Examine individual changes
Appearance
This page allows you to examine the variables generated by the Edit Filter for an individual change.
Variables generated for this change
Variable | Value |
---|---|
Edit count of the user (user_editcount ) | 0 |
Name of the user account (user_name ) | 'Neurofeedbacknearme' |
Age of the user account (user_age ) | 122 |
Groups (including implicit) the user is in (user_groups ) | [
0 => '*',
1 => 'user'
] |
Rights that the user has (user_rights ) | [
0 => 'createaccount',
1 => 'read',
2 => 'edit',
3 => 'createtalk',
4 => 'writeapi',
5 => 'viewmyprivateinfo',
6 => 'editmyprivateinfo',
7 => 'editmyoptions',
8 => 'abusefilter-log-detail',
9 => 'urlshortener-create-url',
10 => 'centralauth-merge',
11 => 'abusefilter-view',
12 => 'abusefilter-log',
13 => 'vipsscaler-test',
14 => 'collectionsaveasuserpage',
15 => 'reupload-own',
16 => 'move-rootuserpages',
17 => 'createpage',
18 => 'minoredit',
19 => 'editmyusercss',
20 => 'editmyuserjson',
21 => 'editmyuserjs',
22 => 'sendemail',
23 => 'applychangetags',
24 => 'viewmywatchlist',
25 => 'editmywatchlist',
26 => 'spamblacklistlog',
27 => 'mwoauthmanagemygrants'
] |
Whether the user is editing from mobile app (user_app ) | false |
Whether or not a user is editing through the mobile interface (user_mobile ) | false |
Page ID (page_id ) | 510370 |
Page namespace (page_namespace ) | 0 |
Page title without namespace (page_title ) | 'Neurofeedback' |
Full page title (page_prefixedtitle ) | 'Neurofeedback' |
Edit protection level of the page (page_restrictions_edit ) | [] |
Last ten users to contribute to the page (page_recent_contributors ) | [
0 => '2607:FEA8:E3C0:6BE0:BC21:2191:3CA8:8D96',
1 => 'OAbot',
2 => 'Citation bot',
3 => 'Headbomb',
4 => 'Revirvlkodlaku',
5 => 'Keith D',
6 => 'NF-LF',
7 => '81.99.240.232',
8 => 'WereSpielChequers',
9 => 'Curb Safe Charmer'
] |
Page age in seconds (page_age ) | 620266621 |
Action (action ) | 'edit' |
Edit summary/reason (summary ) | '/* History */ ' |
Old content model (old_content_model ) | 'wikitext' |
New content model (new_content_model ) | 'wikitext' |
Old page wikitext, before the edit (old_wikitext ) | '{{Short description|Type of biofeedback}}
{{Use dmy dates|date=June 2023}}
[[File:Neurofeedback Process Diagram.png|thumb|470x470px|Neurofeedback training process diagram]]
'''Neurofeedback''' is a type of [[biofeedback]] that focuses on the neuronal activity of the brain. The training method is based on reinforcement learning, where real-time feedback provided to the trainee is supposed to reward and reinforce desired brain activity or inhibit unfavorable activity patterns. In short, it is self-regulating training that generally utilizes [[Electroencephalography|EEG]] for [[operant conditioning]].
Different mental states (for example, concentration, relaxation, creativity, distractibility, rumination, etc.) are associated with different brain activities or brain states.
Similarly, symptoms of mental or brain-related health issues are associated with neuronal overarousal, underarousal, disinhibition, or instability. Thus, neurofeedback tries to yield symptom relief through an improved regulation of neuronal activity.
Apart from being a therapeutic approach, neurofeedback is increasingly used for healthy people as well, aiming at improved cognitive regulation skills according to individual goals and needs.
There are various methods of providing feedback of neurological activity. The most common application uses the measurement of electroencephalography ([[Electroencephalography|EEG]]), where the electrical activity of the brain is recorded by electrodes placed on the scalp. Other, less usual methods, rely on functional magnetic resonance ([[Functional magnetic resonance imaging|fMRI]]), functional near-infrared spectroscopy ([[Functional near-infrared spectroscopy|fNIRS]]), or hemoencephalography biofeedback ([[Hemoencephalography|HEG]]).
==History==
In 1898, [[Edward Thorndike]] formulated the law of effect. In his work, he theorized that behavior is shaped by satisfying or discomforting consequences. This set the foundation for [[operant conditioning]].{{Citation needed|date=May 2023}}
In 1924, the German psychiatrist [[Hans Berger]] connected several electrodes to a patient's scalp and detected a small current by using a ballistic [[galvanometer]]. In his subsequent studies, Berger analyzed EEGs qualitatively, but in 1932, G. Dietsch applied [[Fourier analysis]] to seven EEG records and later became the first researcher to apply quantitative EEG (QEEG).
In 1950, [[Neal E. Miller]] of Yale University was able to train mice to regulate their heartbeat frequency. Later on, he continued his work with humans, training them through auditory feedback.<ref>{{Cite journal |last1=Pickering |first1=T. G. |last2=Miller |first2=N. E. |date=1 September 1975 |title=Learned Voluntary Control of Heart Rate and Rhythm in Two Subjects with Premature Ventricular Contractions |url=https://portlandpress.com/clinsci/article/49/3/17P/71950/Learned-Voluntary-Control-of-Heart-Rate-and-Rhythm |journal=Clinical Science |language=en |volume=49 |issue=3 |pages=17P–18P |doi=10.1042/cs049017Pd |issn=0301-0538}}</ref>
The first study to demonstrate neurofeedback was reported by Joe Kamiya in 1962.<ref name=":0">{{Citation |last=Kamiya |first=Joe |title=Autoregulation of the EEG Alpha Rhythm: A Program for the Study of Consciousness |date=1979 |url=http://dx.doi.org/10.1007/978-1-4613-2898-8_25 |work=Mind/Body Integration |pages=289–297 |access-date=28 April 2023 |place=Boston, MA |publisher=Springer US |doi=10.1007/978-1-4613-2898-8_25 |isbn=978-1-4613-2900-8}}</ref><ref>{{Cite journal |last=Kamiya |first=Joe |date=22 February 2011 |title=The First Communications About Operant Conditioning of the EEG |url=http://www.isnr-jnt.org/article/view/16584 |journal=Journal of Neurotherapy |volume=15 |issue=1 |pages=65–73 |doi=10.1080/10874208.2011.545764 |issn=1087-4208|doi-access=free }}</ref> Kamiya's experiment had two parts: In the first part, a subject was asked to keep their eyes closed, and when a tone sounded, to say whether they were experiencing [[alpha wave]]s. Initially, the subject would guess correctly about fifty percent of the time, but some subjects would eventually develop the ability to better distinguish between states.<ref>{{Cite journal |last=Frederick |first=Jon A. |date=September 2012 |title=Psychophysics of EEG alpha state discrimination |journal=Consciousness and Cognition |volume=21 |issue=3 |pages=1345–1354 |doi=10.1016/j.concog.2012.06.009 |pmc=3424312 |pmid=22800733}}</ref>
