Jump to content

Examine individual changes

This page allows you to examine the variables generated by the Edit Filter for an individual change.

Variables generated for this change

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'82.42.228.129'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Rights that the user has (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'viewmywatchlist', 6 => 'editmywatchlist', 7 => 'viewmyprivateinfo', 8 => 'editmyprivateinfo', 9 => 'editmyoptions', 10 => 'abusefilter-log-detail', 11 => 'urlshortener-create-url', 12 => 'centralauth-merge', 13 => 'abusefilter-view', 14 => 'abusefilter-log', 15 => 'vipsscaler-test' ]
Whether the user is editing from mobile app (user_app)
false
Whether or not a user is editing through the mobile interface (user_mobile)
true
Page ID (page_id)
6109428
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Irregular moon'
Full page title (page_prefixedtitle)
'Irregular moon'
Edit protection level of the page (page_restrictions_edit)
[]
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => 'Double sharp', 1 => 'Citation bot', 2 => '2A02:C7F:BE21:F00:7904:40A2:7D92:6909', 3 => '2A02:9B0:F:8650:4175:4E92:E393:2339', 4 => '92.211.188.67', 5 => 'Kwamikagami', 6 => 'Qwerfjkl', 7 => 'Sir Trenzalore', 8 => 'Praemonitus', 9 => 'Nrco0e' ]
Page age in seconds (page_age)
496648607
Action (action)
'edit'
Edit summary/reason (summary)
'Rjrjrjjtjt'
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{short description|Captured satellite following an irregular orbit}} {{See also|Asteroid capture}} [[File:TheIrregulars.svg|thumb|300px|Irregular satellites of Jupiter (red), Saturn (yellow), Uranus (green) and Neptune (blue) (excluding Triton). The horizontal axis shows their distance from the planet ([[semi-major axis]]) expressed as a fraction of the planet's [[Hill sphere]]'s radius. The vertical axis shows their [[orbital inclination]]. Points or circles represent their relative sizes. Data as of August 2006.]] In [[astronomy]], an '''irregular moon''', '''irregular satellite''' or '''irregular natural satellite''' is a [[natural satellite]] following a distant, [[orbital inclination|inclined]], and often [[orbital eccentricity|eccentric]] and [[Retrograde and prograde motion|retrograde orbit]]. They have been captured by their parent planet, unlike [[regular satellite]]s, which formed in orbit around them. Irregular moons have a stable orbit, unlike [[temporary satellite]]s which often have similarly irregular orbits but will eventually depart. The term does not refer to shape as [[Triton (moon)|Triton]] is a round moon, but is considered irregular due to its orbit. As of November 2021, 147 irregular moons are known, orbiting all four of the [[outer planet]]s ([[Jupiter]], [[Saturn]], [[Uranus]] and [[Neptune]]). The largest of each planet are [[Himalia (moon)|Himalia]] of Jupiter, [[Phoebe (moon)|Phoebe]] of Saturn, [[Sycorax (moon)|Sycorax]] of Uranus, and [[Triton (moon)|Triton]] of Neptune. It is currently thought that the irregular satellites were captured from [[heliocentric orbit]]s near their current locations, shortly after the formation of their parent planet. An alternative theory, that they originated further out in the [[Kuiper belt]], is not supported by current observations. == Definition == {| align="right" class="wikitable" style="margin-left: 1em; margin-right: 0;" |- ! Planet ! r<sub>H</sub>, [[Gigametre|10<sup>6</sup>&nbsp;km]]<ref name="Sheppard2006">{{Cite journal | last1 = Sheppard | first1 = S. S. | doi = 10.1017/S1743921305006824 | title = Outer irregular satellites of the planets and their relationship with asteroids, comets and Kuiper Belt objects | journal = Proceedings of the International Astronomical Union | volume = 1 | pages = 319–334 | year = 2006 |arxiv = astro-ph/0605041 | bibcode = 2006IAUS..229..319S | s2cid = 2077114 }}</ref> ! r<sub>min</sub>,&nbsp;km<ref name="Sheppard2006" /> ! Number known |- | Jupiter | 55 | 1.5 | 72 |- | Saturn | 69 | 3 | 59 |- | Uranus | 73 | 7 | 9 |- | Neptune | 116 | 16 | 7 (including Triton) |} There is no widely accepted precise definition of an irregular satellite. Informally, satellites are considered irregular if they are far enough from the planet that the [[Precession#Precession of planetary orbits|precession]] of their [[orbital plane (astronomy)|orbital plane]] is primarily controlled by the Sun. In practice, the satellite's [[semi-major axis]] is compared with the radius of the planet's [[Hill sphere]] (that is, the sphere of its gravitational influence), <math>r_H</math>. Irregular satellites have semi-major axes greater than 0.05 <math>r_H</math> with [[apoapsis|apoapses]] extending as far as to 0.65 <math>r_H</math>.<ref name="Sheppard2006" /> The radius of the Hill sphere is given in the adjacent table. Earth's [[Moon]] seems to be an exception: it is not usually listed as an irregular satellite even though its precession is primarily controlled by the Sun{{citation needed|date=February 2020}} and its semi-major axis is greater than 0.05 of the radius of Earth's Hill sphere. On the other hand, Neptune's [[Triton (moon)|Triton]], which is probably a captured object, is usually listed as irregular despite being within 0.05 of the radius of Neptune's Hill sphere. Neptune's [[Nereid (moon)|Nereid]] and Saturn's [[Iapetus (moon)|Iapetus]] have semi-major axes close to 0.05 of the radius of their parent planets' Hill spheres: Nereid (with a very eccentric orbit) is usually listed as irregular, but not Iapetus. {{clear}} == Orbits == === Current distribution === The orbits of the known irregular satellites are extremely diverse, but there are certain patterns. [[Retrograde and direct motion|Retrograde orbit]]s are far more common (83%) than prograde orbits. No satellites are known with orbital inclinations higher than 55° (or smaller than 130° for retrograde satellites). In addition, some groupings can be identified, in which one large satellite shares a similar orbit with a few smaller ones. Given their distance from the planet, the orbits of the outer satellites are highly perturbed by the Sun and their orbital elements change widely over short intervals. The semi-major axis of [[Pasiphae (moon)|Pasiphae]], for example, changes as much as 1.5 Gm in two years (single orbit), the inclination around 10°, and the eccentricity as much as 0.4 in 24 years (twice Jupiter's orbit period).<ref name="Carruba2000">{{cite journal |doi=10.1006/icar.2002.6896 |bibcode=2002Icar..158..434C|url=http://astrosun2.astro.cornell.edu/~valerio/val_c.pdf|title=On the Inclination Distribution of the Jovian Irregular Satellites|year=2002|last1=Carruba|first1=V.|last2=Burns|first2=Joseph A.|last3=Nicholson|first3=Philip D.|last4=Gladman|first4=Brett J.|journal=Icarus|volume=158|issue=2|pages=434–449}}</ref> Consequently, ''mean'' orbital elements (averaged over time) are used to identify the groupings rather than [[osculating orbit|osculating elements]] at the given date. (Similarly, the [[proper orbital elements]] are used to determine the [[Asteroid family|families of asteroids]].) === Origin === {{see also|Triton (moon)#Capture}} Irregular satellites have been captured from heliocentric orbits. (Indeed, it appears that the irregular moons of the giant planets, the [[Trojan asteroid|Jovian]] and [[Neptune Trojan|Neptunian trojans]], and grey [[Kuiper belt]] objects have a similar origin.<ref name=Nep>{{cite journal | last1 = Sheppard | first1 = S. S. | author-link2 = Chad Trujillo | last2 = Trujillo | first2 = C. A. | date = 2006 | title = A Thick Cloud of Neptune Trojans and Their Colors | journal = Science | volume = 313 | issue = 5786 | pages = 511–514 | doi = 10.1126/science.1127173 | pmid = 16778021 | bibcode = 2006Sci...313..511S | s2cid = 35721399 }}</ref>) For this to occur, at least one of three things needs to have happened: * energy dissipation (e.g. in interaction with the primordial gas cloud) * a substantial (40%) extension of the planet's [[Hill sphere]] in a brief period of time (thousands of years) * a transfer of energy in a [[three-body interaction]]. This could involve: ** a collision (or close encounter) of an incoming body and a satellite, resulting in the incoming body losing energy and being captured. ** a close encounter between an incoming binary object and the planet (or possibly an existing moon), resulting in one component of the binary being captured. Such a route has been suggested as most likely for [[Triton (moon)|Triton]].<ref name="Agnor06">{{cite journal |author=[[Craig B. Agnor|Agnor, C. B.]] and [[Douglas P. Hamilton|Hamilton, D. P.]] |title=Neptune's capture of its moon Triton in a binary-planet gravitational encounter |journal=Nature |date=2006 |volume=441 |pages=192–4 |bibcode=2006Natur.441..192A | doi=10.1038/nature04792 |pmid=16688170 |issue=7090|s2cid=4420518 }}</ref> After the capture, some of the satellites could break up leading to [[#Families with a common origin|groupings]] of smaller moons following similar orbits. [[Orbital resonance|Resonances]] could further modify the orbits making these groupings less recognizable. === Long-term stability === [[File:Phoebe cassini.jpg|thumb|150px|[[Phoebe (moon)|Phoebe]], Saturn's largest irregular satellite]] The current orbits of the irregular moons are stable, in spite of substantial perturbations near the [[apocenter]].<ref name="Nesvorny2003">{{cite journal |bibcode=2003AJ....126..398N |url=http://www.journals.uchicago.edu/AJ/journal/issues/v126n1/202528/202528.web.pdf|title=Orbital and Collisional Evolution of the Irregular Satellites|last1=Nesvorný|first1=David|last2=Alvarellos|first2=Jose L. A.|last3=Dones|first3=Luke|last4=Levison|first4=Harold F.|journal=The Astronomical Journal|volume=126|issue=1|pages=398|year=2003|doi=10.1086/375461}}</ref> The cause of this stability in a number of irregulars is the fact that they orbit with a [[Secular resonance|secular]] or [[Kozai mechanism|Kozai resonance]].<ref name="Burns2004">{{Cite journal |arxiv = astro-ph/0408119|doi = 10.1086/424937|bibcode = 2004AJ....128.2518C|title = On the Secular Behavior of Irregular Satellites|year = 2004|last1 = Ćuk|first1 = Matija|last2 = Burns|first2 = Joseph A.|journal = The Astronomical Journal|volume = 128|issue = 5|pages = 2518–2541|s2cid = 18564122}}</ref> In addition, simulations indicate the following conclusions: * Orbits with inclinations between 50° and 130° are very unstable: their eccentricity increases quickly resulting in the satellite being lost<ref name="Carruba2000"/> * Retrograde orbits are more stable than prograde (stable retrograde orbits can be found further from the planet) Increasing eccentricity results in smaller pericenters and large apocenters. The satellites enter the zone of the regular (larger) moons and are lost or ejected via collision and close encounters. Alternatively, the increasing perturbations by the Sun at the growing apocenters push them beyond the Hill sphere. Retrograde satellites can be found further from the planet than prograde ones. Detailed numerical integrations have shown this asymmetry. The limits are a complicated function of the inclination and eccentricity, but in general, prograde orbits with semi-major axes up to 0.47 r<sub>H</sub> (Hill sphere radius) can be stable, whereas for retrograde orbits stability can extend out to 0.67 r<sub>H</sub>. The boundary for the semimajor axis is surprisingly sharp for the prograde satellites. A satellite on a prograde, circular orbit (inclination=0°) placed at 0.5 r<sub>H</sub> would leave Jupiter in as little as forty years. The effect can be explained by so-called ''evection resonance''. The apocenter of the satellite, where the planet's grip on the moon is at its weakest, gets locked in resonance with the position of the Sun. The effects of the perturbation accumulate at each passage pushing the satellite even further outwards.<ref name="Nesvorny2003" /> The asymmetry between the prograde and retrograde satellites can be explained very intuitively by the [[Coriolis acceleration]] in the [[Rotating frame|frame rotating]] with the planet. For the prograde satellites the acceleration points outward and for the retrograde it points inward, stabilising the satellite.<ref name="HamBurns91">{{Cite journal |doi = 10.1016/0019-1035(91)90039-V|bibcode = 1991Icar...92..118H|title = Orbital stability zones about asteroids|year = 1991|last1 = Hamilton|first1 = Douglas P.|last2 = Burns|first2 = Joseph A.|journal = Icarus|volume = 92|issue = 1|pages = 118–131}}</ref> === Temporary captures === The capture of an asteroid from a heliocentric orbit isn't always permanent. According to simulations, [[temporary satellite]]s should be a common phenomenon.<ref name="Carlisle">{{cite news |author=Camille M. Carlisle |title=Pseudo-moons Orbit Earth |work=Sky & Telescope |date=December 30, 2011 }}</ref><ref name="Fedorets">{{cite journal |last1=Fedorets |first1=Grigori |last2=Granvik |first2=Mikael |last3=Jedicke |first3=Robert |title=Orbit and size distributions for asteroids temporarily captured by the Earth-Moon system |journal=Icarus |volume=285 |pages=83–94 |date=March 15, 2017 |doi=10.1016/j.icarus.2016.12.022 |bibcode=2017Icar..285...83F }}</ref> The only observed examples are {{mpl|2006 RH|120}} and {{mpl|2020 CD|3}}, which were temporary satellites of [[Earth]] discovered in 2006 and 2020, respectively.<ref name="Shefford">{{cite web |url=http://www.birtwhistle.org/Gallery6R10DB9.htm |title=2006 RH120 ( = 6R10DB9) (A second moon for the Earth?) |publisher=Great Shefford Observatory |date=September 14, 2017 |access-date=2017-11-13 |url-status=live |archive-url=https://web.archive.org/web/20150206154817/http://www.birtwhistle.org/Gallery6R10DB9.htm |archive-date=2015-02-06 }}</ref><ref name="Sinott">{{cite news |title=Earth's "Other Moon" |work=Sky & Telescope |author=Roger W. Sinnott |date=April 17, 2007 |url=http://www.skyandtelescope.com/news/7067527.html |access-date=2017-11-13 |url-status=dead |archive-url=https://www.webcitation.org/6AF1cCXEZ?url=http://www.skyandtelescope.com/news/7067527.html |archive-date=2012-08-27 }}</ref><ref name="MPEC-2020-D104">{{cite web |title = MPEC 2020-D104 : 2020 CD3: Temporarily Captured Object |url = https://minorplanetcenter.net/mpec/K20/K20DA4.html |work = Minor Planet Electronic Circular |publisher = [[Minor Planet Center]] |date = 25 February 2020 |access-date = 25 February 2020}}</ref> == Physical characteristics == {{Side box |metadata=No | above = '''Comparative masses of largest irregular moons + Amalthea''' | abovestyle = text-align:center | position = right | text = {{Graph:Chart | width=100 | height=100 | type=pie | legend= | x= Amalthea,Himalia,Phoebe,Sycorax,Nereid | y1=2.08,4.2,8.29,2.3,27.0 | showValues=angle:0,format:.1f }} | below = Comparative masses of the largest irregular moons. Values are ×10<sup>18</sup>&nbsp;kg. One at each outer planet is > 1{{e|18}}&nbsp;kg. Sycorax and Nereid are estimated, not measured; Nereid may not be a captured body. Jupiter's largest inner moon Amalthea is added for comparison. Mars's moons Phobos and Deimos would not be visible at this scale. Triton is ignored, as it has about 800 times the mass of Nereid and would completely dominate the picture. }} === Size === [[File:TheKuiperBelt PowerLaw2.svg|thumb|220px|The power law for the size distribution of objects in the Kuiper belt, where ''q'' ≈ 4 and thus N ~ D<sup>−3</sup>. That is, for every Kuiper beld object of a particular size, there are approximately 8 times as many objects half that size and a thousands times as many objects one-tenth that size.]] Because objects of a given size are more difficult to see the greater their distance from Earth, the known irregular satellites of Uranus and Neptune are larger than those of Jupiter and Saturn; smaller ones probably exist but have not yet been observed. Bearing this observational bias in mind, the size distribution of irregular satellites appears to be similar for all four giant planets. The size distribution of asteroids and many similar populations can be expressed as a [[power law]]: there are many more small objects than large ones, and the smaller the size, the more numerous the object. The mathematical relation expressing the number of objects, <math>N\,\! </math>, with a diameter smaller than a particular size, <math>D\,\! </math>, is approximated as: : <math> \frac{d N}{d D} \sim D^{-q}</math> with ''q'' defining the slope. The value of ''q'' is determined through observation. For irregular moons, a shallow power law (''q'' ≃ 2<!--that is, N ~ D<sup>−1</sup>-->) is observed for sizes of 10 to 100&nbsp;km,<sup>†</sup> but a steeper law (''q'' ≃ 3.5) is observed for objects smaller than 10&nbsp;km. An analysis of images taken by the [[Canada-France-Hawaii Telescope]] in 2010 shows that the power law for Jupiter's population of small retrograde satellites, down to a detection limit of ≈ 400&nbsp;m, is relatively shallow, at ''q'' ≃ 2.5. Thus it can be extrapolated that Jupiter should have {{val|600|600|300}} moons 400&nbsp;m in diameter or greater.<ref name="Ashton2020">{{cite journal |title = The Population of Kilometer-scale Retrograde Jovian Irregular Moons |first1 = Edward |last1 = Ashton |first2 = Matthew |last2 = Beaudoin |first3 = Brett |last3 = Gladman |journal = The Planetary Science Journal |author-link3 = Brett J. Gladman |date = September 2020 |volume = 1 |issue = 2 |page = 52 |doi = 10.3847/PSJ/abad95 |arxiv = 2009.03382 |bibcode = 2020PSJ.....1...52A |s2cid = 221534456 }}</ref> For comparison, the distribution of large [[Kuiper belt]] objects is much steeper (''q'' ≈ 4). That is, for every object of 1000&nbsp;km there are a thousand objects with a diameter of 100&nbsp;km, though it's unknown how far this distribution extends. The size distribution of a population may provide insights into its origin, whether through capture, collision and break-up, or accretion. <sup>†</sup><small>For every object of 100&nbsp;km, ten objects of 10&nbsp;km can be found.</small><br /> === Colours === [[File:TheIrregulars Colours.svg|thumb|300px|This diagram illustrates the differences of colour in the irregular satellites of Jupiter (red labels), Saturn (yellow) and Uranus (green). Only irregulars with known colour indices are shown. For reference, the [[Centaur (planetoid)|centaur]] [[5145 Pholus|Pholus]] and three [[classical Kuiper belt object]]s are also plotted (grey labels, size not to scale). For comparison, see also [[Centaur (planetoid)#Physical characteristics|colours of centaurs]] and [[trans-Neptunian object#Physical characteristics|KBOs]].]] The colours of irregular satellites can be studied via [[Color index|colour indices]]: simple measures of differences of the [[apparent magnitude]] of an object through [[blue]] (B), visible ''i.e.'' green-yellow (V), and [[red]] (R) [[filter (optics)|filter]]s. The observed colours of the irregular satellites vary from neutral (greyish) to reddish (but not as red as the colours of some Kuiper belt objects). {| align="right" class="wikitable" style="margin-left: 1em; margin-right: 0;" ! [[albedo]]<ref>Based on the definitions from ''Oxford Dictionary of Astronomy'', {{ISBN|0-19-211596-0}}</ref> ! neutral ! reddish ! red |- | low | '''[[C-type asteroid|C]]''' <sub>3–8%</sub> | '''[[P-type asteroid|P]]''' <sub>2–6%</sub> | '''[[D-type asteroid|D]]''' <sub>2–5%</sub> |- | medium | | '''[[M-type asteroid|M]]''' <sub>10–18%</sub> | '''[[A-type asteroid|A]]''' <sub>13–35%</sub> |- | high | | '''[[E-type asteroid|E]]''' <sub>25–60%</sub> | |} Each planet's system displays slightly different characteristics. Jupiter's irregulars are grey to slightly red, consistent with [[C-type asteroid|C]], [[P-type asteroid|P]] and [[D-type asteroid]]s.<ref name="Grav2003">{{Cite journal |arxiv = astro-ph/0301016|doi = 10.1016/j.icarus.2003.07.005|bibcode = 2003Icar..166...33G|title = Photometric survey of the irregular satellites|year = 2003|last1 = Grav|first1 = Tommy|last2 = Holman|first2 = Matthew J.|last3 = Gladman|first3 = Brett J.|last4 = Aksnes|first4 = Kaare|journal = Icarus|volume = 166|issue = 1|pages = 33–45|s2cid = 7793999}}</ref> Some groups of satellites are observed to display similar colours (see later sections). Saturn's irregulars are slightly redder than those of Jupiter. The large Uranian irregular satellites ([[Sycorax (moon)|Sycorax]] and [[Caliban (moon)|Caliban]]) are light red, whereas the smaller [[Prospero (moon)|Prospero]] and [[Setebos (moon)|Setebos]] are grey, as are the Neptunian satellites [[Nereid (moon)|Nereid]] and [[Halimede (moon)|Halimede]].