Tobias |first7=Phillip V. |year=2002 |title=U-Series dating of Liujiang hominid site in Guangxi, Southern China |journal=[[Journal of Human Evolution|J. Hum. Evol.]] |volume=43 |issue=6 |pages=817–29 |pmid=12473485 |doi=10.1006/jhev.2002.0601 |ref=CITEREFShen, Wang et al.2002 }} * {{Citation | last =Young McChesney | first =Kai | year =2015 | title =Teaching Diversity. The Science You Need to Know to Explain Why Race Is Not Biological | journal =SAGE open | doi =10.1177/2158244015611712 | url =http://sgo.sagepub.com/content/5/4/2158244015611712 | volume=5 | pages=2158244015611712}} * {{cite book |last1=Wells |first1=Spencer |authorlink=Spencer Wells |year=2003 |orig-year=2002 |title=[[The Journey of Man|The Journey of Man: A Genetic Odyssey]] |publisher=Random House Trade Paperbacks|location=New York|isbn=0-8129-7146-9 |ref=harv }} {{refend}} '''Further reading''' {{refbegin}} * {{cite book | author = Stringer, Chris | title = The Origin of Our Species | edition = | publisher = Allen Lane | location = London | year = 2011 | pages = | isbn = 978-1-84614-140-9 | doi = | url = | accessdate = }} * {{cite book | author = Wells, Spencer | title = Deep ancestry: inside the Genographic Project | edition = | publisher = National Geographic | location = Washington, D.C | year = 2006 | pages = | isbn = 0-7922-6215-8 | doi = | url = | accessdate = }} * {{cite book | author = Wade, N. | year = 2006 | title = Before the Dawn : Recovering the Lost History of Our Ancestors | edition = | publisher = Penguin Press HC, The | isbn = 1-59420-079-3}} * {{cite book | author = Sykes, Bryan | year = 2004| title = [[The Seven Daughters of Eve]]: The Science That Reveals Our Genetic Ancestry | edition = | publisher = Corgi Adult | pages = | isbn = 0-552-15218-8 | doi = | url = | accessdate = }} {{refend}} ==External links== * Encyclopædia Britannica, ''[http://www.britannica.com/EBchecked/topic/275670/human-evolution Human Evolution]'' * [http://humanorigins.si.edu/evidence/human-evolution-timeline-interactive Human Timeline (Interactive)] – [[Smithsonian Institution|Smithsonian]], [[National Museum of Natural History]] (August 2016). {{Early human migrations}} {{Human Evolution}} {{Human genetics}} {{Portal bar|Anthropology|Evolutionary biology|Molecular Anthropology}} {{DEFAULTSORT:Recent African Origin Of Modern Humans}} [[Category:Recent African origin of modern humans| ]] [[Category:Prehistoric migrations]] [[Category:Human evolution]] [[Category:Human mitochondrial genetics]] [[Category:Human genetic history]]'
New page wikitext, after the edit (new_wikitext)
' I hate not being gay I hate being white and I hate being male. I blog on tumbler but they do not give a shit coz I am not oppressed But I really like to be. Yesterday I cried Just to show you that I have a feminine side I can understand why you are so confused That I like abuse. Allow me to explain to you exactly what I am: Chorus: I'm a cuck fuck my lover fuck my sister fuck my mother fuck my country fuck my race then finish on my face and then hell I'll drink your cream. Just let me lay between you and my wife after you have your way So take her as she is. Get her pregnant and then I will raise your kids rest assured that I will pay for everything I don't need a dime The safety word is starfish now have a great time Chorus: I'm a cuck fuck my lover fuck my sister fuck my mother fuck my country fuck my race then finish on my face and then hell I'll drink your cream. Just let me lay between you and my wife after you have your way'
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
1529666107