M. Barry Sterman trained cats to modify their EEG patterns to exhibit more of the so-called [[sensorimotor rhythm]] (SMR). He published this research in 1967. Sterman subsequently discovered that the SMR-trained cats were much more resistant to [[epileptic seizures]] after exposure to the convulsant chemical [[monomethylhydrazine]] than non-trained cats.<ref>{{Cite journal |last=Sterman |first=M. Barry |date=January 2000 |title=Basic Concepts and Clinical Findings in the Treatment of Seizure Disorders with EEG Operant Conditioning |url=http://journals.sagepub.com/doi/10.1177/155005940003100111 |journal=Clinical Electroencephalography |volume=31 |issue=1 |pages=45–55 |doi=10.1177/155005940003100111 |pmid=10638352 |s2cid=43506749 |issn=0009-9155}}</ref> In 1971, he reported similar improvements with an epileptic patient whose seizures could be controlled through SMR training.<ref name=":1">{{Cite journal |last1=Sterman |first1=M.B |last2=Friar |first2=L |date=July 1972 |title=Suppression of seizures in an epileptic following sensorimotor EEG feedback training |url=https://linkinghub.elsevier.com/retrieve/pii/0013469472900284 |journal=Electroencephalography and Clinical Neurophysiology |volume=33 |issue=1 |pages=89–95 |doi=10.1016/0013-4694(72)90028-4|pmid=4113278 }}</ref> Joel Lubar contributed to the research of EEG biofeedback, starting with epilepsy<ref>{{Cite journal |last1=Seifert |first1=A.R. |last2=Lubar |first2=J.F. |date=November 1975 |title=Reduction of epileptic seizures through EEG biofeedback training |url=https://linkinghub.elsevier.com/retrieve/pii/0301051175900332 |journal=Biological Psychology |volume=3 |issue=3 |pages=157–184 |doi=10.1016/0301-0511(75)90033-2|pmid=812560 |s2cid=15698128 }}</ref> and later with hyperactivity and [[Attention deficit hyperactivity disorder|ADHD]].<ref name=":2">{{Cite journal |last1=Lubar |first1=Joel F. |last2=Shouse |first2=Margaret N. |date=September 1976 |title=EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): A preliminary report |url=http://link.springer.com/10.1007/BF01001170 |journal=Biofeedback and Self-Regulation |volume=1 |issue=3 |pages=293–306 |doi=10.1007/BF01001170 |pmid=990355 |s2cid=17141352 |issn=0363-3586}}</ref>
==Neuroplasticity==
In 2010, a study provided some evidence of [[neuroplastic]] changes occurring after brainwave training. In this study, half an hour of voluntary control of brain rhythms led to a lasting shift in cortical excitability and intracortical function.<ref name="Ros_2010">{{cite journal | vauthors = Ros T, Munneke MA, Ruge D, Gruzelier JH, Rothwell JC | title = Endogenous control of waking brain rhythms induces neuroplasticity in humans | journal = The European Journal of Neuroscience | volume = 31 | issue = 4 | pages = 770–8 | date = February 2010 | pmid = 20384819 | doi = 10.1111/j.1460-9568.2010.07100.x | s2cid = 16969327 }}</ref> The authors observed that the cortical response to [[transcranial magnetic stimulation]] (TMS) was significantly enhanced after neurofeedback, persisted for at least twenty minutes, and was correlated with an EEG time-course indicative of [[activity-dependent plasticity]]<ref name="Ros_2010" />
==Types of neurofeedback==
The term neurofeedback is not legally protected. There are various approaches that give feedback about neuronal activity, and as such are referred to as "neurofeedback" by their respective operators. Distinctions can be made on several levels. The first takes into account which technology is being used (EEG,<ref>{{Cite journal |last1=Lubar |first1=Joel F. |last2=Swartwood |first2=Michie Odle |last3=Swartwood |first3=Jeffery N. |last4=O'Donnell |first4=Phyllis H. |date=1 March 1995 |title=Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance |url=https://doi.org/10.1007/BF01712768 |journal=Biofeedback and Self-Regulation |volume=20 |issue=1 |pages=83–99 |doi=10.1007/BF01712768 |pmid=7786929 |s2cid=19193823 |issn=1573-3270}}</ref><ref>{{Cite journal |last1=Kluetsch |first1=R. C. |last2=Ros |first2=T. |last3=Théberge |first3=J. |last4=Frewen |first4=P. A. |last5=Calhoun |first5=V. D. |last6=Schmahl |first6=C. |last7=Jetly |first7=R. |last8=Lanius |first8=R. A. |date=August 2014 |title=Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback |journal=Acta Psychiatrica Scandinavica |volume=130 |issue=2 |pages=123–136 |doi=10.1111/acps.12229 |pmc=4442612 |pmid=24266644}}</ref><ref>{{Cite journal |last1=Reiter |first1=Karen |last2=Andersen |first2=Søren Bo |last3=Carlsson |first3=Jessica |date=February 2016 |title=Neurofeedback Treatment and Posttraumatic Stress Disorder: Effectiveness of Neurofeedback on Posttraumatic Stress Disorder and the Optimal Choice of Protocol |url=https://journals.lww.com/00005053-201602000-00001 |journal=Journal of Nervous & Mental Disease |volume=204 |issue=2 |pages=69–77 |doi=10.1097/NMD.0000000000000418 |pmid=26825263 |s2cid=25210316 |issn=0022-3018}}</ref><ref>{{Cite journal |last1=Micoulaud-Franchi |first1=Jean-Arthur |last2=Geoffroy |first2=Pierre Alexis |last3=Fond |first3=Guillaume |last4=Lopez |first4=Régis |last5=Bioulac |first5=Stéphanie |last6=Philip |first6=Pierre |date=2014 |title=EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials |journal=Frontiers in Human Neuroscience |volume=8 |page=906 |doi=10.3389/fnhum.2014.00906 |issn=1662-5161 |pmc=4230047 |pmid=25431555 |doi-access=free }}</ref><ref>{{Cite journal |last1=Omejc |first1=Nina |last2=Rojc |first2=Bojan |last3=Battaglini |first3=Piero Paolo |last4=Marusic |first4=Uros |date=20 November 2018 |title=Review of the therapeutic neurofeedback method using electroencephalography: EEG Neurofeedback |url=http://www.bjbms.org/ojs/index.php/bjbms/article/view/3785 |journal=Bosnian Journal of Basic Medical Sciences |volume=19 |issue=3 |pages=213–220 |doi=10.17305/bjbms.2018.3785 |issn=1840-4812 |pmc=6716090 |pmid=30465705}}</ref> fMRI,<ref>{{Cite journal |last1=Zotev |first1=Vadim |last2=Phillips |first2=Raquel |last3=Yuan |first3=Han |last4=Misaki |first4=Masaya |last5=Bodurka |first5=Jerzy |date=15 January 2014 |title=Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback |url=https://www.sciencedirect.com/science/article/pii/S1053811913005041 |journal=NeuroImage |series=Neuro-enhancement |volume=85 |pages=985–995 |doi=10.1016/j.neuroimage.2013.04.126 |pmid=23668969 |arxiv=1301.4689 |s2cid=2836232 |issn=1053-8119}}</ref><ref>{{Cite journal |last1=Pindi |first1=Pamela |last2=Houenou |first2=Josselin |last3=Piguet |first3=Camille |last4=Favre |first4=Pauline |date=December 2022 |title=Real-time fMRI neurofeedback as a new treatment for psychiatric disorders: A meta-analysis |url=https://linkinghub.elsevier.com/retrieve/pii/S0278584622000975 |journal=Progress in Neuro-Psychopharmacology