<ref name="GravHolmanFraser2004">{{cite journal| doi = 10.1086/424997| last1 = Grav| first1 = Tommy| last2 = Holman| first2 = Matthew J.| author-link2 = Matthew J. Holman| last3 = Fraser| first3 = Wesley C.| date = 2004-09-20| title = Photometry of Irregular Satellites of Uranus and Neptune| journal = [[The Astrophysical Journal]]| volume = 613| issue = 1| pages = L77–L80| arxiv = astro-ph/0405605| bibcode = 2004ApJ...613L..77G| s2cid = 15706906}}</ref> === Spectra === With the current resolution, the visible and near-infrared spectra of most satellites appear featureless. So far, water ice has been inferred on Phoebe and Nereid and features attributed to aqueous alteration were found on Himalia. === Rotation === Regular satellites are usually tidally locked (that is, their orbit is [[Synchronous orbit|synchronous]] with their rotation so that they only show one face toward their parent planet). In contrast, tidal forces on the irregular satellites are negligible given their distance from the planet, and rotation periods in the range of only ten hours have been measured for the biggest moons [[Himalia (moon)|Himalia]], [[Phoebe (moon)|Phoebe]], [[Sycorax (moon)|Sycorax]], and [[Nereid (moon)|Nereid]] (to compare with their orbital periods of hundreds of days). Such rotation rates are in the same range that is typical for [[asteroid]]s. Triton, being much larger and closer to its parent planet, is tidally locked. {{clear}} == Families with a common origin == Some irregular satellites appear to orbit in 'groups', in which several satellites share similar orbits. The leading theory is that these objects constitute [[Collisional family|collisional families]], parts of a larger body that broke up. === Dynamic groupings === Simple collision models can be used to estimate the possible dispersion of the orbital parameters given a velocity impulse [[delta-v|Δ''v'']]. Applying these models to the known orbital parameters makes it possible to estimate the Δ''v'' necessary to create the observed dispersion. A Δ''v'' of tens of meters per seconds (5–50&nbsp;m/s) could result from a break-up. Dynamical groupings of irregular satellites can be identified using these criteria and the likelihood of the common origin from a break-up evaluated.<ref name="Nesvorny2004">{{cite journal |doi=10.1086/382099 |bibcode=2004AJ....127.1768N|url=http://www.boulder.swri.edu/~davidn/papers/irrbig.pdf|title=Collisional Origin of Families of Irregular Satellites|year=2004|last1=Nesvorn|first1=David|last2=Beaug|first2=Cristian|last3=Dones|first3=Luke|journal=The Astronomical Journal|volume=127|issue=3|pages=1768–1783}}</ref> When the dispersion of the orbits is too wide (i.e. it would require Δ''v'' in the order of hundreds of m/s) * either more than one collision must be assumed, i.e. the cluster should be further subdivided into groups * or significant post-collision changes, for example resulting from resonances, must be postulated. === Colour groupings === When the colours and spectra of the satellites are known, the homogeneity of these data for all the members of a given grouping is a substantial argument for a common origin. However, lack of precision in the available data often makes it difficult to draw statistically significant conclusions. In addition, the observed colours are not necessarily representative of the bulk composition of the satellite. =={{anchor|Group}} Observed groupings == === Irregular satellites of Jupiter === [[File:TheIrregulars JUPITER.svg|thumb|300px|The orbits of Jupiter's irregular satellites, showing how they cluster into groups. Satellites are represented by circles that indicate their relative sizes. An object's position on the horizontal axis shows its distance from Jupiter. Its position on the vertical axis indicates its [[orbital inclination]]. The yellow lines indicate its [[orbital eccentricity]] (i.e. the extent to which its distance from Jupiter varies during its orbit).]] Typically, the following groupings are listed (dynamically tight groups displaying homogenous colours are listed in '''bold''') * [[Retrograde and prograde motion|Prograde]] satellites ** The '''[[Himalia group]]''' shares an average inclination of 28°. They are confined dynamically (Δ''v'' ≈ 150&nbsp;m/s). They are homogenous at visible wavelengths (having neutral colours similar to those of [[C-type asteroid]]s) and at near [[infrared]] wavelengths<ref name="Grav2004">{{Cite journal |arxiv = astro-ph/0312571|doi = 10.1086/420881|bibcode = 2004ApJ...605L.141G|title = Near-Infrared Photometry of the Irregular Satellites of Jupiter and Saturn|year = 2004|last1 = Grav|first1 = Tommy|last2 = Holman|first2 = Matthew J.|journal = The Astrophysical Journal|volume = 605|issue = 2|pages = L141–L144|s2cid = 15665146}}</ref> ** The prograde satellites [[Themisto (moon)|Themisto]], [[Carpo (moon)|Carpo]], and [[Valetudo (moon)|Valetudo]] are not part of any known group. [[File:Animation of Himalia orbit around Jupiter.gif|thumb|left|Animation of Himalia's orbit.<br>{{legend2|RoyalBlue| Jupiter}}{{·}}{{legend2| Magenta | Himalia}}{{·}}{{legend2|Cyan|Callisto}}]] * [[Retrograde motion|Retrograde]] satellites ** The '''[[Carme group]]''' shares an average inclination of 165°. It is dynamically tight (5 < Δ''v'' < 50&nbsp;m/s). It is very homogenous in colour, each member displaying light red colouring consistent with a [[D-type asteroid]] progenitor. ** The '''[[Ananke group]]''' shares an average inclination of 148°. It shows little dispersion of orbital parameters (15 < Δ''v'' < 80&nbsp;m/s). [[Ananke (moon)|Ananke]] itself appears light red but the other group members are grey. ** The [[Pasiphae group]] is very dispersed. [[Pasiphae (moon)|Pasiphae]] itself appears to be grey, whereas other members ([[Callirrhoe (moon)|Callirrhoe]], [[Megaclite (moon)|Megaclite]]) are light red. [[Sinope (moon)|Sinope]], sometimes included into the Pasiphae group, is red and given the difference in inclination, it could be captured independently.<ref name="Grav2003" /><ref name="SheppardJewitt2003">{{Cite journal | last1 = Sheppard | first1 = S. S. | last2 = Jewitt | first2 = D. C. | doi = 10.1038/nature01584 | title = An abundant population of small irregular satellites around Jupiter | journal = Nature | volume = 423 | issue = 6937 | pages = 261–263 | year = 2003 | pmid = 12748634| url = http://www.dtm.ciw.edu/users/sheppard/sheppardjupiter.pdf|bibcode = 2003Natur.423..261S | s2cid = 4424447 }}</ref> Pasiphae and Sinope are also trapped in [[secular resonance]]s with Jupiter.<ref name="Nesvorny2003" /><ref name="Nesvorny2004" /> {{clear}} === Irregular satellites of Saturn === [[File:TheIrregulars SATURN.svg|thumb|300px|Irregular satellites of Saturn, showing how they cluster into groups. For explanation, see Jupiter diagram]] The following groupings are commonly listed for Saturn's satellites: * Prograde satellites ** The '''[[Gallic group]]''' shares an average inclination of 34°. Their orbits are dynamically tight (Δ''v'' ≈ 50&nbsp;m/s), and they are light red in colour; the colouring is homogenous at both visible and near infra-red wavelengths.<ref name="Grav2004" /> ** The [[Inuit group]] shares an average inclination of 46°. Their orbits are widely dispersed (Δ''v'' ≈ 350&nbsp;m/s) but they are physically homogenous, sharing a light red colouring. * Retrograde satellites ** The [[Norse group]] is defined mostly for naming purposes; the orbital parameters are very widely dispersed. Sub-divisions have been investigated, including *** The [[Phoebe (moon)|Phoebe]] group shares an average inclination of 174°; this sub-group too is widely dispersed, and may be further divided into at least two sub-sub-groups *** The [[Skathi (moon)|Skathi]] group is a possible sub-group of the Norse group {{clear}} <gallery mode=packed heights=180px> File:Animation of Saturn's Inuit group of satellites.gif|Animation of Saturn's Inuit group of satellites<br>{{legend2|RoyalBlue| [[Kiviuq (moon)|Kiviuq]]}}{{·}}{{legend2|Lime| [[Ijiraq (moon)|Ijiraq]]}}{{·}}{{legend2|Gold| [[Paaliaq]]}}{{·}}{{legend2|OrangeRed| [[Siarnaq]]}}{{·}}{{legend2|Cyan|[[Tarqeq]]}} File:Animation of Phoebe orbit around Saturn.gif|Animation of Phoebe's orbit.<br>{{legend2|RoyalBlue| Saturn}}{{·}}{{legend2| Magenta | Phoebe}}{{·}}{{legend2|Cyan|Titan}} </gallery> === Irregular satellites of Uranus and Neptune === [[File:TheIrregulars NEPTUNE URANUS.svg|thumb|300px|Irregular satellites of Uranus (green) and Neptune (blue) (excluding Triton). For explanation, see Jupiter diagram]] {| align="right" class="wikitable" style="margin-left: 1em; margin-right: 0;" ! Planet ! r<sub>min</sub><ref name="Sheppard2006" /> |- | Jupiter | align="right" | 1.5&nbsp;km |- | Saturn | align="right" | 3&nbsp;km |- | Uranus | align="right" | 7&nbsp;km |- | Neptune | align="right" | 16&nbsp;km |} According to current knowledge, the number of irregular satellites orbiting Uranus and Neptune is smaller than that of Jupiter and Saturn. However, it is thought that this is simply a result of observational difficulties due to the greater distance of Uranus and Neptune. The table at right shows the minimum [[radius]] (r<sub>min</sub>) of satellites that can be detected with current technology, assuming an [[albedo]] of 0.04; thus, there are almost certainly small Uranian and Neptunian moons that cannot yet be seen. Due to the smaller numbers, statistically significant conclusions about the groupings are difficult. A single origin for the retrograde irregulars of Uranus seems unlikely given a dispersion of the orbital parameters that would require high impulse (Δ''v'' ≈ 300&nbsp;km), implying a large diameter of the impactor (395&nbsp;km), which is incompatible in turn with the size distribution of the fragments. Instead, the existence of two groupings has been speculated:<ref name="Grav2003" /> * [[Caliban (moon)|Caliban]] group * [[Sycorax (moon)|Sycorax]] group These two groups are distinct (with 3σ confidence) in their distance from Uranus and in their eccentricity.<ref name="SheppardUranus2005">{{Cite journal | last1 = Sheppard | first1 = S. S. | last2 = Jewitt | first2 = D. | last3 = Kleyna | first3 = J. | title = An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness | doi = 10.1086/426329 | journal = The Astronomical Journal | volume = 129 | issue = 1 | pages = 518–525 | year = 2005 |arxiv = astro-ph/0410059 |bibcode = 2005AJ....129..518S | s2cid = 18688556 }}</ref> However, these groupings are not directly supported by the observed colours: Caliban and Sycorax appear light red, whereas the smaller moons are grey.<ref name="GravHolmanFraser2004" /> For Neptune, a possible common origin of [[Psamathe (moon)|Psamathe]] and [[Neso (moon)|Neso]] has been noted.<ref name="SheppardJewittKleyna2006">{{cite journal| doi = 10.1086/504799| last1 = Sheppard| first1 = Scott S.| author-link1 = Scott S. Sheppard| last2 = Jewitt| first2 = David C.| author-link2 = David C. Jewitt| last3 = Kleyna| first3 = Jan| author-link3 = Jan Kleyna| year = 2006| title = A Survey for "Normal" Irregular Satellites around Neptune: Limits to Completeness| journal = The Astronomical Journal| volume = 132| issue = 1| pages = 171–176| bibcode = 2006AJ....132..171S| arxiv = astro-ph/0604552| s2cid = 154011}}</ref> Given the similar (grey) colours, it was also suggested that [[Halimede (moon)|Halimede]] could be a fragment of Nereid.<ref name="GravHolmanFraser2004" /> The two satellites have had a very high probability (41%) of collision over the age of the solar system.<ref name="HolmanKavelaarsGrav2004">{{cite journal| doi = 10.1038/nature02832| last1 = Holman| first1 = M. J.| author-link = Matthew J. Holman| last2 = Kavelaars| first2 = J. J.| author-link2 = John J. Kavelaars| last3 = Grav| first3 = T.| display-authors = 3| year = 2004| last4 = Gladman| first4 = B. J.| author-link4 = Brett J. Gladman| last5 = Fraser| first5 = W. C.| last6 = Milisavljevic| first6 = D.| last7 = Nicholson| first7 = P. D.| last8 = Burns| first8 = J. A.| last9 = Carruba| first9 = V.| title = Discovery of five irregular moons of Neptune| journal = Nature| volume = 430| issue = 7002| pages = 865–867| pmid = 15318214| bibcode = 2004Natur.430..865H| s2cid = 4412380| url = https://www.cfa.harvard.edu/~mholman/nature_final.pdf| access-date = 24 October 2011}}</ref> == Exploration == [[File:Himalia.png|thumb|Distant ''Cassini'' image of Himalia]] To date, the only irregular satellites to have been visited by a spacecraft are [[Triton (moon)|Triton]] and [[Phoebe (moon)|Phoebe]], the largest of Neptune's and Saturn's irregulars respectively. Triton was imaged by ''[[Voyager 2]]'' in 1989 and Phoebe by the ''[[Cassini probe|Cassini]]'' probe in 2004. ''Voyager'' 2 also captured a distant image of Neptune's [[Nereid (moon)|Nereid]] in 1989, and ''Cassini'' captured a distant, low-resolution image of Jupiter's [[Himalia (moon)|Himalia]] in 2000. ''[[New Horizons]]'' captured low-resolution images of Jupiter's Himalia and [[Elara (moon)|Elara]] in 2007. There are no spacecraft planned to visit any irregular satellites in the future. {{clear}} == Gallery == <gallery mode=packed heights=200px style="text-align:left"> File:Jupiter irregular moon orbits Jan 2021.png|71 irregular moons of Jupiter (with Callisto for comparison) File:Saturn irregular moon orbits Jan 2021 cropped.png|58 irregular moons of Saturn (with Iapetus for comparison) File:Uranus irregular moon orbits Jan 2021.png|9 irregular moons of Uranus File:Neptune irregular moon orbits Jan 2021.png|6 irregular moons of Neptune (excluding Triton) </gallery> == References == {{reflist|2}} == External links == * [http://www2.ess.ucla.edu/~jewitt/irregulars.html David Jewitt's pages] * Discovery circumstances [http://ssd.jpl.nasa.gov/?sat_discovery from JPL] * Mean orbital elements [http://ssd.jpl.nasa.gov/?sat_elem from JPL] * [http://www.minorplanetcenter.org/iau/NatSats/NaturalSatellites.html MPC: Natural Satellites Ephemeris Service] * Tilmann Denk: Outer Moons of [https://tilmanndenk.de/outerjovianmoons/ Jupiter] and [https://tilmanndenk.de/outersaturnianmoons/ Saturn] {{Solar System moons (compact)}} {{DEFAULTSORT:Irregular Moon}} [[Category:Irregular satellites| ]] [[Category:Moons]] [[Category:Orbits]]'
New page wikitext, after the edit (new_wikitext)
'{Hjtktkkkrktktktkndndn Hello my name is panleion the 38fjjf Dhndnncouple more of djfjfjDhndnndjfjfj and a == Definition == {| align="right" class="wikitable" style="margin-left: 1em; margin-right: 0;" |- ! Planet ! r<sub>H</sub>, [[Gigametre|10<sup>6</sup>&nbsp;km]]<ref name="Sheppard2006">{{Cite journal | last1 = Sheppard | first1 = S. S. | doi = 10.1017/S1743921305006824 | title = Outer irregular satellites of the planets and their relationship with asteroids, comets and Kuiper Belt objects | journal = Proceedings of the International Astronomical Union | volume = 1 | pages = 319–334 | year = 2006 |arxiv = astro-ph/0605041 | bibcode = 2006IAUS..229..319S | s2cid = 2077114 }}</ref> ! r<sub>min</sub>,&nbsp;km<ref name="Sheppard2006" /> ! Number known |- | Jupiter | 55 | 1.5 | 72 |- | Saturn | 69 | 3 | 59 |- | Uranus | 73 | 7 | 9 |- | Neptune | 116 | 16 | 7 (including Triton) |} There is no widely accepted precise definition of an irregular satellite. Informally, satellites are considered irregular if they are far enough from the planet that the [[Precession#Precession of planetary orbits|precession]] of their [[orbital plane (astronomy)|orbital plane]] is primarily controlled by the Sun. In practice, the satellite's [[semi-major axis]] is compared with the radius of the planet's [[Hill sphere]] (that is, the sphere of its gravitational influence), <math>r_H</math>. Irregular satellites have semi-major axes greater than 0.05 <math>r_H</math> with [[apoapsis|apoapses]] extending as far as to 0.65 <math>r_H</math>.<ref name="Sheppard2006" /> The radius of the Hill sphere is given in the adjacent table. Earth's [[Moon]] seems to be an exception: it is not usually listed as an irregular satellite even though its precession is primarily controlled by the Sun{{citation needed|date=February 2020}} and its semi-major axis is greater than 0.05 of the radius of Earth's Hill sphere. On the other hand, Neptune's [[Triton (moon)|Triton]], which is probably a captured object, is usually listed as irregular despite being within 0.05 of the radius of Neptune's Hill sphere. Neptune's [[Nereid (moon)|Nereid]] and Saturn's [[Iapetus (moon)|Iapetus]] have semi-major axes close to 0.05 of the radius of their parent planets' Hill spheres: Nereid (with a very eccentric orbit) is usually listed as irregular, but not Iapetus. {{clear}} == Orbits == === Current distribution === The orbits of the known irregular satellites are extremely diverse, but there are certain patterns. [[Retrograde and direct motion|Retrograde orbit]]s are far more common (83%) than prograde orbits. No satellites are known with orbital inclinations higher than 55° (or smaller than 130° for retrograde satellites). In addition, some groupings can be identified, in which one large satellite shares a similar orbit with a few smaller ones. Given their distance from the planet, the orbits of the outer satellites are highly perturbed by the Sun and their orbital elements change widely over short intervals. The semi-major axis of [[Pasiphae (moon)|Pasiphae]], for example, changes as much as 1.5 Gm in two years (single orbit), the inclination around 10°, and the eccentricity as much as 0.4 in 24 years (twice Jupiter's orbit period).<ref name="Carruba2000">{{cite journal |doi=10.1006/icar.2002.6896 |bibcode=2002Icar..158..434C|url=http://astrosun2.astro.cornell.edu/~valerio/val_c.pdf|title=On the Inclination Distribution of the Jovian Irregular Satellites|year=2002|last1=Carruba|first1=V.|last2=Burns|first2=Joseph A.|last3=Nicholson|first3=Philip D.|last4=Gladman|first4=Brett J.|journal=Icarus|volume=158|issue=2|pages=434–449}}</ref> Consequently, ''mean'' orbital elements (averaged over time) are used to identify the groupings rather than [[osculating orbit|osculating elements]] at the given date. (Similarly, the [[proper orbital elements]] are used to determine the [[Asteroid family|families of asteroids]].) === Origin === {{see also|Triton (moon)#Capture}} Irregular satellites have been captured from heliocentric orbits. (Indeed, it appears that the irregular moons of the giant planets, the [[Trojan asteroid|Jovian]] and [[Neptune Trojan|Neptunian trojans]], and grey [[Kuiper belt]] objects have a similar origin.<ref name=Nep>{{cite journal | last1 = Sheppard | first1 = S. S. | author-link2 = Chad Trujillo | last2 = Trujillo | first2 = C. A. | date = 2006 | title = A Thick Cloud of Neptune Trojans and Their Colors | journal = Science | volume = 313 | issue = 5786 | pages = 511–514 | doi = 10.1126/science.1127173 | pmid = 16778021 | bibcode = 2006Sci...313..511S | s2cid = 35721399 }}</ref>) For this to occur, at least one of three things needs to have happened: * energy dissipation (e.g. in interaction with the primordial gas cloud) * a substantial (40%) extension of the planet's [[Hill sphere]] in a brief period of time (thousands of years) * a transfer of energy in a [[three-body interaction]]. This could involve: ** a collision (or close encounter) of an incoming body and a satellite, resulting in the incoming body losing energy and being captured. ** a close encounter between an incoming binary object and the planet (or possibly an existing moon), resulting in one component of the binary being captured. Such a route has been suggested as most likely for [[Triton (moon)|Triton]].<ref name="Agnor06">{{cite journal |author=[[Craig B. Agnor|Agnor, C. B.]] and [[Douglas P. Hamilton|Hamilton, D. P.]] |title=Neptune's capture of its moon Triton in a binary-planet gravitational encounter |journal=Nature |date=2006 |volume=441 |pages=192–4 |bibcode=2006Natur.441..192A | doi=10.1038/nature04792 |pmid=16688170 |issue=7090|s2cid=4420518 }}</ref> After the capture, some of the satellites could break up leading to [[#Families with a common origin|groupings]] of smaller moons following similar orbits. [[Orbital resonance|Resonances]] could further modify the orbits making these groupings less recognizable. === Long-term stability === [[File:Phoebe cassini.jpg|thumb|150px|[[Phoebe (moon)|Phoebe]], Saturn's largest irregular satellite]] The current orbits of the irregular moons are stable, in spite of substantial perturbations near the [[apocenter]].