Jump to content

Examine individual changes

This page allows you to examine the variables generated by the Edit Filter for an individual change.

Variables generated for this change

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'59.27.51.189'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Rights that the user has (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'viewmywatchlist', 6 => 'editmywatchlist', 7 => 'viewmyprivateinfo', 8 => 'editmyprivateinfo', 9 => 'editmyoptions', 10 => 'abusefilter-log-detail', 11 => 'urlshortener-create-url', 12 => 'centralauth-merge', 13 => 'abusefilter-view', 14 => 'abusefilter-log', 15 => 'vipsscaler-test' ]
Whether the user is editing from mobile app (user_app)
false
Whether or not a user is editing through the mobile interface (user_mobile)
true
Page ID (page_id)
6317445
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'252 (number)'
Full page title (page_prefixedtitle)
'252 (number)'
Edit protection level of the page (page_restrictions_edit)
[]
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => 'Adakiko', 1 => '59.27.51.189', 2 => 'David Eppstein', 3 => '197.231.239.71', 4 => '116.86.4.41', 5 => 'ClueBot NG', 6 => '149.167.147.47', 7 => 'Monkbot', 8 => '2409:4072:216:91CB:0:0:2688:F8A5', 9 => '2409:4072:583:A17:0:0:A62:D0B0' ]
Page age in seconds (page_age)
493301632
Action (action)
'edit'
Edit summary/reason (summary)
''
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{Infobox number | number = 252 | divisor = 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252 }} '''252''' ('''two hundred [and] fifty-two''') is the [[natural number]] following [[251 (number)|251]] and preceding [[253 (number)|253]]. ==In mathematics== '''252''' is: *the [[central binomial coefficient]] <math>\tbinom{10}{5}</math>, the largest one divisible by all coefficients in the previous line<ref>{{Cite OEIS|A000984|name=Central binomial coefficients}}</ref> *a [[Harshad number]] in base 10. *<math>\tau(3)</math>, where <math>\tau</math> is the [[Ramanujan tau function]].<ref>{{Cite OEIS|A000594|name=Ramanujan's tau function}}</ref> *<math>\sigma_3(6)</math>, where <math>\sigma_3</math> is the [[Divisor function|function that sums the cubes of the divisors]] of its argument:<ref>{{Cite OEIS|A001158|name=sigma_3(n): sum of cubes of divisors of n}}</ref> :<math>1^3+2^3+3^3+6^3=(1^3+2^3)(1^3+3^3)=252.</math> *a [[practical number]],<ref>{{Cite OEIS|A005153|name=Practical numbers}}</ref> *a [[refactorable number]],<ref>{{Cite web|url=https://oeis.org/A033950|title=Sloane's A033950 : Refactorable numbers|date=2016-04-18|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-18}}</ref> *a [[hexagonal pyramidal number]].<ref>{{Cite OEIS|A002412|name=Hexagonal pyramidal numbers, or greengrocer's numbers}}</ref> *a member of the [[Mian–Chowla sequence|Mian-Chowla sequence]].<ref>{{Cite web|url=https://oeis.org/A005282|title=Sloane's A005282 : Mian-Chowla sequence|date=2016-04-19|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-19}}</ref> There are 252 points on the surface of a [[cuboctahedron]] of radius five in the [[FCC close packing|face-centered cubic]] lattice,<ref>{{Cite OEIS|A005901|name=Number of points on surface of cuboctahedron}}</ref> 252 ways of writing the number 4 as a sum of six squares of integers,<ref>{{Cite OEIS|A000141|name=Number of ways of writing n as a sum of 6 squares}}</ref> 252 ways of choosing four squares from a 4&times;4 chessboard up to reflections and rotations,<ref>{{Cite OEIS|A019318|name=Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same}}</ref> and 252 ways of placing three pieces on a [[Connect Four]] board.<ref>{{Cite OEIS|A090224|name=Number of possible positions for n men on a standard 7 X 6 board of Connect-Four}}</ref> ==References== {{reflist}} {{Integers|2}} [[Category:Integers]] {{number-stub}}'