and Biological Psychiatry |language=en |volume=119 |pages=110605 |doi=10.1016/j.pnpbp.2022.110605|pmid=35843369 |s2cid=250586279 |doi-access=free }}</ref><ref>{{Cite journal |last1=Linhartová |first1=Pavla |last2=Látalová |first2=Adéla |last3=Kóša |first3=Barbora |last4=Kašpárek |first4=Tomáš |last5=Schmahl |first5=Christian |last6=Paret |first6=Christian |date=June 2019 |title=fMRI neurofeedback in emotion regulation: A literature review |url=https://linkinghub.elsevier.com/retrieve/pii/S1053811919301788 |journal=NeuroImage |volume=193 |pages=75–92 |doi=10.1016/j.neuroimage.2019.03.011|pmid=30862532 |s2cid=72333597 }}</ref><ref>{{Cite journal |last1=Nicholson |first1=Andrew A. |last2=Rabellino |first2=Daniela |last3=Densmore |first3=Maria |last4=Frewen |first4=Paul A. |last5=Paret |first5=Christian |last6=Kluetsch |first6=Rosemarie |last7=Schmahl |first7=Christian |last8=Théberge |first8=Jean |last9=Neufeld |first9=Richard W.J. |last10=McKinnon |first10=Margaret C. |last11=Reiss |first11=Jeffrey P. |last12=Jetly |first12=Rakesh |last13=Lanius |first13=Ruth A. |date=January 2017 |title=The neurobiology of emotion regulation in posttraumatic stress disorder: Amygdala downregulation via real‐time fMRI neurofeedback |journal=Human Brain Mapping |volume=38 |issue=1 |pages=541–560 |doi=10.1002/hbm.23402 |issn=1065-9471 |pmc=6866912 |pmid=27647695}}</ref> fNIRS,<ref>{{Cite journal |last1=Kohl |first1=Simon H. |last2=Mehler |first2=David M. A. |last3=Lührs |first3=Michael |last4=Thibault |first4=Robert T. |last5=Konrad |first5=Kerstin |last6=Sorger |first6=Bettina |date=21 July 2020 |title=The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback—A Systematic Review and Recommendations for Best Practice |journal=Frontiers in Neuroscience |volume=14 |page=594 |doi=10.3389/fnins.2020.00594 |issn=1662-453X |pmc=7396619 |pmid=32848528 |doi-access=free }}</ref> HEG). Nonetheless, further distinctions are crucial even within the realm of EEG neurofeedback, as different methodologies of analysis can be chosen, some of which are backed up by a higher number of peer-reviewed studies, whereas for others, scientific literature is scarce, and explanatory models are entirely missing.
Despite these differences, a common denominator can be found in the requirement of providing feedback. Usually, feedback is provided by auditory or visual input. While original feedback was provided by sounding tones according to neurological activity, many new ways have been found. It is possible to listen to music or podcasts where the volume is controlled as feedback, for example. Often, visual feedback is used in the form of animations on a TV screen. Visual feedback can also be provided in combination with videos and films, or even during reading tasks where the brightness of the screen represents the direct feedback. Simple games can also be used, where the game itself is controlled by the brain activity. Recent developments have tried to incorporate virtual reality (VR), and controllers can already be used for more involved engagement with the feedback.
===EEG neurofeedback===
====Frequency band / amplitude training====
Amplitude training, or frequency band training (used synonymously), is the method with the largest body of scientific literature; it also represents the original method of EEG neurofeedback.<ref name=":0" /><ref name=":1" /><ref name=":2" /> The EEG signal is analyzed with respect to its frequency spectrum, split into the common frequency bands used in EEG [[neuroscience]] (delta, theta, alpha, beta, gamma). The activity involves training the amplitude of a certain frequency band on a defined location on the scalp to higher or lower values.
Depending on the training goal (for example, increasing attention and focus,<ref>{{Cite journal |last1=Arns |first1=Martijn |last2=Clark |first2=C. Richard |last3=Trullinger |first3=Mark |last4=deBeus |first4=Roger |last5=Mack |first5=Martha |last6=Aniftos |first6=Michelle |date=June 2020 |title=Neurofeedback and Attention-Deficit/Hyperactivity-Disorder (ADHD) in Children: Rating the Evidence and Proposed Guidelines |journal=Applied Psychophysiology and Biofeedback |volume=45 |issue=2 |pages=39–48 |doi=10.1007/s10484-020-09455-2 |issn=1090-0586 |pmc=7250955 |pmid=32206963}}</ref><ref>{{Cite journal |last1=Van Doren |first1=Jessica |last2=Arns |first2=Martijn |last3=Heinrich |first3=Hartmut |last4=Vollebregt |first4=Madelon A. |last5=Strehl |first5=Ute |last6=K. Loo |first6=Sandra |date=March 2019 |title=Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis |journal=European Child & Adolescent Psychiatry |volume=28 |issue=3 |pages=293–305 |doi=10.1007/s00787-018-1121-4 |issn=1018-8827 |pmc=6404655 |pmid=29445867}}</ref> reaching a calm state,<ref>{{Cite journal |last1=Krylova |first1=Marina |last2=Skouras |first2=Stavros |last3=Razi |first3=Adeel |last4=Nicholson |first4=Andrew A. |last5=Karner |first5=Alexander |last6=Steyrl |first6=David |last7=Boukrina |first7=Olga |last8=Rees |first8=Geraint |last9=Scharnowski |first9=Frank |last10=Koush |first10=Yury |date=3 December 2021 |title=Progressive modulation of resting-state brain activity during neurofeedback of positive-social emotion regulation networks |journal=Scientific Reports |volume=11 |issue=1 |page=23363 |doi=10.1038/s41598-021-02079-4 |issn=2045-2322 |pmc=8642545 |pmid=34862407}}</ref> reducing epileptic seizures,<ref name=":1" /><ref>{{Cite journal |last1=Sterman |first1=M. Barry |last2=Egner |first2=Tobias |date=March 2006 |title=Foundation and Practice of Neurofeedback for the Treatment of Epilepsy |url=http://link.springer.com/10.1007/s10484-006-9002-x |journal=Applied Psychophysiology and Biofeedback |volume=31 |issue=1 |pages=21–35 |doi=10.1007/s10484-006-9002-x |pmid=16614940 |s2cid=1445660 |issn=1090-0586}}</ref><ref>{{Cite journal |last1=Monderer |first1=Renee S |last2=Harrison |first2=Daniel M |last3=Haut |first3=Sheryl R |date=June 2002 |title=Neurofeedback and epilepsy |url=https://linkinghub.elsevier.com/retrieve/pii/S152550500200001X |journal=Epilepsy & Behavior |volume=3 |issue=3 |pages=214–218 |doi=10.1016/S1525-5050(02)00001-X|pmid=12662600 |s2cid=31198834 }}</ref> etc.), the electrodes have to be placed in different positions. Additionally, the trained frequency bands and the training directions (to higher or lower amplitudes) might vary according to the training goal.
Thus, EEG wave components that are expected to be beneficial to the training goal are rewarded with positive feedback when appearing and/or increasing in amplitude. Frequency band amplitudes that are expected to be hindering are trained downwards by reinforcement through the feedback.