<ref name="Nesvorny2003">{{cite journal |bibcode=2003AJ....126..398N |url=http://www.journals.uchicago.edu/AJ/journal/issues/v126n1/202528/202528.web.pdf|title=Orbital and Collisional Evolution of the Irregular Satellites|last1=Nesvorný|first1=David|last2=Alvarellos|first2=Jose L. A.|last3=Dones|first3=Luke|last4=Levison|first4=Harold F.|journal=The Astronomical Journal|volume=126|issue=1|pages=398|year=2003|doi=10.1086/375461}}</ref> The cause of this stability in a number of irregulars is the fact that they orbit with a [[Secular resonance|secular]] or [[Kozai mechanism|Kozai resonance]].<ref name="Burns2004">{{Cite journal |arxiv = astro-ph/0408119|doi = 10.1086/424937|bibcode = 2004AJ....128.2518C|title = On the Secular Behavior of Irregular Satellites|year = 2004|last1 = Ćuk|first1 = Matija|last2 = Burns|first2 = Joseph A.|journal = The Astronomical Journal|volume = 128|issue = 5|pages = 2518–2541|s2cid = 18564122}}</ref> In addition, simulations indicate the following conclusions: * Orbits with inclinations between 50° and 130° are very unstable: their eccentricity increases quickly resulting in the satellite being lost<ref name="Carruba2000"/> * Retrograde orbits are more stable than prograde (stable retrograde orbits can be found further from the planet) Increasing eccentricity results in smaller pericenters and large apocenters. The satellites enter the zone of the regular (larger) moons and are lost or ejected via collision and close encounters. Alternatively, the increasing perturbations by the Sun at the growing apocenters push them beyond the Hill sphere. Retrograde satellites can be found further from the planet than prograde ones. Detailed numerical integrations have shown this asymmetry. The limits are a complicated function of the inclination and eccentricity, but in general, prograde orbits with semi-major axes up to 0.47 r<sub>H</sub> (Hill sphere radius) can be stable, whereas for retrograde orbits stability can extend out to 0.67 r<sub>H</sub>. The boundary for the semimajor axis is surprisingly sharp for the prograde satellites. A satellite on a prograde, circular orbit (inclination=0°) placed at 0.5 r<sub>H</sub> would leave Jupiter in as little as forty years. The effect can be explained by so-called ''evection resonance''. The apocenter of the satellite, where the planet's grip on the moon is at its weakest, gets locked in resonance with the position of the Sun. The effects of the perturbation accumulate at each passage pushing the satellite even further outwards.<ref name="Nesvorny2003" /> The asymmetry between the prograde and retrograde satellites can be explained very intuitively by the [[Coriolis acceleration]] in the [[Rotating frame|frame rotating]] with the planet. For the prograde satellites the acceleration points outward and for the retrograde it points inward, stabilising the satellite.<ref name="HamBurns91">{{Cite journal |doi = 10.1016/0019-1035(91)90039-V|bibcode = 1991Icar...92..118H|title = Orbital stability zones about asteroids|year = 1991|last1 = Hamilton|first1 = Douglas P.|last2 = Burns|first2 = Joseph A.|journal = Icarus|volume = 92|issue = 1|pages = 118–131}}</ref> === Temporary captures === The capture of an asteroid from a heliocentric orbit isn't always permanent. According to simulations, [[temporary satellite]]s should be a common phenomenon.<ref name="Carlisle">{{cite news |author=Camille M. Carlisle |title=Pseudo-moons Orbit Earth |work=Sky & Telescope |date=December 30, 2011 }}</ref><ref name="Fedorets">{{cite journal |last1=Fedorets |first1=Grigori |last2=Granvik |first2=Mikael |last3=Jedicke |first3=Robert |title=Orbit and size distributions for asteroids temporarily captured by the Earth-Moon system |journal=Icarus |volume=285 |pages=83–94 |date=March 15, 2017 |doi=10.1016/j.icarus.2016.12.022 |bibcode=2017Icar..285...83F }}</ref> The only observed examples are {{mpl|2006 RH|120}} and {{mpl|2020 CD|3}}, which were temporary satellites of [[Earth]] discovered in 2006 and 2020, respectively.<ref name="Shefford">{{cite web |url=http://www.birtwhistle.org/Gallery6R10DB9.htm |title=2006 RH120 ( = 6R10DB9) (A second moon for the Earth?) |publisher=Great Shefford Observatory |date=September 14, 2017 |access-date=2017-11-13 |url-status=live |archive-url=https://web.archive.org/web/20150206154817/http://www.birtwhistle.org/Gallery6R10DB9.htm |archive-date=2015-02-06 }}</ref><ref name="Sinott">{{cite news |title=Earth's "Other Moon" |work=Sky & Telescope |author=Roger W. Sinnott |date=April 17, 2007 |url=http://www.skyandtelescope.com/news/7067527.html |access-date=2017-11-13 |url-status=dead |archive-url=https://www.webcitation.org/6AF1cCXEZ?url=http://www.skyandtelescope.com/news/7067527.html |archive-date=2012-08-27 }}</ref><ref name="MPEC-2020-D104">{{cite web |title = MPEC 2020-D104 : 2020 CD3: Temporarily Captured Object |url = https://minorplanetcenter.net/mpec/K20/K20DA4.html |work = Minor Planet Electronic Circular |publisher = [[Minor Planet Center]] |date = 25 February 2020 |access-date = 25 February 2020}}</ref> == Physical characteristics == {{Side box |metadata=No | above = '''Comparative masses of largest irregular moons + Amalthea''' | abovestyle = text-align:center | position = right | text = {{Graph:Chart | width=100 | height=100 | type=pie | legend= | x= Amalthea,Himalia,Phoebe,Sycorax,Nereid | y1=2.08,4.2,8.29,2.3,27.0 | showValues=angle:0,format:.1f }} | below = Comparative masses of the largest irregular moons. Values are ×10<sup>18</sup>&nbsp;kg. One at each outer planet is > 1{{e|18}}&nbsp;kg. Sycorax and Nereid are estimated, not measured; Nereid may not be a captured body. Jupiter's largest inner moon Amalthea is added for comparison. Mars's moons Phobos and Deimos would not be visible at this scale. Triton is ignored, as it has about 800 times the mass of Nereid and would completely dominate the picture. }} === Size === [[File:TheKuiperBelt PowerLaw2.svg|thumb|220px|The power law for the size distribution of objects in the Kuiper belt, where ''q'' ≈ 4 and thus N ~ D<sup>−3</sup>. That is, for every Kuiper beld object of a particular size, there are approximately 8 times as many objects half that size and a thousands times as many objects one-tenth that size.]] Because objects of a given size are more difficult to see the greater their distance from Earth, the known irregular satellites of Uranus and Neptune are larger than those of Jupiter and Saturn; smaller ones probably exist but have not yet been observed. Bearing this observational bias in mind, the size distribution of irregular satellites appears to be similar for all four giant planets. The size distribution of asteroids and many similar populations can be expressed as a [[power law]]: there are many more small objects than large ones, and the smaller the size, the more numerous the object. The mathematical relation expressing the number of objects, <math>N\,\! </math>, with a diameter smaller than a particular size, <math>D\,\! </math>, is approximated as: : <math> \frac{d N}{d D} \sim D^{-q}</math> with ''q'' defining the slope. The value of ''q'' is determined through observation. For irregular moons, a shallow power law (''q'' ≃ 2<!--that is, N ~ D<sup>−1</sup>-->) is observed for sizes of 10 to 100&nbsp;km,<sup>†</sup> but a steeper law (''q'' ≃ 3.5) is observed for objects smaller than 10&nbsp;km. An analysis of images taken by the [[Canada-France-Hawaii Telescope]] in 2010 shows that the power law for Jupiter's population of small retrograde satellites, down to a detection limit of ≈ 400&nbsp;m, is relatively shallow, at ''q'' ≃ 2.5. Thus it can be extrapolated that Jupiter should have {{val|600|600|300}} moons 400&nbsp;m in diameter or greater.<ref name="Ashton2020">{{cite journal |title = The Population of Kilometer-scale Retrograde Jovian Irregular Moons |first1 = Edward |last1 = Ashton |first2 = Matthew |last2 = Beaudoin |first3 = Brett |last3 = Gladman |journal = The Planetary Science Journal |author-link3 = Brett J. Gladman |date = September 2020 |volume = 1 |issue = 2 |page = 52 |doi = 10.3847/PSJ/abad95 |arxiv = 2009.03382 |bibcode = 2020PSJ.....1...52A |s2cid = 221534456 }}</ref> For comparison, the distribution of large [[Kuiper belt]] objects is much steeper (''q'' ≈ 4). That is, for every object of 1000&nbsp;km there are a thousand objects with a diameter of 100&nbsp;km, though it's unknown how far this distribution extends. The size distribution of a population may provide insights into its origin, whether through capture, collision and break-up, or accretion. <sup>†</sup><small>For every object of 100&nbsp;km, ten objects of 10&nbsp;km can be found.</small><br /> === Colours === [[File:TheIrregulars Colours.svg|thumb|300px|This diagram illustrates the differences of colour in the irregular satellites of Jupiter (red labels), Saturn (yellow) and Uranus (green). Only irregulars with known colour indices are shown. For reference, the [[Centaur (planetoid)|centaur]] [[5145 Pholus|Pholus]] and three [[classical Kuiper belt object]]s are also plotted (grey labels, size not to scale). For comparison, see also [[Centaur (planetoid)#Physical characteristics|colours of centaurs]] and [[trans-Neptunian object#Physical characteristics|KBOs]].]] The colours of irregular satellites can be studied via [[Color index|colour indices]]: simple measures of differences of the [[apparent magnitude]] of an object through [[blue]] (B), visible ''i.e.'' green-yellow (V), and [[red]] (R) [[filter (optics)|filter]]s. The observed colours of the irregular satellites vary from neutral (greyish) to reddish (but not as red as the colours of some Kuiper belt objects). {| align="right" class="wikitable" style="margin-left: 1em; margin-right: 0;" ! [[albedo]]<ref>Based on the definitions from ''Oxford Dictionary of Astronomy'', {{ISBN|0-19-211596-0}}</ref> ! neutral ! reddish ! red |- | low | '''[[C-type asteroid|C]]''' <sub>3–8%</sub> | '''[[P-type asteroid|P]]''' <sub>2–6%</sub> | '''[[D-type asteroid|D]]''' <sub>2–5%</sub> |- | medium | | '''[[M-type asteroid|M]]''' <sub>10–18%</sub> | '''[[A-type asteroid|A]]''' <sub>13–35%</sub> |- | high | | '''[[E-type asteroid|E]]''' <sub>25–60%</sub> | |} Each planet's system displays slightly different characteristics. Jupiter's irregulars are grey to slightly red, consistent with [[C-type asteroid|C]], [[P-type asteroid|P]] and [[D-type asteroid]]s.<ref name="Grav2003">{{Cite journal |arxiv = astro-ph/0301016|doi = 10.1016/j.icarus.2003.07.005|bibcode = 2003Icar..166...33G|title = Photometric survey of the irregular satellites|year = 2003|last1 = Grav|first1 = Tommy|last2 = Holman|first2 = Matthew J.|last3 = Gladman|first3 = Brett J.|last4 = Aksnes|first4 = Kaare|journal = Icarus|volume = 166|issue = 1|pages = 33–45|s2cid = 7793999}}</ref> Some groups of satellites are observed to display similar colours (see later sections). Saturn's irregulars are slightly redder than those of Jupiter. The large Uranian irregular satellites ([[Sycorax (moon)|Sycorax]] and [[Caliban (moon)|Caliban]]) are light red, whereas the smaller [[Prospero (moon)|Prospero]] and [[Setebos (moon)|Setebos]] are grey, as are the Neptunian satellites [[Nereid (moon)|Nereid]] and [[Halimede (moon)|Halimede]].<ref name="GravHolmanFraser2004">{{cite journal| doi = 10.1086/424997| last1 = Grav| first1 = Tommy| last2 = Holman| first2 = Matthew J.| author-link2 = Matthew J. Holman| last3 = Fraser| first3 = Wesley C.| date = 2004-09-20| title = Photometry of Irregular Satellites of Uranus and Neptune| journal = [[The Astrophysical Journal]]| volume = 613| issue = 1| pages = L77–L80| arxiv = astro-ph/0405605| bibcode = 2004ApJ...613L..77G| s2cid = 15706906}}</ref> === Spectra === With the current resolution, the visible and near-infrared spectra of most satellites appear featureless. So far, water ice has been inferred on Phoebe and Nereid and features attributed to aqueous alteration were found on Himalia. === Rotation === Regular satellites are usually tidally locked (that is, their orbit is [[Synchronous orbit|synchronous]] with their rotation so that they only show one face toward their parent planet). In contrast, tidal forces on the irregular satellites are negligible given their distance from the planet, and rotation periods in the range of only ten hours have been measured for the biggest moons [[Himalia (moon)|Himalia]], [[Phoebe (moon)|Phoebe]], [[Sycorax (moon)|Sycorax]], and [[Nereid (moon)|Nereid]] (to compare with their orbital periods of hundreds of days). Such rotation rates are in the same range that is typical for [[asteroid]]s. Triton, being much larger and closer to its parent planet, is tidally locked. {{clear}} == Families with a common origin == Some irregular satellites appear to orbit in 'groups', in which several satellites share similar orbits. The leading theory is that these objects constitute [[Collisional family|collisional families]], parts of a larger body that broke up. === Dynamic groupings === Simple collision models can be used to estimate the possible dispersion of the orbital parameters given a velocity impulse [[delta-v|Δ''v'']]. Applying these models to the known orbital parameters makes it possible to estimate the Δ''v'' necessary to create the observed dispersion. A Δ''v'' of tens of meters per seconds (5–50&nbsp;m/s) could result from a break-up. Dynamical groupings of irregular satellites can be identified using these criteria and the likelihood of the common origin from a break-up evaluated.<ref name="Nesvorny2004">{{cite journal |doi=10.1086/382099 |bibcode=2004AJ....127.1768N|url=http://www.boulder.swri.edu/~davidn/papers/irrbig.pdf|title=Collisional Origin of Families of Irregular Satellites|year=2004|last1=Nesvorn|first1=David|last2=Beaug|first2=Cristian|last3=Dones|first3=Luke|journal=The Astronomical Journal|volume=127|issue=3|pages=1768–1783}}</ref> When the dispersion of the orbits is too wide (i.e. it would require Δ''v'' in the order of hundreds of m/s) * either more than one collision must be assumed, i.e. the cluster should be further subdivided into groups * or significant post-collision changes, for example resulting from resonances, must be postulated. === Colour groupings === When the colours and spectra of the satellites are known, the homogeneity of these data for all the members of a given grouping is a substantial argument for a common origin. However, lack of precision in the available data often makes it difficult to draw statistically significant conclusions. In addition, the observed colours are not necessarily representative of the bulk composition of the satellite. =={{anchor|Group}} Observed groupings == === Irregular satellites of Jupiter === [[File:TheIrregulars JUPITER.svg|thumb|300px|The orbits of Jupiter's irregular satellites, showing how they cluster into groups. Satellites are represented by circles that indicate their relative sizes. An object's position on the horizontal axis shows its distance from Jupiter. Its position on the vertical axis indicates its [[orbital inclination]]. The yellow lines indicate its [[orbital eccentricity]] (i.e. the extent to which its distance from Jupiter varies during its orbit).]] Typically, the following groupings are listed (dynamically tight groups displaying homogenous colours are listed in '''bold''') * [[Retrograde and prograde motion|Prograde]] satellites ** The '''[[Himalia group]]''' shares an average inclination of 28°. They are confined dynamically (Δ''v'' ≈ 150&nbsp;m/s). They are homogenous at visible wavelengths (having neutral colours similar to those of [[C-type asteroid]]s) and at near [[infrared]] wavelengths<ref name="Grav2004">{{Cite journal |arxiv = astro-ph/0312571|doi = 10.1086/420881|bibcode = 2004ApJ...605L.141G|title = Near-Infrared Photometry of the Irregular Satellites of Jupiter and Saturn|year = 2004|last1 = Grav|first1 = Tommy|last2 = Holman|first2 = Matthew J.|journal = The Astrophysical Journal|volume = 605|issue = 2|pages = L141–L144|s2cid = 15665146}}</ref> ** The prograde satellites [[Themisto (moon)|Themisto]], [[Carpo (moon)|Carpo]], and [[Valetudo (moon)|Valetudo]] are not part of any known group. [[File:Animation of Himalia orbit around Jupiter.gif|thumb|left|Animation of Himalia's orbit.<br>{{legend2|RoyalBlue| Jupiter}}{{·}}{{legend2| Magenta | Himalia}}{{·}}{{legend2|Cyan|Callisto}}]] * [[Retrograde motion|Retrograde]] satellites ** The '''[[Carme group]]''' shares an average inclination of 165°. It is dynamically tight (5 < Δ''v'' < 50&nbsp;m/s). It is very homogenous in colour, each member displaying light red colouring consistent with a [[D-type asteroid]] progenitor. ** The '''[[Ananke group]]''' shares an average inclination of 148°. It shows little dispersion of orbital parameters (15 < Δ''v'' < 80&nbsp;m/s). [[Ananke (moon)|Ananke]] itself appears light red but the other group members are grey. ** The [[Pasiphae group]] is very dispersed. [[Pasiphae (moon)|Pasiphae]] itself appears to be grey, whereas other members ([[Callirrhoe (moon)|Callirrhoe]], [[Megaclite (moon)|Megaclite]]) are light red. [[Sinope (moon)|Sinope]], sometimes included into the Pasiphae group, is red and given the difference in inclination, it could be captured independently.<ref name="Grav2003" /><ref name="SheppardJewitt2003">{{Cite journal | last1 = Sheppard | first1 = S. S. | last2 = Jewitt | first2 = D. C. | doi = 10.1038/nature01584 | title = An abundant population of small irregular satellites around Jupiter | journal = Nature | volume = 423 | issue = 6937 | pages = 261–263 | year = 2003 | pmid = 12748634| url = http://www.dtm.ciw.edu/users/sheppard/sheppardjupiter.pdf|bibcode = 2003Natur.423..261S | s2cid = 4424447 }}</ref> Pasiphae and Sinope are also trapped in [[secular resonance]]s with Jupiter.<ref name="Nesvorny2003" /><ref name="Nesvorny2004" /> {{clear}} === Irregular satellites of Saturn === [[File:TheIrregulars SATURN.svg|thumb|300px|Irregular satellites of Saturn, showing how they cluster into groups. For explanation, see Jupiter diagram]] The following groupings are commonly listed for Saturn's satellites: * Prograde satellites ** The '''[[Gallic group]]''' shares an average inclination of 34°. Their orbits are dynamically tight (Δ''v'' ≈ 50&nbsp;m/s), and they are light red in colour; the colouring is homogenous at both visible and near infra-red wavelengths.<ref name="Grav2004" /> ** The [[Inuit group]] shares an average inclination of 46°. Their orbits are widely dispersed (Δ''v'' ≈ 350&nbsp;m/s) but they are physically homogenous, sharing a light red colouring. * Retrograde satellites ** The [[Norse group]] is defined mostly for naming purposes; the orbital parameters are very widely dispersed. Sub-divisions have been investigated, including *** The [[Phoebe (moon)|Phoebe]] group shares an average inclination of 174°; this sub-group too is widely dispersed, and may be further divided into at least two sub-sub-groups *** The [[Skathi (moon)|Skathi]] group is a possible sub-group of the Norse group {{clear}} <gallery mode=packed heights=180px> File:Animation of Saturn's Inuit group of satellites.gif|Animation of Saturn's Inuit group of satellites<br>{{legend2|RoyalBlue| [[Kiviuq (moon)|Kiviuq]]}}{{·}}{{legend2|Lime| [[Ijiraq (moon)|Ijiraq]]}}{{·}}{{legend2|Gold| [[Paaliaq]]}}{{·}}{{legend2|OrangeRed| [[Siarnaq]]}}{{·}}{{legend2|Cyan|[[Tarqeq]]}} File:Animation of Phoebe orbit around Saturn.gif|Animation of Phoebe's orbit.