New page wikitext, after the edit (new_wikitext)
'{{Infobox number | number = 252 | divisor = 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252 }} '''252''' ('''two hundred [and] fifty-two''') is the [[natural number]] following [[251 (number)|251]] and preceding [[253 (number)|253]]. ==In mathematics== '''252''' is: *the [[central binomial coefficient]] <math>\tbinom{10}{5}</math>, the largest one divisible by all coefficients in the previous line<ref>{{Cite OEIS|A000984|name=Central binomial coefficients}}</ref> *a [[Harshad number]] in base 10. *<math>\tau(3)</math>, where <math>\tau</math> is the [[Ramanujan tau function]].<ref>{{Cite OEIS|A000594|name=Ramanujan's tau function}}</ref> *<math>\sigma_3(6)</math>, where <math>\sigma_3</math> is the [[Divisor function|function that sums the cubes of the divisors]] of its argument:<ref>{{Cite OEIS|A001158|name=sigma_3(n): sum of cubes of divisors of n}}</ref> :<math>1^3+2^3+3^3+6^3=(1^3+2^3)(1^3+3^3)=252.</math> *a [[practical number]],<ref>{{Cite OEIS|A005153|name=Practical numbers}}</ref> *a [[refactorable number]],<ref>{{Cite web|url=https://oeis.org/A033950|title=Sloane's A033950 : Refactorable numbers|date=2016-04-18|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-18}}</ref> *a [[hexagonal pyramidal number]].<ref>{{Cite OEIS|A002412|name=Hexagonal pyramidal numbers, or greengrocer's numbers}}</ref> *a member of the [[Mian–Chowla sequence|Mian-Chowla sequence]].<ref>{{Cite web|url=https://oeis.org/A005282|title=Sloane's A005282 : Mian-Chowla sequence|date=2016-04-19|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-19}}</ref> There are 252 points on the surface of a [[cuboctahedron]] of radius five in the [[FCC close packing|face-centered cubic]] lattice,<ref>{{Cite OEIS|A005901|name=Number of points on surface of cuboctahedron}}</ref> 252 ways of writing the number 4 as a sum of six squares of integers,<ref>{{Cite OEIS|A000141|name=Number of ways of writing n as a sum of 6 squares}}</ref> 252 ways of choosing four squares from a 4&times;4 chessboard up to reflections and rotations,<ref>{{Cite OEIS|A019318|name=Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same}}</ref> and 252 ways of placing three pieces on a [[Connect Four]] board.<ref>{{Cite OEIS|A090224|name=Number of possible positions for n men on a standard 7 X 6 board of Connect-Four}}</ref> 우리 플레이투게더!!!'
Unified diff of changes made by edit (edit_diff)
'@@ -19,10 +19,3 @@ There are 252 points on the surface of a [[cuboctahedron]] of radius five in the [[FCC close packing|face-centered cubic]] lattice,<ref>{{Cite OEIS|A005901|name=Number of points on surface of cuboctahedron}}</ref> 252 ways of writing the number 4 as a sum of six squares of integers,<ref>{{Cite OEIS|A000141|name=Number of ways of writing n as a sum of 6 squares}}</ref> 252 ways of choosing four squares from a 4&times;4 chessboard up to reflections and rotations,<ref>{{Cite OEIS|A019318|name=Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same}}</ref> and 252 ways of placing three pieces on a [[Connect Four]] board.<ref>{{Cite OEIS|A090224|name=Number of possible positions for n men on a standard 7 X 6 board of Connect-Four}}</ref> -==References== -{{reflist}} - -{{Integers|2}} - -[[Category:Integers]] - -{{number-stub}} +우리 플레이투게더!!! '
New page size (new_size)
2518
Old page size (old_size)
2572
Size change in edit (edit_delta)
-54
Lines added in edit (added_lines)
[ 0 => '우리 플레이투게더!!!' ]
Lines removed in edit (removed_lines)
[ 0 => '==References==', 1 => '{{reflist}}', 2 => '', 3 => '{{Integers|2}}', 4 => '', 5 => '[[Category:Integers]]', 6 => '', 7 => '{{number-stub}}' ]
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
1648281050