As an example, considering ADHD, this would result in training low-beta or mid-beta frequencies in the central-to-frontal lobe to increase in amplitude, while simultaneously trying to reduce theta and high-beta amplitudes in the same region of the brain.<ref>{{Cite journal |last1=Van Doren |first1=Jessica |last2=Arns |first2=Martijn |last3=Heinrich |first3=Hartmut |last4=Vollebregt |first4=Madelon A. |last5=Strehl |first5=Ute |last6=K. Loo |first6=Sandra |date=1 March 2019 |title=Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis |url=https://doi.org/10.1007/s00787-018-1121-4 |journal=European Child & Adolescent Psychiatry |volume=28 |issue=3 |pages=293–305 |doi=10.1007/s00787-018-1121-4 |issn=1435-165X |pmc=6404655 |pmid=29445867}}</ref><ref>{{Cite journal |last1=Enriquez-Geppert |first1=Stefanie |last2=Smit |first2=Diede |last3=Pimenta |first3=Miguel Garcia |last4=Arns |first4=Martijn |date=28 May 2019 |title=Neurofeedback as a Treatment Intervention in ADHD: Current Evidence and Practice |url=https://doi.org/10.1007/s11920-019-1021-4 |journal=Current Psychiatry Reports |volume=21 |issue=6 |pages=46 |doi=10.1007/s11920-019-1021-4 |issn=1535-1645 |pmc=6538574 |pmid=31139966}}</ref><ref>{{Cite journal |last1=Dashbozorgi |first1=Zahra |last2=Ghaffari |first2=Amin |last3=Karamali Esmaili |first3=Samaneh |last4=Ashoori |first4=Jamal |last5=Moradi |first5=Ali |last6=Sarvghadi |first6=Pooria |date=10 September 2021 |title=Effect of Neurofeedback Training on Aggression and Impulsivity in Children with Attention-Deficit/Hyperactivity Disorder: A Double-Blinded Randomized Controlled Trial |url=http://bcn.iums.ac.ir/article-1-1695-en.html |journal=Basic and Clinical Neuroscience |volume=12 |issue=5 |pages=693–702 |doi=10.32598/bcn.2021.2363.1|pmid=35173923 |pmc=8818111 |s2cid=237880490 }}</ref>
====SCP training====
For SCP (slow cortical potentials) training, one trains the DC voltage component of the EEG signal. The application of this type of EEG neurofeedback training was mostly endorsed by research done by Niels Birbaumer and his group. The most common symptom base for SCP training is ADHD, whereas SCPs also find their application in brain-computer interfaces.<ref>{{Citation |last1=Birbaumer |first1=Niels |title=Chapter 8 Neurofeedback and Brain–Computer Interface: Clinical Applications |date=1 January 2009 |url=https://www.sciencedirect.com/science/article/pii/S007477420986008X |journal=International Review of Neurobiology |volume=86 |pages=107–117 |access-date=28 April 2023 |publisher=Academic Press |doi=10.1016/s0074-7742(09)86008-x |last2=Ramos Murguialday |first2=Ander |last3=Weber |first3=Cornelia |last4=Montoya |first4=Pedro|pmid=19607994 }}</ref>
====LORETA (low resolution electromagnetic tomography analysis) training====
Normal EEG signals are restricted to the surface of the scalp. Using a high number of electrodes (19 or more), the source of certain electrical events can be localized. Similar to a tomography that renders a 3D image out of many 2D images, the many EEG channels are used to create LORETA images that represent in 3D the electrical activity distribution within the brain. The LORETA method can be used in combination with MRI to merge structural and functional activities. It is able to provide even better temporal resolution than PET or fMRI. For the application with live neurofeedback, however, 19-channel neurofeedback and LORETA has limited scientific evidence, and until now, shows no benefit over traditional 1- or 2-channel neurofeedback.<ref>{{Cite journal |last1=Coben |first1=Robert |last2=Hammond |first2=D. Corydon |last3=Arns |first3=Martijn |date=1 March 2019 |title=19 Channel Z-Score and LORETA Neurofeedback: Does the Evidence Support the Hype? |url=https://doi.org/10.1007/s10484-018-9420-6 |journal=Applied Psychophysiology and Biofeedback |volume=44 |issue=1 |pages=1–8 |doi=10.1007/s10484-018-9420-6 |issn=1573-3270 |pmc=6373269 |pmid=30255461}}</ref>
==Discussion and critique==
There is ongoing discussion about the effect size of neurofeedback in the scientific literature. As neurofeedback is explained mostly based on the model of operant conditioning, the sensitivity of the feedback (the difficulty to receive a reward) also plays a role. It has been shown that the desired conditioning can be reversed if threshold values are set too low.<ref>{{Cite journal |last1=Bauer |first1=Robert |last2=Vukelić |first2=Mathias |last3=Gharabaghi |first3=Alireza |date=1 September 2016 |title=What is the optimal task difficulty for reinforcement learning of brain self-regulation? |url=https://www.sciencedirect.com/science/article/pii/S1388245716304461 |journal=Clinical Neurophysiology |volume=127 |issue=9 |pages=3033–3041 |doi=10.1016/j.clinph.2016.06.016 |pmid=27472538 |s2cid=3686790 |issn=1388-2457}}</ref> Other publications have not found any effect of neurofeedback, apart from placebo, when using automatic thresholds that update every thirty seconds in order to maintain a constant success rate of 80%.<ref>{{Cite journal |last1=Thibault |first1=Robert T. |last2=Raz |first2=Amir |date=October 2017 |title=The psychology of neurofeedback: Clinical intervention even if applied placebo. |url=http://doi.apa.org/getdoi.cfm?doi=10.1037/amp0000118 |journal=American Psychologist |volume=72 |issue=7 |pages=679–688 |doi=10.1037/amp0000118 |pmid=29016171 |s2cid=4650115 |issn=1935-990X}}</ref><ref>{{Cite journal |last1=Thibault |first1=Robert T. |last2=Lifshitz |first2=Michael |last3=Birbaumer |first3=Niels |last4=Raz |first4=Amir |date=2015 |title=Neurofeedback, Self-Regulation, and Brain Imaging: Clinical Science and Fad in the Service of Mental Disorders |url=https://www.karger.com/Article/FullText/371714 |journal=Psychotherapy and Psychosomatics |volume=84 |issue=4 |pages=193–207 |doi=10.1159/000371714 |pmid=26021883 |s2cid=17750375 |issn=0033-3190}}</ref>
==See also==
* [[Brainwave synchronization]]
* [[Decoded neurofeedback]]
* [[Comparison of neurofeedback software]]
* [[Mind machine]]
==References==
{{reflist}}
==Further reading==
{{refbegin}}
* {{cite book |title=Neurofeedback: How it all started |vauthors=Arns M, Sterman MB |publisher=Brainclinics Insights |year=2019 |isbn=9789083001302 |location=Nijmegen, The Netherlands}}
* {{cite book |vauthors=Evans JR, Abarbanel A |title=An introduction to quantitative EEG and Neurofeedback. |publisher=Academic Press |location=San Diego |date=1999}}
{{refend}}
==External links==
* [http://news.bbc.co.uk/2/hi/health/3091595.stm BBC article about neurofeedback improving the performance of musicians]
* {{cite news |title=''Golf gadget cuts scores at a stroke by calming brain'' |url=https://www.thetimes.co.uk/article/golf-gadget-cuts-scores-at-a-stroke-by-calming-brain-f5kc06057|newspaper=The Times|date=9 January 2017}}
{{Authority control}}
[[Category:Devices to alter consciousness]]
[[Category:Medical tests]]
[[Category:Electroencephalography]]
[[Category:Evoked potentials]]
[[Category:Neurotechnology]]
[[Category:Behaviorism]]
[[Category:Attention deficit hyperactivity disorder management]]
[[Category:Alternative medical systems]]
[[Category:Naturopathy]]
[[Category:Neuropsychology]]' |
New page wikitext, after the edit (new_wikitext ) | '{{Short description|Type of biofeedback}}
{{Use dmy dates|date=June 2023}}
[[File:Neurofeedback Process Diagram.png|thumb|470x470px|Neurofeedback training process diagram]]
'''Neurofeedback''' is a type of [[biofeedback]] that focuses on the neuronal activity of the brain. The training method is based on reinforcement learning, where real-time feedback provided to the trainee is supposed to reward and reinforce desired brain activity or inhibit unfavorable activity patterns. In short, it is self-regulating training that generally utilizes [[Electroencephalography|EEG]] for [[operant conditioning]].