<br>{{legend2|RoyalBlue| Saturn}}{{·}}{{legend2| Magenta | Phoebe}}{{·}}{{legend2|Cyan|Titan}} </gallery> === Irregular satellites of Uranus and Neptune === [[File:TheIrregulars NEPTUNE URANUS.svg|thumb|300px|Irregular satellites of Uranus (green) and Neptune (blue) (excluding Triton). For explanation, see Jupiter diagram]] {| align="right" class="wikitable" style="margin-left: 1em; margin-right: 0;" ! Planet ! r<sub>min</sub><ref name="Sheppard2006" /> |- | Jupiter | align="right" | 1.5&nbsp;km |- | Saturn | align="right" | 3&nbsp;km |- | Uranus | align="right" | 7&nbsp;km |- | Neptune | align="right" | 16&nbsp;km |} According to current knowledge, the number of irregular satellites orbiting Uranus and Neptune is smaller than that of Jupiter and Saturn. However, it is thought that this is simply a result of observational difficulties due to the greater distance of Uranus and Neptune. The table at right shows the minimum [[radius]] (r<sub>min</sub>) of satellites that can be detected with current technology, assuming an [[albedo]] of 0.04; thus, there are almost certainly small Uranian and Neptunian moons that cannot yet be seen. Due to the smaller numbers, statistically significant conclusions about the groupings are difficult. A single origin for the retrograde irregulars of Uranus seems unlikely given a dispersion of the orbital parameters that would require high impulse (Δ''v'' ≈ 300&nbsp;km), implying a large diameter of the impactor (395&nbsp;km), which is incompatible in turn with the size distribution of the fragments. Instead, the existence of two groupings has been speculated:<ref name="Grav2003" /> * [[Caliban (moon)|Caliban]] group * [[Sycorax (moon)|Sycorax]] group These two groups are distinct (with 3σ confidence) in their distance from Uranus and in their eccentricity.<ref name="SheppardUranus2005">{{Cite journal | last1 = Sheppard | first1 = S. S. | last2 = Jewitt | first2 = D. | last3 = Kleyna | first3 = J. | title = An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness | doi = 10.1086/426329 | journal = The Astronomical Journal | volume = 129 | issue = 1 | pages = 518–525 | year = 2005 |arxiv = astro-ph/0410059 |bibcode = 2005AJ....129..518S | s2cid = 18688556 }}</ref> However, these groupings are not directly supported by the observed colours: Caliban and Sycorax appear light red, whereas the smaller moons are grey.<ref name="GravHolmanFraser2004" /> For Neptune, a possible common origin of [[Psamathe (moon)|Psamathe]] and [[Neso (moon)|Neso]] has been noted.<ref name="SheppardJewittKleyna2006">{{cite journal| doi = 10.1086/504799| last1 = Sheppard| first1 = Scott S.| author-link1 = Scott S. Sheppard| last2 = Jewitt| first2 = David C.| author-link2 = David C. Jewitt| last3 = Kleyna| first3 = Jan| author-link3 = Jan Kleyna| year = 2006| title = A Survey for "Normal" Irregular Satellites around Neptune: Limits to Completeness| journal = The Astronomical Journal| volume = 132| issue = 1| pages = 171–176| bibcode = 2006AJ....132..171S| arxiv = astro-ph/0604552| s2cid = 154011}}</ref> Given the similar (grey) colours, it was also suggested that [[Halimede (moon)|Halimede]] could be a fragment of Nereid.<ref name="GravHolmanFraser2004" /> The two satellites have had a very high probability (41%) of collision over the age of the solar system.<ref name="HolmanKavelaarsGrav2004">{{cite journal| doi = 10.1038/nature02832| last1 = Holman| first1 = M. J.| author-link = Matthew J. Holman| last2 = Kavelaars| first2 = J. J.| author-link2 = John J. Kavelaars| last3 = Grav| first3 = T.| display-authors = 3| year = 2004| last4 = Gladman| first4 = B. J.| author-link4 = Brett J. Gladman| last5 = Fraser| first5 = W. C.| last6 = Milisavljevic| first6 = D.| last7 = Nicholson| first7 = P. D.| last8 = Burns| first8 = J. A.| last9 = Carruba| first9 = V.| title = Discovery of five irregular moons of Neptune| journal = Nature| volume = 430| issue = 7002| pages = 865–867| pmid = 15318214| bibcode = 2004Natur.430..865H| s2cid = 4412380| url = https://www.cfa.harvard.edu/~mholman/nature_final.pdf| access-date = 24 October 2011}}</ref> == Exploration == [[File:Himalia.png|thumb|Distant ''Cassini'' image of Himalia]] To date, the only irregular satellites to have been visited by a spacecraft are [[Triton (moon)|Triton]] and [[Phoebe (moon)|Phoebe]], the largest of Neptune's and Saturn's irregulars respectively. Triton was imaged by ''[[Voyager 2]]'' in 1989 and Phoebe by the ''[[Cassini probe|Cassini]]'' probe in 2004. ''Voyager'' 2 also captured a distant image of Neptune's [[Nereid (moon)|Nereid]] in 1989, and ''Cassini'' captured a distant, low-resolution image of Jupiter's [[Himalia (moon)|Himalia]] in 2000. ''[[New Horizons]]'' captured low-resolution images of Jupiter's Himalia and [[Elara (moon)|Elara]] in 2007. There are no spacecraft planned to visit any irregular satellites in the future. {{clear}} == Gallery == <gallery mode=packed heights=200px style="text-align:left"> File:Jupiter irregular moon orbits Jan 2021.png|71 irregular moons of Jupiter (with Callisto for comparison) File:Saturn irregular moon orbits Jan 2021 cropped.png|58 irregular moons of Saturn (with Iapetus for comparison) File:Uranus irregular moon orbits Jan 2021.png|9 irregular moons of Uranus File:Neptune irregular moon orbits Jan 2021.png|6 irregular moons of Neptune (excluding Triton) </gallery> == References == {{reflist|2}} == External links == * [http://www2.ess.ucla.edu/~jewitt/irregulars.html David Jewitt's pages] * Discovery circumstances [http://ssd.jpl.nasa.gov/?sat_discovery from JPL] * Mean orbital elements [http://ssd.jpl.nasa.gov/?sat_elem from JPL] * [http://www.minorplanetcenter.org/iau/NatSats/NaturalSatellites.html MPC: Natural Satellites Ephemeris Service] * Tilmann Denk: Outer Moons of [https://tilmanndenk.de/outerjovianmoons/ Jupiter] and [https://tilmanndenk.de/outersaturnianmoons/ Saturn] {{Solar System moons (compact)}} {{DEFAULTSORT:Irregular Moon}} [[Category:Irregular satellites| ]] [[Category:Moons]] [[Category:Orbits]]'
Unified diff of changes made by edit (edit_diff)
'@@ -1,8 +1,8 @@ -{{short description|Captured satellite following an irregular orbit}} -{{See also|Asteroid capture}} -[[File:TheIrregulars.svg|thumb|300px|Irregular satellites of Jupiter (red), Saturn (yellow), Uranus (green) and Neptune (blue) (excluding Triton). The horizontal axis shows their distance from the planet ([[semi-major axis]]) expressed as a fraction of the planet's [[Hill sphere]]'s radius. The vertical axis shows their [[orbital inclination]]. Points or circles represent their relative sizes. Data as of August 2006.]] -In [[astronomy]], an '''irregular moon''', '''irregular satellite''' or '''irregular natural satellite''' is a [[natural satellite]] following a distant, [[orbital inclination|inclined]], and often [[orbital eccentricity|eccentric]] and [[Retrograde and prograde motion|retrograde orbit]]. They have been captured by their parent planet, unlike [[regular satellite]]s, which formed in orbit around them. Irregular moons have a stable orbit, unlike [[temporary satellite]]s which often have similarly irregular orbits but will eventually depart. The term does not refer to shape as [[Triton (moon)|Triton]] is a round moon, but is considered irregular due to its orbit. +{Hjtktkkkrktktktkndndn -As of November 2021, 147 irregular moons are known, orbiting all four of the [[outer planet]]s ([[Jupiter]], [[Saturn]], [[Uranus]] and [[Neptune]]). The largest of each planet are [[Himalia (moon)|Himalia]] of Jupiter, [[Phoebe (moon)|Phoebe]] of Saturn, [[Sycorax (moon)|Sycorax]] of Uranus, and [[Triton (moon)|Triton]] of Neptune. It is currently thought that the irregular satellites were captured from [[heliocentric orbit]]s near their current locations, shortly after the formation of their parent planet. An alternative theory, that they originated further out in the [[Kuiper belt]], is not supported by current observations. +Hello my name is panleion the 38fjjf + + +Dhndnncouple more of djfjfjDhndnndjfjfj and a == Definition == '
New page size (new_size)
31975
Old page size (old_size)
33696
Size change in edit (edit_delta)
-1721
Lines added in edit (added_lines)
[ 0 => '{Hjtktkkkrktktktkndndn', 1 => 'Hello my name is panleion the 38fjjf', 2 => '', 3 => '', 4 => 'Dhndnncouple more of djfjfjDhndnndjfjfj and a' ]
Lines removed in edit (removed_lines)
[ 0 => '{{short description|Captured satellite following an irregular orbit}}', 1 => '{{See also|Asteroid capture}}', 2 => '[[File:TheIrregulars.svg|thumb|300px|Irregular satellites of Jupiter (red), Saturn (yellow), Uranus (green) and Neptune (blue) (excluding Triton). The horizontal axis shows their distance from the planet ([[semi-major axis]]) expressed as a fraction of the planet's [[Hill sphere]]'s radius. The vertical axis shows their [[orbital inclination]]. Points or circles represent their relative sizes. Data as of August 2006.]]', 3 => 'In [[astronomy]], an '''irregular moon''', '''irregular satellite''' or '''irregular natural satellite''' is a [[natural satellite]] following a distant, [[orbital inclination|inclined]], and often [[orbital eccentricity|eccentric]] and [[Retrograde and prograde motion|retrograde orbit]]. They have been captured by their parent planet, unlike [[regular satellite]]s, which formed in orbit around them. Irregular moons have a stable orbit, unlike [[temporary satellite]]s which often have similarly irregular orbits but will eventually depart. The term does not refer to shape as [[Triton (moon)|Triton]] is a round moon, but is considered irregular due to its orbit.', 4 => 'As of November 2021, 147 irregular moons are known, orbiting all four of the [[outer planet]]s ([[Jupiter]], [[Saturn]], [[Uranus]] and [[Neptune]]). The largest of each planet are [[Himalia (moon)|Himalia]] of Jupiter, [[Phoebe (moon)|Phoebe]] of Saturn, [[Sycorax (moon)|Sycorax]] of Uranus, and [[Triton (moon)|Triton]] of Neptune. It is currently thought that the irregular satellites were captured from [[heliocentric orbit]]s near their current locations, shortly after the formation of their parent planet. An alternative theory, that they originated further out in the [[Kuiper belt]], is not supported by current observations.' ]
Parsed HTML source of the new revision (new_html)
'<div class="mw-parser-output"><p>{Hjtktkkkrktktktkndndn </p><p>Hello my name is panleion the 38fjjf </p><p><br /> Dhndnncouple more of djfjfjDhndnndjfjfj and a </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Definition"><span class="tocnumber">1</span> <span class="toctext">Definition</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Orbits"><span class="tocnumber">2</span> <span class="toctext">Orbits</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#Current_distribution"><span class="tocnumber">2.1</span> <span class="toctext">Current distribution</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Origin"><span class="tocnumber">2.2</span> <span class="toctext">Origin</span></a></li> <li class="toclevel-2 tocsection-5"><a href="#Long-term_stability"><span class="tocnumber">2.3</span> <span class="toctext">Long-term stability</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#Temporary_captures"><span class="tocnumber">2.4</span> <span class="toctext">Temporary captures</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-7"><a href="#Physical_characteristics"><span class="tocnumber">3</span> <span class="toctext">Physical characteristics</span></a> <ul> <li class="toclevel-2 tocsection-8"><a href="#Size"><span class="tocnumber">3.1</span> <span class="toctext">Size</span></a></li> <li class="toclevel-2 tocsection-9"><a href="#Colours"><span class="tocnumber">3.2</span> <span class="toctext">Colours</span></a></li> <li class="toclevel-2 tocsection-10"><a href="#Spectra"><span class="tocnumber">3.3</span> <span class="toctext">Spectra</span></a></li> <li class="toclevel-2 tocsection-11"><a href="#Rotation"><span class="tocnumber">3.4</span> <span class="toctext">Rotation</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-12"><a href="#Families_with_a_common_origin"><span class="tocnumber">4</span> <span class="toctext">Families with a common origin</span></a> <ul> <li class="toclevel-2 tocsection-13"><a href="#Dynamic_groupings"><span class="tocnumber">4.1</span> <span class="toctext">Dynamic groupings</span></a></li> <li class="toclevel-2 tocsection-14"><a href="#Colour_groupings"><span class="tocnumber">4.2</span> <span class="toctext">Colour groupings</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-15"><a href="#Observed_groupings"><span class="tocnumber">5</span> <span class="toctext">Observed groupings</span></a> <ul> <li class="toclevel-2 tocsection-16"><a href="#Irregular_satellites_of_Jupiter"><span class="tocnumber">5.1</span> <span class="toctext">Irregular satellites of Jupiter</span></a></li> <li class="toclevel-2 tocsection-17"><a href="#Irregular_satellites_of_Saturn"><span class="tocnumber">5.2</span> <span class="toctext">Irregular satellites of Saturn</span></a></li> <li class="toclevel-2 tocsection-18"><a href="#Irregular_satellites_of_Uranus_and_Neptune"><span class="tocnumber">5.3</span> <span class="toctext">Irregular satellites of Uranus and Neptune</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-19"><a href="#Exploration"><span class="tocnumber">6</span> <span class="toctext">Exploration</span></a></li> <li class="toclevel-1 tocsection-20"><a href="#Gallery"><span class="tocnumber">7</span> <span class="toctext">Gallery</span></a></li> <li class="toclevel-1 tocsection-21"><a href="#References"><span class="tocnumber">8</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-22"><a href="#External_links"><span class="tocnumber">9</span> <span class="toctext">External links</span></a></li> </ul> </div> <h2><span class="mw-headline" id="Definition">Definition</span></h2> <table align="right" class="wikitable" style="margin-left: 1em; margin-right: 0;"> <tbody><tr> <th>Planet </th> <th>r<sub>H</sub>, <a href="/enwiki/wiki/Gigametre" class="mw-redirect" title="Gigametre">10<sup>6</sup>&#160;km</a><sup id="cite_ref-Sheppard2006_1-0" class="reference"><a href="#cite_note-Sheppard2006-1">&#91;1&#93;</a></sup> </th> <th>r<sub>min</sub>,&#160;km<sup id="cite_ref-Sheppard2006_1-1" class="reference"><a href="#cite_note-Sheppard2006-1">&#91;1&#93;</a></sup> </th> <th>Number known </th></tr> <tr> <td>Jupiter </td> <td>55 </td> <td>1.5 </td> <td>72 </td></tr> <tr> <td>Saturn </td> <td>69 </td> <td>3 </td> <td>59 </td></tr> <tr> <td>Uranus </td> <td>73 </td> <td>7 </td> <td>9 </td></tr> <tr> <td>Neptune </td> <td>116 </td> <td>16 </td> <td>7 (including Triton) </td></tr></tbody></table> <p>There is no widely accepted precise definition of an irregular satellite. Informally, satellites are considered irregular if they are far enough from the planet that the <a href="/enwiki/wiki/Precession#Precession_of_planetary_orbits" title="Precession">precession</a> of their <a href="/enwiki/wiki/Orbital_plane_(astronomy)" title="Orbital plane (astronomy)">orbital plane</a> is primarily controlled by the Sun. </p><p>In practice, the satellite's <a href="/enwiki/wiki/Semi-major_axis" class="mw-redirect" title="Semi-major axis">semi-major axis</a> is compared with the radius of the planet's <a href="/enwiki/wiki/Hill_sphere" title="Hill sphere">Hill sphere</a> (that is, the sphere of its gravitational influence), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{H}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{H}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/f047471a1d1a6d3fe4f418d8c053998d3e154612" class="mwe-math-fallback-image-inline" aria-hidden="true" style="vertical-align: -0.671ex; width:2.74ex; height:2.009ex;" alt="r_{H}"/></span>. Irregular satellites have semi-major axes greater than 0.05 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{H}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{H}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/f047471a1d1a6d3fe4f418d8c053998d3e154612" class="mwe-math-fallback-image-inline" aria-hidden="true" style="vertical-align: -0.671ex; width:2.74ex; height:2.009ex;" alt="r_{H}"/></span> with <a href="/enwiki/wiki/Apoapsis" class="mw-redirect" title="Apoapsis">apoapses</a> extending as far as to 0.65 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{H}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{H}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/f047471a1d1a6d3fe4f418d8c053998d3e154612" class="mwe-math-fallback-image-inline" aria-hidden="true" style="vertical-align: -0.671ex; width:2.74ex; height:2.009ex;" alt="r_{H}"/></span>.<sup id="cite_ref-Sheppard2006_1-2" class="reference"><a href="#cite_note-Sheppard2006-1">&#91;1&#93;</a></sup> The radius of the Hill sphere is given in the adjacent table. </p><p>Earth's <a href="/enwiki/wiki/Moon" title="Moon">Moon</a> seems to be an exception: it is not usually listed as an irregular satellite even though its precession is primarily controlled by the Sun<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/enwiki/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2020)">citation needed</span></a></i>&#93;</sup> and its semi-major axis is greater than 0.05 of the radius of Earth's Hill sphere. On the other hand, Neptune's <a href="/enwiki/wiki/Triton_(moon)" title="Triton (moon)">Triton</a>, which is probably a captured object, is usually listed as irregular despite being within 0.05 of the radius of Neptune's Hill sphere. Neptune's <a href="/enwiki/wiki/Nereid_(moon)" title="Nereid (moon)">Nereid</a> and Saturn's <a href="/enwiki/wiki/Iapetus_(moon)" title="Iapetus (moon)">Iapetus</a> have semi-major axes close to 0.05 of the radius of their parent planets' Hill spheres: Nereid (with a very eccentric orbit) is usually listed as irregular, but not Iapetus. </p> <div style="clear:both;"></div> <h2><span class="mw-headline" id="Orbits">Orbits</span></h2> <h3><span class="mw-headline" id="Current_distribution">Current distribution</span></h3> <p>The orbits of the known irregular satellites are extremely diverse, but there are certain patterns. <a href="/enwiki/wiki/Retrograde_and_direct_motion" class="mw-redirect" title="Retrograde and direct motion">Retrograde orbits</a> are far more common (83%) than prograde orbits. No satellites are known with orbital inclinations higher than 55° (or smaller than 130° for retrograde satellites). In addition, some groupings can be identified, in which one large satellite shares a similar orbit with a few smaller ones. </p><p>Given their distance from the planet, the orbits of the outer satellites are highly perturbed by the Sun and their orbital elements change widely over short intervals. The semi-major axis of <a href="/enwiki/wiki/Pasiphae_(moon)" title="Pasiphae (moon)">Pasiphae</a>, for example, changes as much as 1.5 Gm in two years (single orbit), the inclination around 10°, and the eccentricity as much as 0.4 in 24 years (twice Jupiter's orbit period).<sup id="cite_ref-Carruba2000_2-0" class="reference"><a href="#cite_note-Carruba2000-2">&#91;2&#93;</a></sup> Consequently, <i>mean</i> orbital elements (averaged over time) are used to identify the groupings rather than <a href="/enwiki/wiki/Osculating_orbit" title="Osculating orbit">osculating elements</a> at the given date. (Similarly, the <a href="/enwiki/wiki/Proper_orbital_elements" title="Proper orbital elements">proper orbital elements</a> are used to determine the <a href="/enwiki/wiki/Asteroid_family" title="Asteroid family">families of asteroids</a>.) </p> <h3><span class="mw-headline" id="Origin">Origin</span></h3> <style data-mw-deduplicate="TemplateStyles:r1033289096">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/enwiki/wiki/Triton_(moon)#Capture" title="Triton (moon)">Triton (moon) §&#160;Capture</a></div> <p>Irregular satellites have been captured from heliocentric orbits. (Indeed, it appears that the irregular moons of the giant planets, the <a href="/enwiki/wiki/Trojan_asteroid" class="mw-redirect" title="Trojan asteroid">Jovian</a> and <a href="/enwiki/wiki/Neptune_Trojan" class="mw-redirect" title="Neptune Trojan">Neptunian trojans</a>, and grey <a href="/enwiki/wiki/Kuiper_belt" title="Kuiper belt">Kuiper belt</a> objects have a similar origin.<sup id="cite_ref-Nep_3-0" class="reference"><a href="#cite_note-Nep-3">&#91;3&#93;</a></sup>) For this to occur, at least one of three things needs to have happened: </p> <ul><li>energy dissipation (e.g. in interaction with the primordial gas cloud)</li> <li>a substantial (40%) extension of the planet's <a href="/enwiki/wiki/Hill_sphere" title="Hill sphere">Hill sphere</a> in a brief period of time (thousands of years)</li> <li>a transfer of energy in a <a href="/enwiki/wiki/Three-body_interaction" class="mw-redirect" title="Three-body interaction">three-body interaction</a>. This could involve: <ul><li>a collision (or close encounter) of an incoming body and a satellite, resulting in the incoming body losing energy and being captured.</li> <li>a close encounter between an incoming binary object and the planet (or possibly an existing moon), resulting in one component of the binary being captured. Such a route has been suggested as most likely for <a href="/enwiki/wiki/Triton_(moon)" title="Triton (moon)">Triton</a>.