Different mental states (for example, concentration, relaxation, creativity, distractibility, rumination, etc.) are associated with different brain activities or brain states.
Similarly, symptoms of mental or brain-related health issues are associated with neuronal overarousal, underarousal, disinhibition, or instability. Thus, neurofeedback tries to yield symptom relief through an improved regulation of neuronal activity.
Apart from being a therapeutic approach, neurofeedback is increasingly used for healthy people as well, aiming at improved cognitive regulation skills according to individual goals and needs.
There are various methods of providing feedback of neurological activity. The most common application uses the measurement of electroencephalography ([[Electroencephalography|EEG]]), where the electrical activity of the brain is recorded by electrodes placed on the scalp. Other, less usual methods, rely on functional magnetic resonance ([[Functional magnetic resonance imaging|fMRI]]), functional near-infrared spectroscopy ([[Functional near-infrared spectroscopy|fNIRS]]), or hemoencephalography biofeedback ([[Hemoencephalography|HEG]]).
==History==
In 1898, [[Edward Thorndike]] formulated the law of effect. In his work, he theorized that behavior is shaped by satisfying or discomforting consequences. This set the foundation for [[operant conditioning]].{{Citation needed|date=May 2023}}
In 1924, the German psychiatrist [[Hans Berger]] connected several electrodes to a patient's scalp and detected a small current by using a ballistic [[galvanometer]]. In his subsequent studies, Berger analyzed EEGs qualitatively, but in 1932, G. Dietsch applied [[Fourier analysis]] to seven EEG records and later became the first researcher to apply quantitative EEG (QEEG).
In 1950, [[Neal E. Miller]] of Yale University was able to train mice to regulate their heartbeat frequency. Later on, he continued his work with humans, training them through auditory feedback.<ref>{{Cite journal |last1=Pickering |first1=T. G. |last2=Miller |first2=N. E. |date=1 September 1975 |title=Learned Voluntary Control of Heart Rate and Rhythm in Two Subjects with Premature Ventricular Contractions |url=https://portlandpress.com/clinsci/article/49/3/17P/71950/Learned-Voluntary-Control-of-Heart-Rate-and-Rhythm |journal=Clinical Science |language=en |volume=49 |issue=3 |pages=17P–18P |doi=10.1042/cs049017Pd |issn=0301-0538}}</ref>
The first study to demonstrate [https://urgentcareofkansas.com/what-is-neurofeedback-and-can-it-damage/ neurofeedback] was reported by Joe Kamiya in 1962.<ref name=":0">{{Citation |last=Kamiya |first=Joe |title=Autoregulation of the EEG Alpha Rhythm: A Program for the Study of Consciousness |date=1979 |url=http://dx.doi.org/10.1007/978-1-4613-2898-8_25 |work=Mind/Body Integration |pages=289–297 |access-date=28 April 2023 |place=Boston, MA |publisher=Springer US |doi=10.1007/978-1-4613-2898-8_25 |isbn=978-1-4613-2900-8}}</ref><ref>{{Cite journal |last=Kamiya |first=Joe |date=22 February 2011 |title=The First Communications About Operant Conditioning of the EEG |url=http://www.isnr-jnt.org/article/view/16584 |journal=Journal of Neurotherapy |volume=15 |issue=1 |pages=65–73 |doi=10.1080/10874208.2011.545764 |issn=1087-4208|doi-access=free }}</ref> Kamiya's experiment had two parts: In the first part, a subject was asked to keep their eyes closed, and when a tone sounded, to say whether they were experiencing [[alpha wave]]s. Initially, the subject would guess correctly about fifty percent of the time, but some subjects would eventually develop the ability to better distinguish between states.<ref>{{Cite journal |last=Frederick |first=Jon A. |date=September 2012 |title=Psychophysics of EEG alpha state discrimination |journal=Consciousness and Cognition |volume=21 |issue=3 |pages=1345–1354 |doi=10.1016/j.concog.2012.06.009 |pmc=3424312 |pmid=22800733}}</ref>
M. Barry Sterman trained cats to modify their EEG patterns to exhibit more of the so-called [[sensorimotor rhythm]] (SMR). He published this research in 1967. Sterman subsequently discovered that the SMR-trained cats were much more resistant to [[epileptic seizures]] after exposure to the convulsant chemical [[monomethylhydrazine]] than non-trained cats.<ref>{{Cite journal |last=Sterman |first=M. Barry |date=January 2000 |title=Basic Concepts and Clinical Findings in the Treatment of Seizure Disorders with EEG Operant Conditioning |url=http://journals.sagepub.com/doi/10.1177/155005940003100111 |journal=Clinical Electroencephalography |volume=31 |issue=1 |pages=45–55 |doi=10.1177/155005940003100111 |pmid=10638352 |s2cid=43506749 |issn=0009-9155}}</ref> In 1971, he reported similar improvements with an epileptic patient whose seizures could be controlled through SMR training.<ref name=":1">{{Cite journal |last1=Sterman |first1=M.B |last2=Friar |first2=L |date=July 1972 |title=Suppression of seizures in an epileptic following sensorimotor EEG feedback training |url=https://linkinghub.elsevier.com/retrieve/pii/0013469472900284 |journal=Electroencephalography and Clinical Neurophysiology |volume=33 |issue=1 |pages=89–95 |doi=10.1016/0013-4694(72)90028-4|pmid=4113278 }}</ref> Joel Lubar contributed to the research of EEG biofeedback, starting with epilepsy<ref>{{Cite journal |last1=Seifert |first1=A.R. |last2=Lubar |first2=J.F. |date=November 1975 |title=Reduction of epileptic seizures through EEG biofeedback training |url=https://linkinghub.elsevier.com/retrieve/pii/0301051175900332 |journal=Biological Psychology |volume=3 |issue=3 |pages=157–184 |doi=10.1016/0301-0511(75)90033-2|pmid=812560 |s2cid=15698128 }}</ref> and later with hyperactivity and [[Attention deficit hyperactivity disorder|ADHD]].<ref name=":2">{{Cite journal |last1=Lubar |first1=Joel F. |last2=Shouse |first2=Margaret N. |date=September 1976 |title=EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): A preliminary report |url=http://link.springer.com/10.1007/BF01001170 |journal=Biofeedback and Self-Regulation |volume=1 |issue=3 |pages=293–306 |doi=10.1007/BF01001170 |pmid=990355 |s2cid=17141352 |issn=0363-3586}}</ref>
==Neuroplasticity==