<sup id="cite_ref-Agnor06_4-0" class="reference"><a href="#cite_note-Agnor06-4">&#91;4&#93;</a></sup></li></ul></li></ul> <p>After the capture, some of the satellites could break up leading to <a href="#Families_with_a_common_origin">groupings</a> of smaller moons following similar orbits. <a href="/enwiki/wiki/Orbital_resonance" title="Orbital resonance">Resonances</a> could further modify the orbits making these groupings less recognizable. </p> <h3><span class="mw-headline" id="Long-term_stability">Long-term stability</span></h3> <div class="thumb tright"><div class="thumbinner" style="width:152px;"><a href="/enwiki/wiki/File:Phoebe_cassini.jpg" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/3/32/Phoebe_cassini.jpg/150px-Phoebe_cassini.jpg" decoding="async" width="150" height="218" class="thumbimage" data-file-width="813" data-file-height="1184" /></a> <div class="thumbcaption"><div class="magnify"><a href="/enwiki/wiki/File:Phoebe_cassini.jpg" class="internal" title="Enlarge"></a></div><a href="/enwiki/wiki/Phoebe_(moon)" title="Phoebe (moon)">Phoebe</a>, Saturn's largest irregular satellite</div></div></div> <p>The current orbits of the irregular moons are stable, in spite of substantial perturbations near the <a href="/enwiki/wiki/Apocenter" class="mw-redirect" title="Apocenter">apocenter</a>.<sup id="cite_ref-Nesvorny2003_5-0" class="reference"><a href="#cite_note-Nesvorny2003-5">&#91;5&#93;</a></sup> The cause of this stability in a number of irregulars is the fact that they orbit with a <a href="/enwiki/wiki/Secular_resonance" title="Secular resonance">secular</a> or <a href="/enwiki/wiki/Kozai_mechanism" title="Kozai mechanism">Kozai resonance</a>.<sup id="cite_ref-Burns2004_6-0" class="reference"><a href="#cite_note-Burns2004-6">&#91;6&#93;</a></sup> </p><p>In addition, simulations indicate the following conclusions: </p> <ul><li>Orbits with inclinations between 50° and 130° are very unstable: their eccentricity increases quickly resulting in the satellite being lost<sup id="cite_ref-Carruba2000_2-1" class="reference"><a href="#cite_note-Carruba2000-2">&#91;2&#93;</a></sup></li> <li>Retrograde orbits are more stable than prograde (stable retrograde orbits can be found further from the planet)</li></ul> <p>Increasing eccentricity results in smaller pericenters and large apocenters. The satellites enter the zone of the regular (larger) moons and are lost or ejected via collision and close encounters. Alternatively, the increasing perturbations by the Sun at the growing apocenters push them beyond the Hill sphere. </p><p>Retrograde satellites can be found further from the planet than prograde ones. Detailed numerical integrations have shown this asymmetry. The limits are a complicated function of the inclination and eccentricity, but in general, prograde orbits with semi-major axes up to 0.47 r<sub>H</sub> (Hill sphere radius) can be stable, whereas for retrograde orbits stability can extend out to 0.67 r<sub>H</sub>. </p><p>The boundary for the semimajor axis is surprisingly sharp for the prograde satellites. A satellite on a prograde, circular orbit (inclination=0°) placed at 0.5 r<sub>H</sub> would leave Jupiter in as little as forty years. The effect can be explained by so-called <i>evection resonance</i>. The apocenter of the satellite, where the planet's grip on the moon is at its weakest, gets locked in resonance with the position of the Sun. The effects of the perturbation accumulate at each passage pushing the satellite even further outwards.<sup id="cite_ref-Nesvorny2003_5-1" class="reference"><a href="#cite_note-Nesvorny2003-5">&#91;5&#93;</a></sup> </p><p>The asymmetry between the prograde and retrograde satellites can be explained very intuitively by the <a href="/enwiki/wiki/Coriolis_acceleration" class="mw-redirect" title="Coriolis acceleration">Coriolis acceleration</a> in the <a href="/enwiki/wiki/Rotating_frame" class="mw-redirect" title="Rotating frame">frame rotating</a> with the planet. For the prograde satellites the acceleration points outward and for the retrograde it points inward, stabilising the satellite.<sup id="cite_ref-HamBurns91_7-0" class="reference"><a href="#cite_note-HamBurns91-7">&#91;7&#93;</a></sup> </p> <h3><span class="mw-headline" id="Temporary_captures">Temporary captures</span></h3> <p>The capture of an asteroid from a heliocentric orbit isn't always permanent. According to simulations, <a href="/enwiki/wiki/Temporary_satellite" title="Temporary satellite">temporary satellites</a> should be a common phenomenon.<sup id="cite_ref-Carlisle_8-0" class="reference"><a href="#cite_note-Carlisle-8">&#91;8&#93;</a></sup><sup id="cite_ref-Fedorets_9-0" class="reference"><a href="#cite_note-Fedorets-9">&#91;9&#93;</a></sup> The only observed examples are <span class="nowrap"><a href="/enwiki/wiki/2006_RH120" title="2006 RH120">2006 RH<span style="position: relative; top: 0.3em;"><span style="font-size:80%;">120</span></span></a></span> and <span class="nowrap"><a href="/enwiki/wiki/2020_CD3" title="2020 CD3">2020 CD<span style="position: relative; top: 0.3em;"><span style="font-size:80%;">3</span></span></a></span>, which were temporary satellites of <a href="/enwiki/wiki/Earth" title="Earth">Earth</a> discovered in 2006 and 2020, respectively.<sup id="cite_ref-Shefford_10-0" class="reference"><a href="#cite_note-Shefford-10">&#91;10&#93;</a></sup><sup id="cite_ref-Sinott_11-0" class="reference"><a href="#cite_note-Sinott-11">&#91;11&#93;</a></sup><sup id="cite_ref-MPEC-2020-D104_12-0" class="reference"><a href="#cite_note-MPEC-2020-D104-12">&#91;12&#93;</a></sup> </p> <h2><span class="mw-headline" id="Physical_characteristics">Physical characteristics</span></h2> <table role="presentation" class="mbox-small" style="background-color:#f9f9f9;border:1px solid #aaa;color:#000"> <tbody><tr><td colspan="2" class="mbox-text" style="text-align:center"> <b>Comparative masses of largest irregular moons + Amalthea</b></td></tr> <tr> <td style="width:1px"></td> <td class="mbox-text plainlist"><style data-mw-deduplicate="TemplateStyles:r1039153519">@media all and (max-width:720px){body.skin-minerva .mw-parser-output .mw-graph{min-width:100%!important;max-width:100%;overflow-x:auto;overflow-y:visible}}.mw-parser-output .mw-graph-img{width:inherit;height:inherit}</style><div class="mw-graph mw-graph-always mw-graph-nofallback" style="min-width:100px;min-height:100px" data-graph-id="2ee17bceb4c8416bab6d1fe146383a4de5e11f4a"></div></td></tr> <tr><td colspan="2" class="mbox-text">Comparative masses of the largest irregular moons. Values are ×10<sup>18</sup>&#160;kg. One at each outer planet is &gt; 1<span style="margin:0 .15em 0 .25em">×</span>10<sup><span class="nowrap"><span data-sort-value="7001180000000000000♠"></span>18</span></sup>&#160;kg. Sycorax and Nereid are estimated, not measured; Nereid may not be a captured body. Jupiter's largest inner moon Amalthea is added for comparison. Mars's moons Phobos and Deimos would not be visible at this scale. Triton is ignored, as it has about 800 times the mass of Nereid and would completely dominate the picture.</td></tr> </tbody></table> <h3><span class="mw-headline" id="Size">Size</span></h3> <div class="thumb tright"><div class="thumbinner" style="width:222px;"><a href="/enwiki/wiki/File:TheKuiperBelt_PowerLaw2.svg" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/f/fa/TheKuiperBelt_PowerLaw2.svg/220px-TheKuiperBelt_PowerLaw2.svg.png" decoding="async" width="220" height="220" class="thumbimage" srcset="/upwiki/wikipedia/commons/thumb/f/fa/TheKuiperBelt_PowerLaw2.svg/330px-TheKuiperBelt_PowerLaw2.svg.png 1.5x, /upwiki/wikipedia/commons/thumb/f/fa/TheKuiperBelt_PowerLaw2.svg/440px-TheKuiperBelt_PowerLaw2.svg.png 2x" data-file-width="500" data-file-height="500" /></a> <div class="thumbcaption"><div class="magnify"><a href="/enwiki/wiki/File:TheKuiperBelt_PowerLaw2.svg" class="internal" title="Enlarge"></a></div>The power law for the size distribution of objects in the Kuiper belt, where <i>q</i> ≈ 4 and thus N ~ D<sup>−3</sup>. That is, for every Kuiper beld object of a particular size, there are approximately 8 times as many objects half that size and a thousands times as many objects one-tenth that size.</div></div></div> <p>Because objects of a given size are more difficult to see the greater their distance from Earth, the known irregular satellites of Uranus and Neptune are larger than those of Jupiter and Saturn; smaller ones probably exist but have not yet been observed. Bearing this observational bias in mind, the size distribution of irregular satellites appears to be similar for all four giant planets. </p><p>The size distribution of asteroids and many similar populations can be expressed as a <a href="/enwiki/wiki/Power_law" title="Power law">power law</a>: there are many more small objects than large ones, and the smaller the size, the more numerous the object. The mathematical relation expressing the number of objects, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/ddb851f080941b78bd68dd1716dee13e010e1595" class="mwe-math-fallback-image-inline" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:2.451ex; height:2.176ex;" alt="N\,\!"/></span>, with a diameter smaller than a particular size, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/6389218f226c4cab8def75a7c16e52ff52e467d4" class="mwe-math-fallback-image-inline" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:2.311ex; height:2.176ex;" alt="D\,\!"/></span>, is approximated as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dN}{dD}}\sim D^{-q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>N</mi> </mrow> <mrow> <mi>d</mi> <mi>D</mi> </mrow> </mfrac> </mrow> <mo>&#x223C;<!-- ∼ --></mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dN}{dD}}\sim D^{-q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/9c594f89e46cb10da20a6a4e821c8b1724e45e33" class="mwe-math-fallback-image-inline" aria-hidden="true" style="vertical-align: -2.005ex; width:11.405ex; height:5.509ex;" alt="{\frac {dN}{dD}}\sim D^{{-q}}"/></span> with <i>q</i> defining the slope.</dd></dl> <p>The value of <i>q</i> is determined through observation. </p><p>For irregular moons, a shallow power law (<i>q</i> ≃ 2) is observed for sizes of 10 to 100&#160;km,<sup>†</sup> but a steeper law (<i>q</i> ≃ 3.5) is observed for objects smaller than 10&#160;km. An analysis of images taken by the <a href="/enwiki/wiki/Canada-France-Hawaii_Telescope" class="mw-redirect" title="Canada-France-Hawaii Telescope">Canada-France-Hawaii Telescope</a> in 2010 shows that the power law for Jupiter's population of small retrograde satellites, down to a detection limit of ≈ 400&#160;m, is relatively shallow, at <i>q</i> ≃ 2.5. Thus it can be extrapolated that Jupiter should have <span class="nowrap"><span data-sort-value="7002600000000000000♠"></span>600<span style="margin-left:0.3em;"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:85%;text-align:right;">+600<br />−300</span></span></span> moons 400&#160;m in diameter or greater.<sup id="cite_ref-Ashton2020_13-0" class="reference"><a href="#cite_note-Ashton2020-13">&#91;13&#93;</a></sup> </p><p>For comparison, the distribution of large <a href="/enwiki/wiki/Kuiper_belt" title="Kuiper belt">Kuiper belt</a> objects is much steeper (<i>q</i> ≈ 4). That is, for every object of 1000&#160;km there are a thousand objects with a diameter of 100&#160;km, though it's unknown how far this distribution extends. The size distribution of a population may provide insights into its origin, whether through capture, collision and break-up, or accretion. </p><p><sup>†</sup><small>For every object of 100&#160;km, ten objects of 10&#160;km can be found.</small><br /> </p> <h3><span class="mw-headline" id="Colours">Colours</span></h3> <div class="thumb tright"><div class="thumbinner" style="width:302px;"><a href="/enwiki/wiki/File:TheIrregulars_Colours.svg" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/e/e9/TheIrregulars_Colours.svg/300px-TheIrregulars_Colours.svg.png" decoding="async" width="300" height="300" class="thumbimage" srcset="/upwiki/wikipedia/commons/thumb/e/e9/TheIrregulars_Colours.svg/450px-TheIrregulars_Colours.svg.png 1.5x, /upwiki/wikipedia/commons/thumb/e/e9/TheIrregulars_Colours.svg/600px-TheIrregulars_Colours.svg.png 2x" data-file-width="300" data-file-height="300" /></a> <div class="thumbcaption"><div class="magnify"><a href="/enwiki/wiki/File:TheIrregulars_Colours.svg" class="internal" title="Enlarge"></a></div>This diagram illustrates the differences of colour in the irregular satellites of Jupiter (red labels), Saturn (yellow) and Uranus (green). Only irregulars with known colour indices are shown. For reference, the <a href="/enwiki/wiki/Centaur_(planetoid)" class="mw-redirect" title="Centaur (planetoid)">centaur</a> <a href="/enwiki/wiki/5145_Pholus" title="5145 Pholus">Pholus</a> and three <a href="/enwiki/wiki/Classical_Kuiper_belt_object" title="Classical Kuiper belt object">classical Kuiper belt objects</a> are also plotted (grey labels, size not to scale). For comparison, see also <a href="/enwiki/wiki/Centaur_(planetoid)#Physical_characteristics" class="mw-redirect" title="Centaur (planetoid)">colours of centaurs</a> and <a href="/enwiki/wiki/Trans-Neptunian_object#Physical_characteristics" title="Trans-Neptunian object">KBOs</a>.</div></div></div> <p>The colours of irregular satellites can be studied via <a href="/enwiki/wiki/Color_index" title="Color index">colour indices</a>: simple measures of differences of the <a href="/enwiki/wiki/Apparent_magnitude" title="Apparent magnitude">apparent magnitude</a> of an object through <a href="/enwiki/wiki/Blue" title="Blue">blue</a> (B), visible <i>i.e.</i> green-yellow (V), and <a href="/enwiki/wiki/Red" title="Red">red</a> (R) <a href="/enwiki/wiki/Filter_(optics)" class="mw-redirect" title="Filter (optics)">filters</a>. The observed colours of the irregular satellites vary from neutral (greyish) to reddish (but not as red as the colours of some Kuiper belt objects). </p> <table align="right" class="wikitable" style="margin-left: 1em; margin-right: 0;"> <tbody><tr> <th><a href="/enwiki/wiki/Albedo" title="Albedo">albedo</a><sup id="cite_ref-14" class="reference"><a href="#cite_note-14">&#91;14&#93;</a></sup> </th> <th>neutral </th> <th>reddish </th> <th>red </th></tr> <tr> <td>low </td> <td><b><a href="/enwiki/wiki/C-type_asteroid" title="C-type asteroid">C</a></b> <sub>3–8%</sub> </td> <td><b><a href="/enwiki/wiki/P-type_asteroid" title="P-type asteroid">P</a></b> <sub>2–6%</sub> </td> <td><b><a href="/enwiki/wiki/D-type_asteroid" title="D-type asteroid">D</a></b> <sub>2–5%</sub> </td></tr> <tr> <td>medium </td> <td> </td> <td><b><a href="/enwiki/wiki/M-type_asteroid" title="M-type asteroid">M</a></b> <sub>10–18%</sub> </td> <td><b><a href="/enwiki/wiki/A-type_asteroid" title="A-type asteroid">A</a></b> <sub>13–35%</sub> </td></tr> <tr> <td>high </td> <td> </td> <td><b><a href="/enwiki/wiki/E-type_asteroid" title="E-type asteroid">E</a></b> <sub>25–60%</sub> </td> <td> </td></tr></tbody></table> <p>Each planet's system displays slightly different characteristics. Jupiter's irregulars are grey to slightly red, consistent with <a href="/enwiki/wiki/C-type_asteroid" title="C-type asteroid">C</a>, <a href="/enwiki/wiki/P-type_asteroid" title="P-type asteroid">P</a> and <a href="/enwiki/wiki/D-type_asteroid" title="D-type asteroid">D-type asteroids</a>.<sup id="cite_ref-Grav2003_15-0" class="reference"><a href="#cite_note-Grav2003-15">&#91;15&#93;</a></sup> Some groups of satellites are observed to display similar colours (see later sections). Saturn's irregulars are slightly redder than those of Jupiter. </p><p>The large Uranian irregular satellites (<a href="/enwiki/wiki/Sycorax_(moon)" title="Sycorax (moon)">Sycorax</a> and <a href="/enwiki/wiki/Caliban_(moon)" title="Caliban (moon)">Caliban</a>) are light red, whereas the smaller <a href="/enwiki/wiki/Prospero_(moon)" title="Prospero (moon)">Prospero</a> and <a href="/enwiki/wiki/Setebos_(moon)" title="Setebos (moon)">Setebos</a> are grey, as are the Neptunian satellites <a href="/enwiki/wiki/Nereid_(moon)" title="Nereid (moon)">Nereid</a> and <a href="/enwiki/wiki/Halimede_(moon)" title="Halimede (moon)">Halimede</a>.<sup id="cite_ref-GravHolmanFraser2004_16-0" class="reference"><a href="#cite_note-GravHolmanFraser2004-16">&#91;16&#93;</a></sup> </p> <h3><span class="mw-headline" id="Spectra">Spectra</span></h3> <p>With the current resolution, the visible and near-infrared spectra of most satellites appear featureless. So far, water ice has been inferred on Phoebe and Nereid and features attributed to aqueous alteration were found on Himalia. </p> <h3><span class="mw-headline" id="Rotation">Rotation</span></h3> <p>Regular satellites are usually tidally locked (that is, their orbit is <a href="/enwiki/wiki/Synchronous_orbit" title="Synchronous orbit">synchronous</a> with their rotation so that they only show one face toward their parent planet). In contrast, tidal forces on the irregular satellites are negligible given their distance from the planet, and rotation periods in the range of only ten hours have been measured for the biggest moons <a href="/enwiki/wiki/Himalia_(moon)" title="Himalia (moon)">Himalia</a>, <a href="/enwiki/wiki/Phoebe_(moon)" title="Phoebe (moon)">Phoebe</a>, <a href="/enwiki/wiki/Sycorax_(moon)" title="Sycorax (moon)">Sycorax</a>, and <a href="/enwiki/wiki/Nereid_(moon)" title="Nereid (moon)">Nereid</a> (to compare with their orbital periods of hundreds of days). Such rotation rates are in the same range that is typical for <a href="/enwiki/wiki/Asteroid" title="Asteroid">asteroids</a>. Triton, being much larger and closer to its parent planet, is tidally locked. </p> <div style="clear:both;"></div> <h2><span class="mw-headline" id="Families_with_a_common_origin">Families with a common origin</span></h2> <p>Some irregular satellites appear to orbit in 'groups', in which several satellites share similar orbits. The leading theory is that these objects constitute <a href="/enwiki/wiki/Collisional_family" title="Collisional family">collisional families</a>, parts of a larger body that broke up. </p> <h3><span class="mw-headline" id="Dynamic_groupings">Dynamic groupings</span></h3> <p>Simple collision models can be used to estimate the possible dispersion of the orbital parameters given a velocity impulse <a href="/enwiki/wiki/Delta-v" title="Delta-v">Δ<i>v</i></a>. Applying these models to the known orbital parameters makes it possible to estimate the Δ<i>v</i> necessary to create the observed dispersion. A Δ<i>v</i> of tens of meters per seconds (5–50&#160;m/s) could result from a break-up. Dynamical groupings of irregular satellites can be identified using these criteria and the likelihood of the common origin from a break-up evaluated.<sup id="cite_ref-Nesvorny2004_17-0" class="reference"><a href="#cite_note-Nesvorny2004-17">&#91;17&#93;</a></sup> </p><p>When the dispersion of the orbits is too wide (i.e. it would require Δ<i>v</i> in the order of hundreds of m/s) </p> <ul><li>either more than one collision must be assumed, i.e. the cluster should be further subdivided into groups</li> <li>or significant post-collision changes, for example resulting from resonances, must be postulated.