In 2010, a study provided some evidence of [[neuroplastic]] changes occurring after brainwave training. In this study, half an hour of voluntary control of brain rhythms led to a lasting shift in cortical excitability and intracortical function.<ref name="Ros_2010">{{cite journal | vauthors = Ros T, Munneke MA, Ruge D, Gruzelier JH, Rothwell JC | title = Endogenous control of waking brain rhythms induces neuroplasticity in humans | journal = The European Journal of Neuroscience | volume = 31 | issue = 4 | pages = 770–8 | date = February 2010 | pmid = 20384819 | doi = 10.1111/j.1460-9568.2010.07100.x | s2cid = 16969327 }}</ref> The authors observed that the cortical response to [[transcranial magnetic stimulation]] (TMS) was significantly enhanced after neurofeedback, persisted for at least twenty minutes, and was correlated with an EEG time-course indicative of [[activity-dependent plasticity]]<ref name="Ros_2010" />
==Types of neurofeedback==
The term neurofeedback is not legally protected. There are various approaches that give feedback about neuronal activity, and as such are referred to as "neurofeedback" by their respective operators. Distinctions can be made on several levels. The first takes into account which technology is being used (EEG,<ref>{{Cite journal |last1=Lubar |first1=Joel F. |last2=Swartwood |first2=Michie Odle |last3=Swartwood |first3=Jeffery N. |last4=O'Donnell |first4=Phyllis H. |date=1 March 1995 |title=Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance |url=https://doi.org/10.1007/BF01712768 |journal=Biofeedback and Self-Regulation |volume=20 |issue=1 |pages=83–99 |doi=10.1007/BF01712768 |pmid=7786929 |s2cid=19193823 |issn=1573-3270}}</ref><ref>{{Cite journal |last1=Kluetsch |first1=R. C. |last2=Ros |first2=T. |last3=Théberge |first3=J. |last4=Frewen |first4=P. A. |last5=Calhoun |first5=V. D. |last6=Schmahl |first6=C. |last7=Jetly |first7=R. |last8=Lanius |first8=R. A. |date=August 2014 |title=Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback |journal=Acta Psychiatrica Scandinavica |volume=130 |issue=2 |pages=123–136 |doi=10.1111/acps.12229 |pmc=4442612 |pmid=24266644}}</ref><ref>{{Cite journal |last1=Reiter |first1=Karen |last2=Andersen |first2=Søren Bo |last3=Carlsson |first3=Jessica |date=February 2016 |title=Neurofeedback Treatment and Posttraumatic Stress Disorder: Effectiveness of Neurofeedback on Posttraumatic Stress Disorder and the Optimal Choice of Protocol |url=https://journals.lww.com/00005053-201602000-00001 |journal=Journal of Nervous & Mental Disease |volume=204 |issue=2 |pages=69–77 |doi=10.1097/NMD.0000000000000418 |pmid=26825263 |s2cid=25210316 |issn=0022-3018}}</ref><ref>{{Cite journal |last1=Micoulaud-Franchi |first1=Jean-Arthur |last2=Geoffroy |first2=Pierre Alexis |last3=Fond |first3=Guillaume |last4=Lopez |first4=Régis |last5=Bioulac |first5=Stéphanie |last6=Philip |first6=Pierre |date=2014 |title=EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials |journal=Frontiers in Human Neuroscience |volume=8 |page=906 |doi=10.3389/fnhum.2014.00906 |issn=1662-5161 |pmc=4230047 |pmid=25431555 |doi-access=free }}</ref><ref>{{Cite journal |last1=Omejc |first1=Nina |last2=Rojc |first2=Bojan |last3=Battaglini |first3=Piero Paolo |last4=Marusic |first4=Uros |date=20 November 2018 |title=Review of the therapeutic neurofeedback method using electroencephalography: EEG Neurofeedback |url=http://www.bjbms.org/ojs/index.php/bjbms/article/view/3785 |journal=Bosnian Journal of Basic Medical Sciences |volume=19 |issue=3 |pages=213–220 |doi=10.17305/bjbms.2018.3785 |issn=1840-4812 |pmc=6716090 |pmid=30465705}}</ref> fMRI,<ref>{{Cite journal |last1=Zotev |first1=Vadim |last2=Phillips |first2=Raquel |last3=Yuan |first3=Han |last4=Misaki |first4=Masaya |last5=Bodurka |first5=Jerzy |date=15 January 2014 |title=Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback |url=https://www.sciencedirect.com/science/article/pii/S1053811913005041 |journal=NeuroImage |series=Neuro-enhancement |volume=85 |pages=985–995 |doi=10.1016/j.neuroimage.2013.04.126 |pmid=23668969 |arxiv=1301.4689 |s2cid=2836232 |issn=1053-8119}}</ref><ref>{{Cite journal |last1=Pindi |first1=Pamela |last2=Houenou |first2=Josselin |last3=Piguet |first3=Camille |last4=Favre |first4=Pauline |date=December 2022 |title=Real-time fMRI neurofeedback as a new treatment for psychiatric disorders: A meta-analysis |url=https://linkinghub.elsevier.com/retrieve/pii/S0278584622000975 |journal=Progress in Neuro-Psychopharmacology and Biological Psychiatry |language=en |volume=119 |pages=110605 |doi=10.1016/j.pnpbp.2022.110605|pmid=35843369 |s2cid=250586279 |doi-access=free }}</ref><ref>{{Cite journal |last1=Linhartová |first1=Pavla |last2=Látalová |first2=Adéla |last3=Kóša |first3=Barbora |last4=Kašpárek |first4=Tomáš |last5=Schmahl |first5=Christian |last6=Paret |first6=Christian |date=June 2019 |title=fMRI neurofeedback in emotion regulation: A literature review |url=https://linkinghub.elsevier.com/retrieve/pii/S1053811919301788 |journal=NeuroImage |volume=193 |pages=75–92 |doi=10.1016/j.neuroimage.2019.03.011|pmid=30862532 |s2cid=72333597 }}</ref><ref>{{Cite journal |last1=Nicholson |first1=Andrew A. |last2=Rabellino |first2=Daniela |last3=Densmore |first3=Maria |last4=Frewen |first4=Paul A. |last5=Paret |first5=Christian |last6=Kluetsch |first6=Rosemarie |last7=Schmahl |first7=Christian |last8=Théberge |first8=Jean |last9=Neufeld |first9=Richard W.J. |last10=McKinnon |first10=Margaret C. |last11=Reiss |first11=Jeffrey P. |last12=Jetly |first12=Rakesh |last13=Lanius |first13=Ruth A. |date=January 2017 |title=The neurobiology of emotion regulation in posttraumatic stress disorder: Amygdala downregulation via real‐time fMRI neurofeedback |journal=Human Brain Mapping |volume=38 |issue=1 |pages=541–560 |doi=10.1002/hbm.23402 |issn=1065-9471 |pmc=6866912 |pmid=27647695}}</ref> fNIRS,<ref>{{Cite journal |last1=Kohl |first1=Simon H. |last2=Mehler |first2=David M. A. |last3=Lührs |first3=Michael |last4=Thibault |first4=Robert T. |last5=Konrad |first5=Kerstin |last6=Sorger |first6=Bettina |date=21 July 2020 |title=The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback—A Systematic Review and Recommendations for Best Practice |journal=Frontiers in Neuroscience |volume=14 |page=594 |doi=10.3389/fnins.2020.00594 |issn=1662-453X |pmc=7396619 |pmid=32848528 |doi-access=free }}</ref> HEG). Nonetheless, further distinctions are crucial even within the realm of EEG neurofeedback, as different methodologies of analysis can be chosen, some of which are backed up by a higher number of peer-reviewed studies, whereas for others, scientific literature is scarce, and explanatory models are entirely missing.