</li></ul> <h3><span class="mw-headline" id="Colour_groupings">Colour groupings</span></h3> <p>When the colours and spectra of the satellites are known, the homogeneity of these data for all the members of a given grouping is a substantial argument for a common origin. However, lack of precision in the available data often makes it difficult to draw statistically significant conclusions. In addition, the observed colours are not necessarily representative of the bulk composition of the satellite. </p> <h2><span class="mw-headline" id="Observed_groupings"><span class="anchor" id="Group"></span> Observed groupings</span></h2> <h3><span class="mw-headline" id="Irregular_satellites_of_Jupiter">Irregular satellites of Jupiter</span></h3> <div class="thumb tright"><div class="thumbinner" style="width:302px;"><a href="/enwiki/wiki/File:TheIrregulars_JUPITER.svg" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/f/fb/TheIrregulars_JUPITER.svg/300px-TheIrregulars_JUPITER.svg.png" decoding="async" width="300" height="300" class="thumbimage" srcset="/upwiki/wikipedia/commons/thumb/f/fb/TheIrregulars_JUPITER.svg/450px-TheIrregulars_JUPITER.svg.png 1.5x, /upwiki/wikipedia/commons/thumb/f/fb/TheIrregulars_JUPITER.svg/600px-TheIrregulars_JUPITER.svg.png 2x" data-file-width="400" data-file-height="400" /></a> <div class="thumbcaption"><div class="magnify"><a href="/enwiki/wiki/File:TheIrregulars_JUPITER.svg" class="internal" title="Enlarge"></a></div>The orbits of Jupiter's irregular satellites, showing how they cluster into groups. Satellites are represented by circles that indicate their relative sizes. An object's position on the horizontal axis shows its distance from Jupiter. Its position on the vertical axis indicates its <a href="/enwiki/wiki/Orbital_inclination" title="Orbital inclination">orbital inclination</a>. The yellow lines indicate its <a href="/enwiki/wiki/Orbital_eccentricity" title="Orbital eccentricity">orbital eccentricity</a> (i.e. the extent to which its distance from Jupiter varies during its orbit).</div></div></div> <p>Typically, the following groupings are listed (dynamically tight groups displaying homogenous colours are listed in <b>bold</b>) </p> <ul><li><a href="/enwiki/wiki/Retrograde_and_prograde_motion" title="Retrograde and prograde motion">Prograde</a> satellites <ul><li>The <b><a href="/enwiki/wiki/Himalia_group" title="Himalia group">Himalia group</a></b> shares an average inclination of 28°. They are confined dynamically (Δ<i>v</i> ≈ 150&#160;m/s). They are homogenous at visible wavelengths (having neutral colours similar to those of <a href="/enwiki/wiki/C-type_asteroid" title="C-type asteroid">C-type asteroids</a>) and at near <a href="/enwiki/wiki/Infrared" title="Infrared">infrared</a> wavelengths<sup id="cite_ref-Grav2004_18-0" class="reference"><a href="#cite_note-Grav2004-18">&#91;18&#93;</a></sup></li> <li>The prograde satellites <a href="/enwiki/wiki/Themisto_(moon)" title="Themisto (moon)">Themisto</a>, <a href="/enwiki/wiki/Carpo_(moon)" title="Carpo (moon)">Carpo</a>, and <a href="/enwiki/wiki/Valetudo_(moon)" title="Valetudo (moon)">Valetudo</a> are not part of any known group.</li></ul></li></ul> <div class="thumb tleft"><div class="thumbinner" style="width:222px;"><a href="/enwiki/wiki/File:Animation_of_Himalia_orbit_around_Jupiter.gif" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/4/40/Animation_of_Himalia_orbit_around_Jupiter.gif/220px-Animation_of_Himalia_orbit_around_Jupiter.gif" decoding="async" width="220" height="165" class="thumbimage" data-file-width="560" data-file-height="420" /></a> <div class="thumbcaption"><div class="magnify"><a href="/enwiki/wiki/File:Animation_of_Himalia_orbit_around_Jupiter.gif" class="internal" title="Enlarge"></a></div>Animation of Himalia's orbit.<br /><style data-mw-deduplicate="TemplateStyles:r981673959">.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}</style><span class="legend nowrap"><span class="legend-color" style="background-color:RoyalBlue; color:white;">&#160;</span>&#160; Jupiter</span>&#160;<b>&#183;</b>&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"/><span class="legend nowrap"><span class="legend-color" style="background-color: Magenta ; color:black;">&#160;</span>&#160; Himalia</span>&#160;<b>&#183;</b>&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"/><span class="legend nowrap"><span class="legend-color" style="background-color:Cyan; color:black;">&#160;</span>&#160;Callisto</span></div></div></div> <ul><li><a href="/enwiki/wiki/Retrograde_motion" class="mw-redirect" title="Retrograde motion">Retrograde</a> satellites <ul><li>The <b><a href="/enwiki/wiki/Carme_group" title="Carme group">Carme group</a></b> shares an average inclination of 165°. It is dynamically tight (5 &lt; Δ<i>v</i> &lt; 50&#160;m/s). It is very homogenous in colour, each member displaying light red colouring consistent with a <a href="/enwiki/wiki/D-type_asteroid" title="D-type asteroid">D-type asteroid</a> progenitor.</li> <li>The <b><a href="/enwiki/wiki/Ananke_group" title="Ananke group">Ananke group</a></b> shares an average inclination of 148°. It shows little dispersion of orbital parameters (15 &lt; Δ<i>v</i> &lt; 80&#160;m/s). <a href="/enwiki/wiki/Ananke_(moon)" title="Ananke (moon)">Ananke</a> itself appears light red but the other group members are grey.</li> <li>The <a href="/enwiki/wiki/Pasiphae_group" title="Pasiphae group">Pasiphae group</a> is very dispersed. <a href="/enwiki/wiki/Pasiphae_(moon)" title="Pasiphae (moon)">Pasiphae</a> itself appears to be grey, whereas other members (<a href="/enwiki/wiki/Callirrhoe_(moon)" title="Callirrhoe (moon)">Callirrhoe</a>, <a href="/enwiki/wiki/Megaclite_(moon)" class="mw-redirect" title="Megaclite (moon)">Megaclite</a>) are light red.</li></ul></li></ul> <p><a href="/enwiki/wiki/Sinope_(moon)" title="Sinope (moon)">Sinope</a>, sometimes included into the Pasiphae group, is red and given the difference in inclination, it could be captured independently.<sup id="cite_ref-Grav2003_15-1" class="reference"><a href="#cite_note-Grav2003-15">&#91;15&#93;</a></sup><sup id="cite_ref-SheppardJewitt2003_19-0" class="reference"><a href="#cite_note-SheppardJewitt2003-19">&#91;19&#93;</a></sup> Pasiphae and Sinope are also trapped in <a href="/enwiki/wiki/Secular_resonance" title="Secular resonance">secular resonances</a> with Jupiter.<sup id="cite_ref-Nesvorny2003_5-2" class="reference"><a href="#cite_note-Nesvorny2003-5">&#91;5&#93;</a></sup><sup id="cite_ref-Nesvorny2004_17-1" class="reference"><a href="#cite_note-Nesvorny2004-17">&#91;17&#93;</a></sup> </p> <div style="clear:both;"></div> <h3><span class="mw-headline" id="Irregular_satellites_of_Saturn">Irregular satellites of Saturn</span></h3> <div class="thumb tright"><div class="thumbinner" style="width:302px;"><a href="/enwiki/wiki/File:TheIrregulars_SATURN.svg" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/2/2c/TheIrregulars_SATURN.svg/300px-TheIrregulars_SATURN.svg.png" decoding="async" width="300" height="300" class="thumbimage" srcset="/upwiki/wikipedia/commons/thumb/2/2c/TheIrregulars_SATURN.svg/450px-TheIrregulars_SATURN.svg.png 1.5x, /upwiki/wikipedia/commons/thumb/2/2c/TheIrregulars_SATURN.svg/600px-TheIrregulars_SATURN.svg.png 2x" data-file-width="400" data-file-height="400" /></a> <div class="thumbcaption"><div class="magnify"><a href="/enwiki/wiki/File:TheIrregulars_SATURN.svg" class="internal" title="Enlarge"></a></div>Irregular satellites of Saturn, showing how they cluster into groups. For explanation, see Jupiter diagram</div></div></div> <p>The following groupings are commonly listed for Saturn's satellites: </p> <ul><li>Prograde satellites <ul><li>The <b><a href="/enwiki/wiki/Gallic_group" class="mw-redirect" title="Gallic group">Gallic group</a></b> shares an average inclination of 34°. Their orbits are dynamically tight (Δ<i>v</i> ≈ 50&#160;m/s), and they are light red in colour; the colouring is homogenous at both visible and near infra-red wavelengths.<sup id="cite_ref-Grav2004_18-1" class="reference"><a href="#cite_note-Grav2004-18">&#91;18&#93;</a></sup></li> <li>The <a href="/enwiki/wiki/Inuit_group" class="mw-redirect" title="Inuit group">Inuit group</a> shares an average inclination of 46°. Their orbits are widely dispersed (Δ<i>v</i> ≈ 350&#160;m/s) but they are physically homogenous, sharing a light red colouring.</li></ul></li> <li>Retrograde satellites <ul><li>The <a href="/enwiki/wiki/Norse_group" class="mw-redirect" title="Norse group">Norse group</a> is defined mostly for naming purposes; the orbital parameters are very widely dispersed. Sub-divisions have been investigated, including <ul><li>The <a href="/enwiki/wiki/Phoebe_(moon)" title="Phoebe (moon)">Phoebe</a> group shares an average inclination of 174°; this sub-group too is widely dispersed, and may be further divided into at least two sub-sub-groups</li> <li>The <a href="/enwiki/wiki/Skathi_(moon)" title="Skathi (moon)">Skathi</a> group is a possible sub-group of the Norse group</li></ul></li></ul></li></ul> <div style="clear:both;"></div> <ul class="gallery mw-gallery-packed"> <li class="gallerybox" style="width: 242px"><div style="width: 242px"> <div class="thumb" style="width: 240px;"><div style="margin:0px auto;"><a href="/enwiki/wiki/File:Animation_of_Saturn%27s_Inuit_group_of_satellites.gif" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/2/25/Animation_of_Saturn%27s_Inuit_group_of_satellites.gif/360px-Animation_of_Saturn%27s_Inuit_group_of_satellites.gif" decoding="async" width="240" height="180" data-file-width="560" data-file-height="420" /></a></div></div> <div class="gallerytext"> <p>Animation of Saturn's Inuit group of satellites<br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"/><span class="legend nowrap"><span class="legend-color" style="background-color:RoyalBlue; color:white;">&#160;</span>&#160; <a href="/enwiki/wiki/Kiviuq_(moon)" title="Kiviuq (moon)">Kiviuq</a></span>&#160;<b>&#183;</b>&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"/><span class="legend nowrap"><span class="legend-color" style="background-color:Lime; color:black;">&#160;</span>&#160; <a href="/enwiki/wiki/Ijiraq_(moon)" title="Ijiraq (moon)">Ijiraq</a></span>&#160;<b>&#183;</b>&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"/><span class="legend nowrap"><span class="legend-color" style="background-color:Gold; color:black;">&#160;</span>&#160; <a href="/enwiki/wiki/Paaliaq" title="Paaliaq">Paaliaq</a></span>&#160;<b>&#183;</b>&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"/><span class="legend nowrap"><span class="legend-color" style="background-color:OrangeRed; color:black;">&#160;</span>&#160; <a href="/enwiki/wiki/Siarnaq" title="Siarnaq">Siarnaq</a></span>&#160;<b>&#183;</b>&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"/><span class="legend nowrap"><span class="legend-color" style="background-color:Cyan; color:black;">&#160;</span>&#160;<a href="/enwiki/wiki/Tarqeq" title="Tarqeq">Tarqeq</a></span> </p> </div> </div></li> <li class="gallerybox" style="width: 242px"><div style="width: 242px"> <div class="thumb" style="width: 240px;"><div style="margin:0px auto;"><a href="/enwiki/wiki/File:Animation_of_Phoebe_orbit_around_Saturn.gif" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/4/4a/Animation_of_Phoebe_orbit_around_Saturn.gif/360px-Animation_of_Phoebe_orbit_around_Saturn.gif" decoding="async" width="240" height="180" data-file-width="560" data-file-height="420" /></a></div></div> <div class="gallerytext"> <p>Animation of Phoebe's orbit.<br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"/><span class="legend nowrap"><span class="legend-color" style="background-color:RoyalBlue; color:white;">&#160;</span>&#160; Saturn</span>&#160;<b>&#183;</b>&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"/><span class="legend nowrap"><span class="legend-color" style="background-color: Magenta ; color:black;">&#160;</span>&#160; Phoebe</span>&#160;<b>&#183;</b>&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959"/><span class="legend nowrap"><span class="legend-color" style="background-color:Cyan; color:black;">&#160;</span>&#160;Titan</span> </p> </div> </div></li> </ul> <h3><span class="mw-headline" id="Irregular_satellites_of_Uranus_and_Neptune">Irregular satellites of Uranus and Neptune</span></h3> <div class="thumb tright"><div class="thumbinner" style="width:302px;"><a href="/enwiki/wiki/File:TheIrregulars_NEPTUNE_URANUS.svg" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/1/1d/TheIrregulars_NEPTUNE_URANUS.svg/300px-TheIrregulars_NEPTUNE_URANUS.svg.png" decoding="async" width="300" height="300" class="thumbimage" srcset="/upwiki/wikipedia/commons/thumb/1/1d/TheIrregulars_NEPTUNE_URANUS.svg/450px-TheIrregulars_NEPTUNE_URANUS.svg.png 1.5x, /upwiki/wikipedia/commons/thumb/1/1d/TheIrregulars_NEPTUNE_URANUS.svg/600px-TheIrregulars_NEPTUNE_URANUS.svg.png 2x" data-file-width="400" data-file-height="400" /></a> <div class="thumbcaption"><div class="magnify"><a href="/enwiki/wiki/File:TheIrregulars_NEPTUNE_URANUS.svg" class="internal" title="Enlarge"></a></div>Irregular satellites of Uranus (green) and Neptune (blue) (excluding Triton). For explanation, see Jupiter diagram</div></div></div> <table align="right" class="wikitable" style="margin-left: 1em; margin-right: 0;"> <tbody><tr> <th>Planet </th> <th>r<sub>min</sub><sup id="cite_ref-Sheppard2006_1-3" class="reference"><a href="#cite_note-Sheppard2006-1">&#91;1&#93;</a></sup> </th></tr> <tr> <td>Jupiter </td> <td align="right">1.5&#160;km </td></tr> <tr> <td>Saturn </td> <td align="right">3&#160;km </td></tr> <tr> <td>Uranus </td> <td align="right">7&#160;km </td></tr> <tr> <td>Neptune </td> <td align="right">16&#160;km </td></tr></tbody></table> <p>According to current knowledge, the number of irregular satellites orbiting Uranus and Neptune is smaller than that of Jupiter and Saturn. However, it is thought that this is simply a result of observational difficulties due to the greater distance of Uranus and Neptune. The table at right shows the minimum <a href="/enwiki/wiki/Radius" title="Radius">radius</a> (r<sub>min</sub>) of satellites that can be detected with current technology, assuming an <a href="/enwiki/wiki/Albedo" title="Albedo">albedo</a> of 0.04; thus, there are almost certainly small Uranian and Neptunian moons that cannot yet be seen. </p><p>Due to the smaller numbers, statistically significant conclusions about the groupings are difficult. A single origin for the retrograde irregulars of Uranus seems unlikely given a dispersion of the orbital parameters that would require high impulse (Δ<i>v</i> ≈ 300&#160;km), implying a large diameter of the impactor (395&#160;km), which is incompatible in turn with the size distribution of the fragments. Instead, the existence of two groupings has been speculated:<sup id="cite_ref-Grav2003_15-2" class="reference"><a href="#cite_note-Grav2003-15">&#91;15&#93;</a></sup> </p> <ul><li><a href="/enwiki/wiki/Caliban_(moon)" title="Caliban (moon)">Caliban</a> group</li> <li><a href="/enwiki/wiki/Sycorax_(moon)" title="Sycorax (moon)">Sycorax</a> group</li></ul> <p>These two groups are distinct (with 3σ confidence) in their distance from Uranus and in their eccentricity.<sup id="cite_ref-SheppardUranus2005_20-0" class="reference"><a href="#cite_note-SheppardUranus2005-20">&#91;20&#93;</a></sup> However, these groupings are not directly supported by the observed colours: Caliban and Sycorax appear light red, whereas the smaller moons are grey.<sup id="cite_ref-GravHolmanFraser2004_16-1" class="reference"><a href="#cite_note-GravHolmanFraser2004-16">&#91;16&#93;</a></sup> </p><p>For Neptune, a possible common origin of <a href="/enwiki/wiki/Psamathe_(moon)" title="Psamathe (moon)">Psamathe</a> and <a href="/enwiki/wiki/Neso_(moon)" title="Neso (moon)">Neso</a> has been noted.<sup id="cite_ref-SheppardJewittKleyna2006_21-0" class="reference"><a href="#cite_note-SheppardJewittKleyna2006-21">&#91;21&#93;</a></sup> Given the similar (grey) colours, it was also suggested that <a href="/enwiki/wiki/Halimede_(moon)" title="Halimede (moon)">Halimede</a> could be a fragment of Nereid.<sup id="cite_ref-GravHolmanFraser2004_16-2" class="reference"><a href="#cite_note-GravHolmanFraser2004-16">&#91;16&#93;</a></sup> The two satellites have had a very high probability (41%) of collision over the age of the solar system.<sup id="cite_ref-HolmanKavelaarsGrav2004_22-0" class="reference"><a href="#cite_note-HolmanKavelaarsGrav2004-22">&#91;22&#93;</a></sup> </p> <h2><span class="mw-headline" id="Exploration">Exploration</span></h2> <div class="thumb tright"><div class="thumbinner" style="width:222px;"><a href="/enwiki/wiki/File:Himalia.png" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/f/fd/Himalia.png/220px-Himalia.png" decoding="async" width="220" height="162" class="thumbimage" data-file-width="735" data-file-height="540" /></a> <div class="thumbcaption"><div class="magnify"><a href="/enwiki/wiki/File:Himalia.png" class="internal" title="Enlarge"></a></div>Distant <i>Cassini</i> image of Himalia</div></div></div> <p>To date, the only irregular satellites to have been visited by a spacecraft are <a href="/enwiki/wiki/Triton_(moon)" title="Triton (moon)">Triton</a> and <a href="/enwiki/wiki/Phoebe_(moon)" title="Phoebe (moon)">Phoebe</a>, the largest of Neptune's and Saturn's irregulars respectively. Triton was imaged by <i><a href="/enwiki/wiki/Voyager_2" title="Voyager 2">Voyager 2</a></i> in 1989 and Phoebe by the <i><a href="/enwiki/wiki/Cassini_probe" class="mw-redirect" title="Cassini probe">Cassini</a></i> probe in 2004. <i>Voyager</i> 2 also captured a distant image of Neptune's <a href="/enwiki/wiki/Nereid_(moon)" title="Nereid (moon)">Nereid</a> in 1989, and <i>Cassini</i> captured a distant, low-resolution image of Jupiter's <a href="/enwiki/wiki/Himalia_(moon)" title="Himalia (moon)">Himalia</a> in 2000. <i><a href="/enwiki/wiki/New_Horizons" title="New Horizons">New Horizons</a></i> captured low-resolution images of Jupiter's Himalia and <a href="/enwiki/wiki/Elara_(moon)" title="Elara (moon)">Elara</a> in 2007. There are no spacecraft planned to visit any irregular satellites in the future. </p> <div style="clear:both;"></div> <h2><span class="mw-headline" id="Gallery">Gallery</span></h2> <ul class="gallery mw-gallery-packed" style="text-align:left"> <li class="gallerybox" style="width: 302px"><div style="width: 302px"> <div class="thumb" style="width: 300px;"><div style="margin:0px auto;"><a href="/enwiki/wiki/File:Jupiter_irregular_moon_orbits_Jan_2021.png" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/4/40/Jupiter_irregular_moon_orbits_Jan_2021.png/450px-Jupiter_irregular_moon_orbits_Jan_2021.png" decoding="async" width="300" height="200" data-file-width="2925" data-file-height="1950" /></a></div></div> <div class="gallerytext"> <p>71 irregular moons of Jupiter (with Callisto for comparison) </p> </div> </div></li> <li class="gallerybox" style="width: 302px"><div style="width: 302px"> <div class="thumb" style="width: 300px;"><div style="margin:0px auto;"><a href="/enwiki/wiki/File:Saturn_irregular_moon_orbits_Jan_2021_cropped.png" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/9/97/Saturn_irregular_moon_orbits_Jan_2021_cropped.png/450px-Saturn_irregular_moon_orbits_Jan_2021_cropped.png" decoding="async" width="300" height="200" data-file-width="2625" data-file-height="1750" /></a></div></div> <div class="gallerytext"> <p>58 irregular moons of Saturn (with Iapetus for comparison) </p> </div> </div></li> <li class="gallerybox" style="width: 302px"><div style="width: 302px"> <div class="thumb" style="width: 300px;"><div style="margin:0px auto;"><a href="/enwiki/wiki/File:Uranus_irregular_moon_orbits_Jan_2021.png" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/3/3b/Uranus_irregular_moon_orbits_Jan_2021.png/450px-Uranus_irregular_moon_orbits_Jan_2021.png" decoding="async" width="300" height="200" data-file-width="2925" data-file-height="1950" /></a></div></div> <div class="gallerytext"> <p>9 irregular moons of Uranus </p> </div> </div></li> <li class="gallerybox" style="width: 302px"><div style="width: 302px"> <div class="thumb" style="width: 300px;"><div style="margin:0px auto;"><a href="/enwiki/wiki/File:Neptune_irregular_moon_orbits_Jan_2021.png" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/f/fe/Neptune_irregular_moon_orbits_Jan_2021.png/450px-Neptune_irregular_moon_orbits_Jan_2021.png" decoding="async" width="300" height="200" data-file-width="2925" data-file-height="1950" /></a></div></div> <div class="gallerytext"> <p>6 irregular moons of Neptune (excluding Triton) </p> </div> </div></li> </ul> <h2><span class="mw-headline" id="References">References</span></h2> <style data-mw-deduplicate="TemplateStyles:r1011085734">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-2" style=""> <ol class="references"> <li id="cite_note-Sheppard2006-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sheppard2006_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sheppard2006_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Sheppard2006_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Sheppard2006_1-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1067248974">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:linear-gradient(transparent,transparent),url("/upwiki/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:linear-gradient(transparent,transparent),url("/upwiki/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:linear-gradient(transparent,transparent),url("/upwiki/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:linear-gradient(transparent,transparent),url("/upwiki/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><cite id="CITEREFSheppard2006" class="citation journal cs1">Sheppard, S. S. (2006). "Outer irregular satellites of the planets and their relationship with asteroids, comets and Kuiper Belt objects". <i>Proceedings of the International Astronomical Union</i>. <b>1</b>: 319–334. <a href="/enwiki/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//arxiv.org/abs/astro-ph/0605041">astro-ph/0605041</a></span>. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006IAUS..229..319S">2006IAUS..229..319S</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1743921305006824">10.1017/S1743921305006824</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2077114">2077114</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+International+Astronomical+Union&amp;rft.atitle=Outer+irregular+satellites+of+the+planets+and+their+relationship+with+asteroids%2C+comets+and+Kuiper+Belt+objects&amp;rft.volume=1&amp;rft.pages=319-334&amp;rft.date=2006&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0605041&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2077114%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2FS1743921305006824&amp;rft_id=info%3Abibcode%2F2006IAUS..229..319S&amp;rft.aulast=Sheppard&amp;rft.aufirst=S.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Carruba2000-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Carruba2000_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Carruba2000_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFCarrubaBurnsNicholsonGladman2002" class="citation journal cs1">Carruba, V.; Burns, Joseph A.; Nicholson, Philip D.; Gladman, Brett J. (2002). <a rel="nofollow" class="external text" href="http://astrosun2.astro.cornell.edu/~valerio/val_c.pdf">"On the Inclination Distribution of the Jovian Irregular Satellites"</a> <span class="cs1-format">(PDF)</span>. <i>Icarus</i>. <b>158</b> (2): 434–449. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002Icar..158..434C">2002Icar..158..434C</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Ficar.2002.6896">10.1006/icar.2002.6896</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Icarus&amp;rft.atitle=On+the+Inclination+Distribution+of+the+Jovian+Irregular+Satellites&amp;rft.volume=158&amp;rft.issue=2&amp;rft.pages=434-449&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.1006%2Ficar.2002.6896&amp;rft_id=info%3Abibcode%2F2002Icar..158..434C&amp;rft.aulast=Carruba&amp;rft.aufirst=V.&amp;rft.au=Burns%2C+Joseph+A.&amp;rft.au=Nicholson%2C+Philip+D.&amp;rft.au=Gladman%2C+Brett+J.&amp;rft_id=http%3A%2F%2Fastrosun2.astro.cornell.edu%2F~valerio%2Fval_c.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Nep-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nep_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFSheppardTrujillo2006" class="citation journal cs1">Sheppard, S. S.; <a href="/enwiki/wiki/Chad_Trujillo" title="Chad Trujillo">Trujillo, C. A.</a> (2006). "A Thick Cloud of Neptune Trojans and Their Colors". <i>Science</i>. <b>313</b> (5786): 511–514. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Sci...313..511S">2006Sci...313..511S</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1127173">10.1126/science.1127173</a>. <a href="/enwiki/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="/enwiki//pubmed.ncbi.nlm.nih.gov/16778021">16778021</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:35721399">35721399</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=A+Thick+Cloud+of+Neptune+Trojans+and+Their+Colors&amp;rft.volume=313&amp;rft.issue=5786&amp;rft.pages=511-514&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1127173&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A35721399%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16778021&amp;rft_id=info%3Abibcode%2F2006Sci...313..511S&amp;rft.aulast=Sheppard&amp;rft.aufirst=S.+S.&amp;rft.au=Trujillo%2C+C.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Agnor06-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Agnor06_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFAgnor,_C._B._and_Hamilton,_D._P.2006" class="citation journal cs1"><a href="/enwiki/w/index.php?title=Craig_B._Agnor&amp;action=edit&amp;redlink=1" class="new" title="Craig B. Agnor (page does not exist)">Agnor, C. B.</a> and <a href="/enwiki/w/index.php?title=Douglas_P._Hamilton&amp;action=edit&amp;redlink=1" class="new" title="Douglas P. Hamilton (page does not exist)">Hamilton, D. P.</a> (2006). "Neptune's capture of its moon Triton in a binary-planet gravitational encounter". <i>Nature</i>. <b>441</b> (7090): 192–4. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Natur.441..192A">2006Natur.441..192A</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature04792">10.1038/nature04792</a>. <a href="/enwiki/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="/enwiki//pubmed.ncbi.nlm.nih.gov/16688170">16688170</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4420518">4420518</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Neptune%27s+capture+of+its+moon+Triton+in+a+binary-planet+gravitational+encounter&amp;rft.volume=441&amp;rft.issue=7090&amp;rft.pages=192-4&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1038%2Fnature04792&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4420518%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16688170&amp;rft_id=info%3Abibcode%2F2006Natur.441..192A&amp;rft.au=Agnor%2C+C.+B.+and+Hamilton%2C+D.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/enwiki/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/enwiki/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-Nesvorny2003-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nesvorny2003_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nesvorny2003_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Nesvorny2003_5-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFNesvornýAlvarellosDonesLevison2003" class="citation journal cs1">Nesvorný, David; Alvarellos, Jose L. A.; Dones, Luke; Levison, Harold F. (2003). <a rel="nofollow" class="external text" href="http://www.journals.uchicago.edu/AJ/journal/issues/v126n1/202528/202528.web.pdf">"Orbital and Collisional Evolution of the Irregular Satellites"</a> <span class="cs1-format">(PDF)</span>. <i>The Astronomical Journal</i>. <b>126</b> (1): 398. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003AJ....126..398N">2003AJ....126..398N</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F375461">10.1086/375461</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Astronomical+Journal&amp;rft.atitle=Orbital+and+Collisional+Evolution+of+the+Irregular+Satellites&amp;rft.volume=126&amp;rft.issue=1&amp;rft.pages=398&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.1086%2F375461&amp;rft_id=info%3Abibcode%2F2003AJ....126..398N&amp;rft.aulast=Nesvorn%C3%BD&amp;rft.aufirst=David&amp;rft.au=Alvarellos%2C+Jose+L.+A.&amp;rft.au=Dones%2C+Luke&amp;rft.au=Levison%2C+Harold+F.&amp;rft_id=http%3A%2F%2Fwww.journals.uchicago.edu%2FAJ%2Fjournal%2Fissues%2Fv126n1%2F202528%2F202528.web.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Burns2004-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-Burns2004_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFĆukBurns2004" class="citation journal cs1">Ćuk, Matija; Burns, Joseph A. (2004). "On the Secular Behavior of Irregular Satellites". <i>The Astronomical Journal</i>. <b>128</b> (5): 2518–2541. <a href="/enwiki/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//arxiv.org/abs/astro-ph/0408119">astro-ph/0408119</a></span>. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004AJ....128.2518C">2004AJ....128.2518C</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F424937">10.1086/424937</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18564122">18564122</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Astronomical+Journal&amp;rft.atitle=On+the+Secular+Behavior+of+Irregular+Satellites&amp;rft.volume=128&amp;rft.issue=5&amp;rft.pages=2518-2541&amp;rft.date=2004&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0408119&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18564122%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1086%2F424937&amp;rft_id=info%3Abibcode%2F2004AJ....128.2518C&amp;rft.aulast=%C4%86uk&amp;rft.aufirst=Matija&amp;rft.au=Burns%2C+Joseph+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-HamBurns91-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-HamBurns91_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFHamiltonBurns1991" class="citation journal cs1">Hamilton, Douglas P.; Burns, Joseph A. (1991). "Orbital stability zones about asteroids". <i>Icarus</i>. <b>92</b> (1): 118–131. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991Icar...92..118H">1991Icar...92..118H</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0019-1035%2891%2990039-V">10.1016/0019-1035(91)90039-V</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Icarus&amp;rft.atitle=Orbital+stability+zones+about+asteroids&amp;rft.volume=92&amp;rft.issue=1&amp;rft.pages=118-131&amp;rft.date=1991&amp;rft_id=info%3Adoi%2F10.1016%2F0019-1035%2891%2990039-V&amp;rft_id=info%3Abibcode%2F1991Icar...92..118H&amp;rft.aulast=Hamilton&amp;rft.aufirst=Douglas+P.&amp;rft.au=Burns%2C+Joseph+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Carlisle-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Carlisle_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFCamille_M._Carlisle2011" class="citation news cs1">Camille M. Carlisle (December 30, 2011). "Pseudo-moons Orbit Earth". <i>Sky &amp; Telescope</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sky+%26+Telescope&amp;rft.atitle=Pseudo-moons+Orbit+Earth&amp;rft.date=2011-12-30&amp;rft.au=Camille+M.+Carlisle&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Fedorets-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fedorets_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFFedoretsGranvikJedicke2017" class="citation journal cs1">Fedorets, Grigori; Granvik, Mikael; Jedicke, Robert (March 15, 2017). "Orbit and size distributions for asteroids temporarily captured by the Earth-Moon system". <i>Icarus</i>. <b>285</b>: 83–94. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Icar..285...83F">2017Icar..285...83F</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.icarus.2016.12.022">10.1016/j.icarus.2016.12.022</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Icarus&amp;rft.atitle=Orbit+and+size+distributions+for+asteroids+temporarily+captured+by+the+Earth-Moon+system&amp;rft.volume=285&amp;rft.pages=83-94&amp;rft.date=2017-03-15&amp;rft_id=info%3Adoi%2F10.1016%2Fj.icarus.2016.12.022&amp;rft_id=info%3Abibcode%2F2017Icar..285...83F&amp;rft.aulast=Fedorets&amp;rft.aufirst=Grigori&amp;rft.au=Granvik%2C+Mikael&amp;rft.au=Jedicke%2C+Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Shefford-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Shefford_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.birtwhistle.org/Gallery6R10DB9.htm">"2006 RH120 ( = 6R10DB9) (A second moon for the Earth?)"</a>. Great Shefford Observatory. September 14, 2017. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150206154817/http://www.birtwhistle.org/Gallery6R10DB9.htm">Archived</a> from the original on 2015-02-06<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-11-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=2006+RH120+%28+%3D+6R10DB9%29+%28A+second+moon+for+the+Earth%3F%29&amp;rft.pub=Great+Shefford+Observatory&amp;rft.date=2017-09-14&amp;rft_id=http%3A%2F%2Fwww.birtwhistle.org%2FGallery6R10DB9.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Sinott-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sinott_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFRoger_W._Sinnott2007" class="citation news cs1">Roger W. Sinnott (April 17, 2007). <a rel="nofollow" class="external text" href="https://www.webcitation.org/6AF1cCXEZ?url=http://www.skyandtelescope.com/news/7067527.html">"Earth's "Other Moon"<span class="cs1-kern-right"></span>"</a>. <i>Sky &amp; Telescope</i>. Archived from <a rel="nofollow" class="external text" href="http://www.skyandtelescope.com/news/7067527.html">the original</a> on 2012-08-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-11-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sky+%26+Telescope&amp;rft.atitle=Earth%27s+%22Other+Moon%22&amp;rft.date=2007-04-17&amp;rft.au=Roger+W.+Sinnott&amp;rft_id=http%3A%2F%2Fwww.skyandtelescope.com%2Fnews%2F7067527.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-MPEC-2020-D104-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-MPEC-2020-D104_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://minorplanetcenter.net/mpec/K20/K20DA4.html">"MPEC 2020-D104&#160;: 2020 CD3: Temporarily Captured Object"</a>. <i>Minor Planet Electronic Circular</i>. <a href="/enwiki/wiki/Minor_Planet_Center" title="Minor Planet Center">Minor Planet Center</a>. 25 February 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">25 February</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Minor+Planet+Electronic+Circular&amp;rft.atitle=MPEC+2020-D104+%3A+2020+CD3%3A+Temporarily+Captured+Object&amp;rft.date=2020-02-25&amp;rft_id=https%3A%2F%2Fminorplanetcenter.net%2Fmpec%2FK20%2FK20DA4.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Ashton2020-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ashton2020_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFAshtonBeaudoinGladman2020" class="citation journal cs1">Ashton, Edward; Beaudoin, Matthew; <a href="/enwiki/wiki/Brett_J._Gladman" title="Brett J. Gladman">Gladman, Brett</a> (September 2020). "The Population of Kilometer-scale Retrograde Jovian Irregular Moons". <i>The Planetary Science Journal</i>. <b>1</b> (2): 52. <a href="/enwiki/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//arxiv.org/abs/2009.03382">2009.03382</a></span>. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PSJ.....1...52A">2020PSJ.....1...52A</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3847%2FPSJ%2Fabad95">10.3847/PSJ/abad95</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:221534456">221534456</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Planetary+Science+Journal&amp;rft.atitle=The+Population+of+Kilometer-scale+Retrograde+Jovian+Irregular+Moons&amp;rft.volume=1&amp;rft.issue=2&amp;rft.pages=52&amp;rft.date=2020-09&amp;rft_id=info%3Aarxiv%2F2009.03382&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A221534456%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.3847%2FPSJ%2Fabad95&amp;rft_id=info%3Abibcode%2F2020PSJ.....1...52A&amp;rft.aulast=Ashton&amp;rft.aufirst=Edward&amp;rft.au=Beaudoin%2C+Matthew&amp;rft.au=Gladman%2C+Brett&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Based on the definitions from <i>Oxford Dictionary of Astronomy</i>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><a href="/enwiki/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/enwiki/wiki/Special:BookSources/0-19-211596-0" title="Special:BookSources/0-19-211596-0">0-19-211596-0</a></span> </li> <li id="cite_note-Grav2003-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Grav2003_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Grav2003_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Grav2003_15-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFGravHolmanGladmanAksnes2003" class="citation journal cs1">Grav, Tommy; Holman, Matthew J.; Gladman, Brett J.; Aksnes, Kaare (2003). "Photometric survey of the irregular satellites". <i>Icarus</i>. <b>166</b> (1): 33–45. <a href="/enwiki/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//arxiv.org/abs/astro-ph/0301016">astro-ph/0301016</a></span>. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003Icar..166...33G">2003Icar..166...33G</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.icarus.2003.07.005">10.1016/j.icarus.2003.07.005</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7793999">7793999</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Icarus&amp;rft.atitle=Photometric+survey+of+the+irregular+satellites&amp;rft.volume=166&amp;rft.issue=1&amp;rft.pages=33-45&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0301016&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7793999%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.icarus.2003.07.005&amp;rft_id=info%3Abibcode%2F2003Icar..166...33G&amp;rft.aulast=Grav&amp;rft.aufirst=Tommy&amp;rft.au=Holman%2C+Matthew+J.&amp;rft.au=Gladman%2C+Brett+J.&amp;rft.au=Aksnes%2C+Kaare&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-GravHolmanFraser2004-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-GravHolmanFraser2004_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GravHolmanFraser2004_16-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-GravHolmanFraser2004_16-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFGravHolmanFraser2004" class="citation journal cs1">Grav, Tommy; <a href="/enwiki/wiki/Matthew_J._Holman" title="Matthew J. Holman">Holman, Matthew J.</a>; Fraser, Wesley C. (2004-09-20). "Photometry of Irregular Satellites of Uranus and Neptune". <i><a href="/enwiki/wiki/The_Astrophysical_Journal" title="The Astrophysical Journal">The Astrophysical Journal</a></i>. <b>613</b> (1): L77–L80. <a href="/enwiki/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//arxiv.org/abs/astro-ph/0405605">astro-ph/0405605</a></span>. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004ApJ...613L..77G">2004ApJ...613L..77G</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F424997">10.1086/424997</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15706906">15706906</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Astrophysical+Journal&amp;rft.atitle=Photometry+of+Irregular+Satellites+of+Uranus+and+Neptune&amp;rft.volume=613&amp;rft.issue=1&amp;rft.pages=L77-L80&amp;rft.date=2004-09-20&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0405605&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15706906%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1086%2F424997&amp;rft_id=info%3Abibcode%2F2004ApJ...613L..77G&amp;rft.aulast=Grav&amp;rft.aufirst=Tommy&amp;rft.au=Holman%2C+Matthew+J.&amp;rft.au=Fraser%2C+Wesley+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Nesvorny2004-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nesvorny2004_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nesvorny2004_17-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFNesvornBeaugDones2004" class="citation journal cs1">Nesvorn, David; Beaug, Cristian; Dones, Luke (2004). <a rel="nofollow" class="external text" href="http://www.boulder.swri.edu/~davidn/papers/irrbig.pdf">"Collisional Origin of Families of Irregular Satellites"</a> <span class="cs1-format">(PDF)</span>. <i>The Astronomical Journal</i>. <b>127</b> (3): 1768–1783. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004AJ....127.1768N">2004AJ....127.1768N</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F382099">10.1086/382099</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Astronomical+Journal&amp;rft.atitle=Collisional+Origin+of+Families+of+Irregular+Satellites&amp;rft.volume=127&amp;rft.issue=3&amp;rft.pages=1768-1783&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1086%2F382099&amp;rft_id=info%3Abibcode%2F2004AJ....127.1768N&amp;rft.aulast=Nesvorn&amp;rft.aufirst=David&amp;rft.au=Beaug%2C+Cristian&amp;rft.au=Dones%2C+Luke&amp;rft_id=http%3A%2F%2Fwww.boulder.swri.edu%2F~davidn%2Fpapers%2Firrbig.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-Grav2004-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Grav2004_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Grav2004_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFGravHolman2004" class="citation journal cs1">Grav, Tommy; Holman, Matthew J. (2004). "Near-Infrared Photometry of the Irregular Satellites of Jupiter and Saturn". <i>The Astrophysical Journal</i>. <b>605</b> (2): L141–L144. <a href="/enwiki/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//arxiv.org/abs/astro-ph/0312571">astro-ph/0312571</a></span>. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004ApJ...605L.141G">2004ApJ...605L.141G</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F420881">10.1086/420881</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15665146">15665146</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Astrophysical+Journal&amp;rft.atitle=Near-Infrared+Photometry+of+the+Irregular+Satellites+of+Jupiter+and+Saturn&amp;rft.volume=605&amp;rft.issue=2&amp;rft.pages=L141-L144&amp;rft.date=2004&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0312571&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15665146%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1086%2F420881&amp;rft_id=info%3Abibcode%2F2004ApJ...605L.141G&amp;rft.aulast=Grav&amp;rft.aufirst=Tommy&amp;rft.au=Holman%2C+Matthew+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-SheppardJewitt2003-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-SheppardJewitt2003_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFSheppardJewitt2003" class="citation journal cs1">Sheppard, S. S.; Jewitt, D. C. (2003). <a rel="nofollow" class="external text" href="http://www.dtm.ciw.edu/users/sheppard/sheppardjupiter.pdf">"An abundant population of small irregular satellites around Jupiter"</a> <span class="cs1-format">(PDF)</span>. <i>Nature</i>. <b>423</b> (6937): 261–263. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003Natur.423..261S">2003Natur.423..261S</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature01584">10.1038/nature01584</a>. <a href="/enwiki/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="/enwiki//pubmed.ncbi.nlm.nih.gov/12748634">12748634</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4424447">4424447</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=An+abundant+population+of+small+irregular+satellites+around+Jupiter&amp;rft.volume=423&amp;rft.issue=6937&amp;rft.pages=261-263&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.1038%2Fnature01584&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4424447%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F12748634&amp;rft_id=info%3Abibcode%2F2003Natur.423..261S&amp;rft.aulast=Sheppard&amp;rft.aufirst=S.+S.&amp;rft.au=Jewitt%2C+D.+C.&amp;rft_id=http%3A%2F%2Fwww.dtm.ciw.edu%2Fusers%2Fsheppard%2Fsheppardjupiter.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-SheppardUranus2005-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-SheppardUranus2005_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFSheppardJewittKleyna2005" class="citation journal cs1">Sheppard, S. S.; Jewitt, D.; Kleyna, J. (2005). "An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness". <i>The Astronomical Journal</i>. <b>129</b> (1): 518–525. <a href="/enwiki/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//arxiv.org/abs/astro-ph/0410059">astro-ph/0410059</a></span>. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005AJ....129..518S">2005AJ....129..518S</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F426329">10.1086/426329</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18688556">18688556</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Astronomical+Journal&amp;rft.atitle=An+Ultradeep+Survey+for+Irregular+Satellites+of+Uranus%3A+Limits+to+Completeness&amp;rft.volume=129&amp;rft.issue=1&amp;rft.pages=518-525&amp;rft.date=2005&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0410059&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18688556%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1086%2F426329&amp;rft_id=info%3Abibcode%2F2005AJ....129..518S&amp;rft.aulast=Sheppard&amp;rft.aufirst=S.+S.&amp;rft.au=Jewitt%2C+D.&amp;rft.au=Kleyna%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-SheppardJewittKleyna2006-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-SheppardJewittKleyna2006_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFSheppardJewittKleyna2006" class="citation journal cs1"><a href="/enwiki/wiki/Scott_S._Sheppard" title="Scott S. Sheppard">Sheppard, Scott S.</a>; <a href="/enwiki/wiki/David_C._Jewitt" title="David C. Jewitt">Jewitt, David C.</a>; <a href="/enwiki/wiki/Jan_Kleyna" title="Jan Kleyna">Kleyna, Jan</a> (2006). "A Survey for "Normal" Irregular Satellites around Neptune: Limits to Completeness". <i>The Astronomical Journal</i>. <b>132</b> (1): 171–176. <a href="/enwiki/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//arxiv.org/abs/astro-ph/0604552">astro-ph/0604552</a></span>. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006AJ....132..171S">2006AJ....132..171S</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F504799">10.1086/504799</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:154011">154011</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Astronomical+Journal&amp;rft.atitle=A+Survey+for+%22Normal%22+Irregular+Satellites+around+Neptune%3A+Limits+to+Completeness&amp;rft.volume=132&amp;rft.issue=1&amp;rft.pages=171-176&amp;rft.date=2006&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0604552&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A154011%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1086%2F504799&amp;rft_id=info%3Abibcode%2F2006AJ....132..171S&amp;rft.aulast=Sheppard&amp;rft.aufirst=Scott+S.&amp;rft.au=Jewitt%2C+David+C.&amp;rft.au=Kleyna%2C+Jan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> <li id="cite_note-HolmanKavelaarsGrav2004-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-HolmanKavelaarsGrav2004_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFHolmanKavelaarsGravGladman2004" class="citation journal cs1"><a href="/enwiki/wiki/Matthew_J._Holman" title="Matthew J. Holman">Holman, M. J.</a>; <a href="/enwiki/wiki/John_J._Kavelaars" title="John J. Kavelaars">Kavelaars, J. J.</a>; Grav, T.; et&#160;al. (2004). <a rel="nofollow" class="external text" href="https://www.cfa.harvard.edu/~mholman/nature_final.pdf">"Discovery of five irregular moons of Neptune"</a> <span class="cs1-format">(PDF)</span>. <i>Nature</i>. <b>430</b> (7002): 865–867. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004Natur.430..865H">2004Natur.430..865H</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature02832">10.1038/nature02832</a>. <a href="/enwiki/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="/enwiki//pubmed.ncbi.nlm.nih.gov/15318214">15318214</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4412380">4412380</a><span class="reference-accessdate">. Retrieved <span class="nowrap">24 October</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Discovery+of+five+irregular+moons+of+Neptune&amp;rft.volume=430&amp;rft.issue=7002&amp;rft.pages=865-867&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1038%2Fnature02832&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4412380%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F15318214&amp;rft_id=info%3Abibcode%2F2004Natur.430..865H&amp;rft.aulast=Holman&amp;rft.aufirst=M.+J.&amp;rft.au=Kavelaars%2C+J.+J.&amp;rft.au=Grav%2C+T.&amp;rft.au=Gladman%2C+B.+J.&amp;rft.au=Fraser%2C+W.+C.&amp;rft.au=Milisavljevic%2C+D.&amp;rft.au=Nicholson%2C+P.+D.&amp;rft.au=Burns%2C+J.+A.&amp;rft.au=Carruba%2C+V.&amp;rft_id=https%3A%2F%2Fwww.cfa.harvard.edu%2F~mholman%2Fnature_final.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIrregular+moon" class="Z3988"></span></span> </li> </ol></div> <h2><span class="mw-headline" id="External_links">External links</span></h2> <ul><li><a rel="nofollow" class="external text" href="http://www2.ess.ucla.edu/~jewitt/irregulars.html">David Jewitt's pages</a></li> <li>Discovery circumstances <a rel="nofollow" class="external text" href="http://ssd.jpl.nasa.gov/?sat_discovery">from JPL</a></li> <li>Mean orbital elements <a rel="nofollow" class="external text" href="http://ssd.jpl.nasa.gov/?sat_elem">from JPL</a></li> <li><a rel="nofollow" class="external text" href="http://www.minorplanetcenter.org/iau/NatSats/NaturalSatellites.html">MPC: Natural Satellites Ephemeris Service</a></li> <li>Tilmann Denk: Outer Moons of <a rel="nofollow" class="external text" href="https://tilmanndenk.de/outerjovianmoons/">Jupiter</a> and <a rel="nofollow" class="external text" href="https://tilmanndenk.de/outersaturnianmoons/">Saturn</a></li></ul> <div class="navbox-styles nomobile"><style data-mw-deduplicate="TemplateStyles:r1061467846">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Natural_satellites_of_the_Solar_System" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3" style="text-align: center;"><style data-mw-deduplicate="TemplateStyles:r1063604349">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/enwiki/wiki/Template:Solar_System_moons_(compact)" title="Template:Solar System moons (compact)"><abbr title="View this template" style="text-align: center;;;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-talk"><a href="/enwiki/wiki/Template_talk:Solar_System_moons_(compact)" title="Template talk:Solar System moons (compact)"><abbr title="Discuss this template" style="text-align: center;;;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-edit"><a class="external text" href="https://en.wikipedia.org/enwiki/w/index.php?title=Template:Solar_System_moons_(compact)&amp;action=edit"><abbr title="Edit this template" style="text-align: center;;;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="Natural_satellites_of_the_Solar_System" style="font-size:114%;margin:0 4em"><a href="/enwiki/wiki/Natural_satellite" title="Natural satellite">Natural satellites</a> of the <a href="/enwiki/wiki/Solar_System" title="Solar System">Solar System</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%"><a href="/enwiki/wiki/List_of_natural_satellites" title="List of natural satellites">Planetary<br />satellites</a> of</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/enwiki/wiki/Moon" title="Moon">Earth</a></li> <li><a href="/enwiki/wiki/Moons_of_Mars" title="Moons of Mars">Mars</a></li> <li><a href="/enwiki/wiki/Moons_of_Jupiter" title="Moons of Jupiter">Jupiter</a></li> <li><a href="/enwiki/wiki/Moons_of_Saturn" title="Moons of Saturn">Saturn</a></li> <li><a href="/enwiki/wiki/Moons_of_Uranus" title="Moons of Uranus">Uranus</a></li> <li><a href="/enwiki/wiki/Moons_of_Neptune" title="Moons of Neptune">Neptune</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="4" style="width:1px;padding:0 0 0 2px"><div><a href="/enwiki/wiki/File:Jupiter_family.jpg" class="image"><img alt="Jupiter family.jpg" src="/upwiki/wikipedia/commons/thumb/8/8a/Jupiter_family.jpg/150px-Jupiter_family.jpg" decoding="async" width="150" height="119" data-file-width="2081" data-file-height="1654" /></a><br /><a href="/enwiki/wiki/File:PIA19856-PlutoCharon-NewHorizons-Color-20150714.jpg" class="image"><img alt="PIA19856-PlutoCharon-NewHorizons-Color-20150714.jpg" src="/upwiki/wikipedia/commons/thumb/4/48/PIA19856-PlutoCharon-NewHorizons-Color-20150714.jpg/150px-PIA19856-PlutoCharon-NewHorizons-Color-20150714.jpg" decoding="async" width="150" height="30" data-file-width="2526" data-file-height="501" /></a><br /><a href="/enwiki/wiki/File:243_ida_crop.jpg" class="image"><img alt="243 ida crop.jpg" src="/upwiki/wikipedia/commons/thumb/8/89/243_ida_crop.jpg/150px-243_ida_crop.jpg" decoding="async" width="150" height="97" data-file-width="618" data-file-height="399" /></a></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%"><a href="/enwiki/wiki/List_of_natural_satellites" title="List of natural satellites">Dwarf planet<br />satellites</a> of</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/enwiki/wiki/Vanth_(moon)" title="Vanth (moon)">Orcus</a></li> <li><a href="/enwiki/wiki/Moons_of_Pluto" title="Moons of Pluto">Pluto</a></li> <li><a href="/enwiki/wiki/Moons_of_Haumea" title="Moons of Haumea">Haumea</a></li> <li><a href="/enwiki/wiki/Weywot" title="Weywot">Quaoar</a></li> <li><a href="/enwiki/wiki/S/2015_(136472)_1" title="S/2015 (136472) 1">Makemake</a></li> <li><a href="/enwiki/wiki/Xiangliu_(moon)" title="Xiangliu (moon)">Gonggong</a></li> <li><a href="/enwiki/wiki/Dysnomia_(moon)" title="Dysnomia (moon)">Eris</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%"><a href="/enwiki/wiki/Minor-planet_moon" title="Minor-planet moon">Minor-planet <br />moons</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>&#160;<b>&#183;</b>&#32;<b>Near-Earth:</b></li> <li><a href="/enwiki/wiki/3122_Florence" title="3122 Florence">Florence</a></li> <li><a href="/enwiki/wiki/65803_Didymos" title="65803 Didymos">Didymos</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Dimorphos" title="Dimorphos">Dimorphos</a>)</span></li> <li><a href="/enwiki/wiki/66391_Moshup" title="66391 Moshup">Moshup</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/66391_Moshup#Satellite" title="66391 Moshup">Squannit</a>)</span></li> <li><span class="nowrap"><a href="/enwiki/wiki/(136617)_1994_CC" title="(136617) 1994 CC">1994 CC</a></span></li> <li><span class="nowrap"><a href="/enwiki/wiki/(153591)_2001_SN263" title="(153591) 2001 SN263">2001 SN<sub>263</sub></a></span><br /></li> <li><b>Main belt:</b></li> <li><a href="/enwiki/wiki/22_Kalliope" title="22 Kalliope">Kalliope</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Linus_(moon)" title="Linus (moon)">Linus</a>)</span></li> <li><a href="/enwiki/wiki/31_Euphrosyne" title="31 Euphrosyne">Euphrosyne</a></li> <li><a href="/enwiki/wiki/41_Daphne" title="41 Daphne">Daphne</a> <span style="font-size:85%;">(Peneius)</span></li> <li><a href="/enwiki/wiki/45_Eugenia" title="45 Eugenia">Eugenia</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Petit-Prince_(moon)" title="Petit-Prince (moon)">Petit-Prince</a>)</span></li> <li><a href="/enwiki/wiki/87_Sylvia" title="87 Sylvia">Sylvia</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Romulus_(moon)" title="Romulus (moon)">Romulus</a>&#160;<b>&#183;</b>&#32;<a href="/enwiki/wiki/Remus_(moon)" title="Remus (moon)">Remus</a>)</span></li> <li><a href="/enwiki/wiki/93_Minerva" title="93 Minerva">Minerva</a> <span style="font-size:85%;">(Aegis&#160;<b>&#183;</b>&#32;Gorgoneion)</span></li> <li><a href="/enwiki/wiki/107_Camilla" title="107 Camilla">Camilla</a></li> <li><a href="/enwiki/wiki/130_Elektra" title="130 Elektra">Elektra</a></li> <li><a href="/enwiki/wiki/216_Kleopatra" title="216 Kleopatra">Kleopatra</a> <span style="font-size:85%;">(Alexhelios&#160;<b>&#183;</b>&#32;Cleoselene)</span></li> <li><a href="/enwiki/wiki/243_Ida" title="243 Ida">Ida</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Dactyl_(moon)" class="mw-redirect" title="Dactyl (moon)">Dactyl</a>)</span></li> <li><a href="/enwiki/wiki/317_Roxane" title="317 Roxane">Roxane</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Olympias_(moon)" class="mw-redirect" title="Olympias (moon)">Olympias</a>)</span></li> <li><a href="/enwiki/wiki/762_Pulcova" title="762 Pulcova">Pulcova</a></li> <li><a href="/enwiki/wiki/3749_Balam" title="3749 Balam">Balam</a><br /></li> <li><b>Jupiter trojans:</b></li> <li><a href="/enwiki/wiki/617_Patroclus" title="617 Patroclus">Patroclus</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Menoetius_(moon)" class="mw-redirect" title="Menoetius (moon)">Menoetius</a>)</span></li> <li><a href="/enwiki/wiki/624_Hektor" title="624 Hektor">Hektor</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Skamandrios_(moon)" class="mw-redirect" title="Skamandrios (moon)">Skamandrios</a>)</span></li> <li><a href="/enwiki/wiki/3548_Eurybates" title="3548 Eurybates">Eurybates</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Queta_(moon)" class="mw-redirect" title="Queta (moon)">Queta</a>)</span><br /></li> <li><b>TNOs:</b></li> <li><a href="/enwiki/wiki/47171_Lempo" title="47171 Lempo">Lempo</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/47171_Lempo#Hiisi" title="47171 Lempo">Hiisi</a>&#160;<b>&#183;</b>&#32;<a href="/enwiki/wiki/47171_Lempo#Paha" title="47171 Lempo">Paha</a>)</span></li> <li><span class="nowrap"><a href="/enwiki/wiki/(55637)_2002_UX25" title="(55637) 2002 UX25">2002 UX<sub>25</sub></a></span></li> <li><a href="/enwiki/wiki/79360_Sila%E2%80%93Nunam" title="79360 Sila–Nunam">Sila–Nunam</a></li> <li><a href="/enwiki/wiki/120347_Salacia" title="120347 Salacia">Salacia</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Actaea_(moon)" title="Actaea (moon)">Actaea</a>)</span></li> <li><a href="/enwiki/wiki/174567_Varda" title="174567 Varda">Varda</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/Ilmar%C3%AB" title="Ilmarë">Ilmarë</a>)</span></li> <li><a href="/enwiki/wiki/229762_G%C7%83k%C3%BAn%C7%81%CA%BCh%C3%B2md%C3%ADm%C3%A0" title="229762 Gǃkúnǁʼhòmdímà">Gǃkúnǁʼhòmdímà</a> <span style="font-size:85%;">(<a href="/enwiki/wiki/G%C7%83%C3%B2%CA%BC%C3%A9_%C7%83H%C3%BA" class="mw-redirect" title="Gǃòʼé ǃHú">Gǃòʼé ǃHú</a>)</span></li> <li><span class="nowrap"><a href="/enwiki/wiki/(532037)_2013_FY27" title="(532037) 2013 FY27">2013 FY<sub>27</sub></a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Ranked <br />by size</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/enwiki/wiki/Planetary-mass_moon" title="Planetary-mass moon">Planetary-mass moon</a></li> <li><a href="/enwiki/wiki/Ganymede_(moon)" title="Ganymede (moon)">Ganymede</a> <ul><li><small><b>largest</b>: 5268 km / 0.413 Earths</small></li></ul></li> <li><a href="/enwiki/wiki/Titan_(moon)" title="Titan (moon)">Titan</a></li> <li><a href="/enwiki/wiki/Callisto_(moon)" title="Callisto (moon)">Callisto</a></li> <li><a href="/enwiki/wiki/Io_(moon)" title="Io (moon)">Io</a></li> <li><a href="/enwiki/wiki/Moon" title="Moon">Moon</a></li> <li><a href="/enwiki/wiki/Europa_(moon)" title="Europa (moon)">Europa</a></li> <li><a href="/enwiki/wiki/Triton_(moon)" title="Triton (moon)">Triton</a></li> <li><a href="/enwiki/wiki/Titania_(moon)" title="Titania (moon)">Titania</a></li> <li><a href="/enwiki/wiki/Rhea_(moon)" title="Rhea (moon)">Rhea</a></li> <li><a href="/enwiki/wiki/Oberon_(moon)" title="Oberon (moon)">Oberon</a></li> <li><a href="/enwiki/wiki/Iapetus_(moon)" title="Iapetus (moon)">Iapetus</a></li> <li><a href="/enwiki/wiki/Charon_(moon)" title="Charon (moon)">Charon</a></li> <li><a href="/enwiki/wiki/Umbriel_(moon)" title="Umbriel (moon)">Umbriel</a></li> <li><a href="/enwiki/wiki/Ariel_(moon)" title="Ariel (moon)">Ariel</a></li> <li><a href="/enwiki/wiki/Dione_(moon)" title="Dione (moon)">Dione</a></li> <li><a href="/enwiki/wiki/Tethys_(moon)" title="Tethys (moon)">Tethys</a></li> <li><a href="/enwiki/wiki/Dysnomia_(moon)" title="Dysnomia (moon)">Dysnomia</a></li> <li><a href="/enwiki/wiki/Enceladus" title="Enceladus">Enceladus</a></li> <li><a href="/enwiki/wiki/Miranda_(moon)" title="Miranda (moon)">Miranda</a></li> <li><a href="/enwiki/wiki/Vanth_(moon)" title="Vanth (moon)">Vanth</a></li> <li><a href="/enwiki/wiki/Proteus_(moon)" title="Proteus (moon)">Proteus</a></li> <li><a href="/enwiki/wiki/Mimas_(moon)" title="Mimas (moon)">Mimas</a></li> <li><a href="/enwiki/wiki/Ilmar%C3%AB" title="Ilmarë">Ilmarë</a></li> <li><a href="/enwiki/wiki/Nereid_(moon)" title="Nereid (moon)">Nereid</a></li> <li><a href="/enwiki/wiki/Hi%CA%BBiaka_(moon)" title="Hiʻiaka (moon)">Hiʻiaka</a></li> <li><a href="/enwiki/wiki/Actaea_(moon)" title="Actaea (moon)">Actaea</a></li> <li><a href="/enwiki/wiki/Hyperion_(moon)" title="Hyperion (moon)">Hyperion</a></li> <li><a href="/enwiki/wiki/Phoebe_(moon)" title="Phoebe (moon)">Phoebe</a></li> <li>...</li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3" style="text-align: center;"><div> <ul><li><a href="/enwiki/wiki/Timeline_of_discovery_of_Solar_System_planets_and_their_moons" title="Timeline of discovery of Solar System planets and their moons">Discovery timeline</a></li> <li><a href="/enwiki/wiki/Inner_moon" title="Inner moon">Inner moons</a></li> <li><a class="mw-selflink selflink">Irregular moons</a></li> <li><a href="/enwiki/wiki/List_of_natural_satellites" title="List of natural satellites">List</a></li> <li><a href="/enwiki/wiki/Planetary-mass_moon" title="Planetary-mass moon">Planetary-mass moons</a></li> <li><a href="/enwiki/wiki/Naming_of_moons" title="Naming of moons">Naming</a></li> <li><a href="/enwiki/wiki/Subsatellite" title="Subsatellite">Subsatellite</a></li> <li><a href="/enwiki/wiki/Regular_moon" title="Regular moon">Regular moons</a></li> <li><a href="/enwiki/wiki/Co-orbital_configuration#Trojan_moons" title="Co-orbital configuration">Trojan moons</a></li></ul> </div></td></tr></tbody></table></div></div>'
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
1650474909