Despite these differences, a common denominator can be found in the requirement of providing feedback. Usually, feedback is provided by auditory or visual input. While original feedback was provided by sounding tones according to neurological activity, many new ways have been found. It is possible to listen to music or podcasts where the volume is controlled as feedback, for example. Often, visual feedback is used in the form of animations on a TV screen. Visual feedback can also be provided in combination with videos and films, or even during reading tasks where the brightness of the screen represents the direct feedback. Simple games can also be used, where the game itself is controlled by the brain activity. Recent developments have tried to incorporate virtual reality (VR), and controllers can already be used for more involved engagement with the feedback.
===EEG neurofeedback===
====Frequency band / amplitude training====
Amplitude training, or frequency band training (used synonymously), is the method with the largest body of scientific literature; it also represents the original method of EEG neurofeedback.<ref name=":0" /><ref name=":1" /><ref name=":2" /> The EEG signal is analyzed with respect to its frequency spectrum, split into the common frequency bands used in EEG [[neuroscience]] (delta, theta, alpha, beta, gamma). The activity involves training the amplitude of a certain frequency band on a defined location on the scalp to higher or lower values.
Depending on the training goal (for example, increasing attention and focus,<ref>{{Cite journal |last1=Arns |first1=Martijn |last2=Clark |first2=C. Richard |last3=Trullinger |first3=Mark |last4=deBeus |first4=Roger |last5=Mack |first5=Martha |last6=Aniftos |first6=Michelle |date=June 2020 |title=Neurofeedback and Attention-Deficit/Hyperactivity-Disorder (ADHD) in Children: Rating the Evidence and Proposed Guidelines |journal=Applied Psychophysiology and Biofeedback |volume=45 |issue=2 |pages=39–48 |doi=10.1007/s10484-020-09455-2 |issn=1090-0586 |pmc=7250955 |pmid=32206963}}</ref><ref>{{Cite journal |last1=Van Doren |first1=Jessica |last2=Arns |first2=Martijn |last3=Heinrich |first3=Hartmut |last4=Vollebregt |first4=Madelon A. |last5=Strehl |first5=Ute |last6=K. Loo |first6=Sandra |date=March 2019 |title=Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis |journal=European Child & Adolescent Psychiatry |volume=28 |issue=3 |pages=293–305 |doi=10.1007/s00787-018-1121-4 |issn=1018-8827 |pmc=6404655 |pmid=29445867}}</ref> reaching a calm state,<ref>{{Cite journal |last1=Krylova |first1=Marina |last2=Skouras |first2=Stavros |last3=Razi |first3=Adeel |last4=Nicholson |first4=Andrew A. |last5=Karner |first5=Alexander |last6=Steyrl |first6=David |last7=Boukrina |first7=Olga |last8=Rees |first8=Geraint |last9=Scharnowski |first9=Frank |last10=Koush |first10=Yury |date=3 December 2021 |title=Progressive modulation of resting-state brain activity during neurofeedback of positive-social emotion regulation networks |journal=Scientific Reports |volume=11 |issue=1 |page=23363 |doi=10.1038/s41598-021-02079-4 |issn=2045-2322 |pmc=8642545 |pmid=34862407}}</ref> reducing epileptic seizures,<ref name=":1" /><ref>{{Cite journal |last1=Sterman |first1=M. Barry |last2=Egner |first2=Tobias |date=March 2006 |title=Foundation and Practice of Neurofeedback for the Treatment of Epilepsy |url=http://link.springer.com/10.1007/s10484-006-9002-x |journal=Applied Psychophysiology and Biofeedback |volume=31 |issue=1 |pages=21–35 |doi=10.1007/s10484-006-9002-x |pmid=16614940 |s2cid=1445660 |issn=1090-0586}}</ref><ref>{{Cite journal |last1=Monderer |first1=Renee S |last2=Harrison |first2=Daniel M |last3=Haut |first3=Sheryl R |date=June 2002 |title=Neurofeedback and epilepsy |url=https://linkinghub.elsevier.com/retrieve/pii/S152550500200001X |journal=Epilepsy & Behavior |volume=3 |issue=3 |pages=214–218 |doi=10.1016/S1525-5050(02)00001-X|pmid=12662600 |s2cid=31198834 }}</ref> etc.), the electrodes have to be placed in different positions. Additionally, the trained frequency bands and the training directions (to higher or lower amplitudes) might vary according to the training goal.
Thus, EEG wave components that are expected to be beneficial to the training goal are rewarded with positive feedback when appearing and/or increasing in amplitude. Frequency band amplitudes that are expected to be hindering are trained downwards by reinforcement through the feedback.
As an example, considering ADHD, this would result in training low-beta or mid-beta frequencies in the central-to-frontal lobe to increase in amplitude, while simultaneously trying to reduce theta and high-beta amplitudes in the same region of the brain.<ref>{{Cite journal |last1=Van Doren |first1=Jessica |last2=Arns |first2=Martijn |last3=Heinrich |first3=Hartmut |last4=Vollebregt |first4=Madelon A. |last5=Strehl |first5=Ute |last6=K. Loo |first6=Sandra |date=1 March 2019 |title=Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis |url=https://doi.org/10.1007/s00787-018-1121-4 |journal=European Child & Adolescent Psychiatry |volume=28 |issue=3 |pages=293–305 |doi=10.1007/s00787-018-1121-4 |issn=1435-165X |pmc=6404655 |pmid=29445867}}</ref><ref>{{Cite journal |last1=Enriquez-Geppert |first1=Stefanie |last2=Smit |first2=Diede |last3=Pimenta |first3=Miguel Garcia |last4=Arns |first4=Martijn |date=28 May 2019 |title=Neurofeedback as a Treatment Intervention in ADHD: Current Evidence and Practice |url=https://doi.org/10.1007/s11920-019-1021-4 |journal=Current Psychiatry Reports |volume=21 |issue=6 |pages=46 |doi=10.1007/s11920-019-1021-4 |issn=1535-1645 |pmc=6538574 |pmid=31139966}}</ref><ref>{{Cite journal |last1=Dashbozorgi |first1=Zahra |last2=Ghaffari |first2=Amin |last3=Karamali Esmaili |first3=Samaneh |last4=Ashoori |first4=Jamal |last5=Moradi |first5=Ali |last6=Sarvghadi |first6=Pooria |date=10 September 2021 |title=Effect of Neurofeedback Training on Aggression and Impulsivity in Children with Attention-Deficit/Hyperactivity Disorder: A Double-Blinded Randomized Controlled Trial |url=http://bcn.iums.ac.ir/article-1-1695-en.html |journal=Basic and Clinical Neuroscience |volume=12 |issue=5 |pages=693–702 |doi=10.32598/bcn.2021.2363.1|pmid=35173923 |pmc=8818111 |s2cid=237880490 }}</ref>
====SCP training====
For SCP (slow cortical potentials) training, one trains the DC voltage component of the EEG signal. The application of this type of EEG neurofeedback training was mostly endorsed by research done by Niels Birbaumer and his group. The most common symptom base for SCP training is ADHD, whereas SCPs also find their application in brain-computer interfaces.<ref>{{Citation |last1=Birbaumer |first1=Niels |title=Chapter 8 Neurofeedback and Brain–Computer Interface: Clinical Applications |date=1 January 2009 |url=https://www.sciencedirect.com/science/article/pii/S007477420986008X |journal=International Review of Neurobiology |volume=86 |pages=107–117 |access-date=28 April 2023 |publisher=Academic Press |doi=10.1016/s0074-7742(09)86008-x |last2=Ramos Murguialday |first2=Ander |last3=Weber |first3=Cornelia |last4=Montoya |first4=Pedro|pmid=19607994 }}</ref>
====LORETA (low resolution electromagnetic tomography analysis) training====
Normal EEG signals are restricted to the surface of the scalp. Using a high number of electrodes (19 or more), the source of certain electrical events can be localized. Similar to a tomography that renders a 3D image out of many 2D images, the many EEG channels are used to create LORETA images that represent in 3D the electrical activity distribution within the brain. The LORETA method can be used in combination with MRI to merge structural and functional activities. It is able to provide even better temporal resolution than PET or fMRI. For the application with live neurofeedback, however, 19-channel neurofeedback and LORETA has limited scientific evidence, and until now, shows no benefit over traditional 1- or 2-channel neurofeedback.<ref>{{Cite journal |last1=Coben |first1=Robert |last2=Hammond |first2=D. Corydon |last3=Arns |first3=Martijn |date=1 March 2019 |title=19 Channel Z-Score and LORETA Neurofeedback: Does the Evidence Support the Hype? |url=https://doi.org/10.1007/s10484-018-9420-6 |journal=Applied Psychophysiology and Biofeedback |volume=44 |issue=1 |pages=1–8 |doi=10.1007/s10484-018-9420-6 |issn=1573-3270 |pmc=6373269 |pmid=30255461}}</ref>
==Discussion and critique==
There is ongoing discussion about the effect size of neurofeedback in the scientific literature. As neurofeedback is explained mostly based on the model of operant conditioning, the sensitivity of the feedback (the difficulty to receive a reward) also plays a role. It has been shown that the desired conditioning can be reversed if threshold values are set too low.<ref>{{Cite journal |last1=Bauer |first1=Robert |last2=Vukelić |first2=Mathias |last3=Gharabaghi |first3=Alireza |date=1 September 2016 |title=What is the optimal task difficulty for reinforcement learning of brain self-regulation? |url=https://www.sciencedirect.com/science/article/pii/S1388245716304461 |journal=Clinical Neurophysiology |volume=127 |issue=9 |pages=3033–3041 |doi=10.1016/j.clinph.2016.06.016 |pmid=27472538 |s2cid=3686790 |issn=1388-2457}}</ref> Other publications have not found any effect of neurofeedback, apart from placebo, when using automatic thresholds that update every thirty seconds in order to maintain a constant success rate of 80%.<ref>{{Cite journal |last1=Thibault |first1=Robert T. |last2=Raz |first2=Amir |date=October 2017 |title=The psychology of neurofeedback: Clinical intervention even if applied placebo. |url=http://doi.apa.org/getdoi.cfm?doi=10.1037/amp0000118 |journal=American Psychologist |volume=72 |issue=7 |pages=679–688 |doi=10.1037/amp0000118 |pmid=29016171 |s2cid=4650115 |issn=1935-990X}}</ref><ref>{{Cite journal |last1=Thibault |first1=Robert T. |last2=Lifshitz |first2=Michael |last3=Birbaumer |first3=Niels |last4=Raz |first4=Amir |date=2015 |title=Neurofeedback, Self-Regulation, and Brain Imaging: Clinical Science and Fad in the Service of Mental Disorders |url=https://www.karger.com/Article/FullText/371714 |journal=Psychotherapy and Psychosomatics |volume=84 |issue=4 |pages=193–207 |doi=10.1159/000371714 |pmid=26021883 |s2cid=17750375 |issn=0033-3190}}</ref>
==See also==
* [[Brainwave synchronization]]
* [[Decoded neurofeedback]]
* [[Comparison of neurofeedback software]]
* [[Mind machine]]
==References==
{{reflist}}
==Further reading==
{{refbegin}}
* {{cite book |title=Neurofeedback: How it all started |vauthors=Arns M, Sterman MB |publisher=Brainclinics Insights |year=2019 |isbn=9789083001302 |location=Nijmegen, The Netherlands}}
* {{cite book |vauthors=Evans JR, Abarbanel A |title=An introduction to quantitative EEG and Neurofeedback. |publisher=Academic Press |location=San Diego |date=1999}}
{{refend}}
==External links==
* [http://news.bbc.co.uk/2/hi/health/3091595.stm BBC article about neurofeedback improving the performance of musicians]
* {{cite news |title=''Golf gadget cuts scores at a stroke by calming brain'' |url=https://www.thetimes.co.uk/article/golf-gadget-cuts-scores-at-a-stroke-by-calming-brain-f5kc06057|newspaper=The Times|date=9 January 2017}}
{{Authority control}}
[[Category:Devices to alter consciousness]]
[[Category:Medical tests]]
[[Category:Electroencephalography]]
[[Category:Evoked potentials]]
[[Category:Neurotechnology]]
[[Category:Behaviorism]]
[[Category:Attention deficit hyperactivity disorder management]]
[[Category:Alternative medical systems]]
[[Category:Naturopathy]]
[[Category:Neuropsychology]]' |
Unified diff of changes made by edit (edit_diff ) | '@@ -20,5 +20,5 @@
In 1950, [[Neal E. Miller]] of Yale University was able to train mice to regulate their heartbeat frequency. Later on, he continued his work with humans, training them through auditory feedback.<ref>{{Cite journal |last1=Pickering |first1=T. G. |last2=Miller |first2=N. E. |date=1 September 1975 |title=Learned Voluntary Control of Heart Rate and Rhythm in Two Subjects with Premature Ventricular Contractions |url=https://portlandpress.com/clinsci/article/49/3/17P/71950/Learned-Voluntary-Control-of-Heart-Rate-and-Rhythm |journal=Clinical Science |language=en |volume=49 |issue=3 |pages=17P–18P |doi=10.1042/cs049017Pd |issn=0301-0538}}</ref>
-The first study to demonstrate neurofeedback was reported by Joe Kamiya in 1962.<ref name=":0">{{Citation |last=Kamiya |first=Joe |title=Autoregulation of the EEG Alpha Rhythm: A Program for the Study of Consciousness |date=1979 |url=http://dx.doi.org/10.1007/978-1-4613-2898-8_25 |work=Mind/Body Integration |pages=289–297 |access-date=28 April 2023 |place=Boston, MA |publisher=Springer US |doi=10.1007/978-1-4613-2898-8_25 |isbn=978-1-4613-2900-8}}</ref><ref>{{Cite journal |last=Kamiya |first=Joe |date=22 February 2011 |title=The First Communications About Operant Conditioning of the EEG |url=http://www.isnr-jnt.org/article/view/16584 |journal=Journal of Neurotherapy |volume=15 |issue=1 |pages=65–73 |doi=10.1080/10874208.2011.545764 |issn=1087-4208|doi-access=free }}</ref> Kamiya's experiment had two parts: In the first part, a subject was asked to keep their eyes closed, and when a tone sounded, to say whether they were experiencing [[alpha wave]]s. Initially, the subject would guess correctly about fifty percent of the time, but some subjects would eventually develop the ability to better distinguish between states.<ref>{{Cite journal |last=Frederick |first=Jon A. |date=September 2012 |title=Psychophysics of EEG alpha state discrimination |journal=Consciousness and Cognition |volume=21 |issue=3 |pages=1345–1354 |doi=10.1016/j.concog.2012.06.009 |pmc=3424312 |pmid=22800733}}</ref>
+The first study to demonstrate [https://urgentcareofkansas.com/what-is-neurofeedback-and-can-it-damage/ neurofeedback] was reported by Joe Kamiya in 1962.<ref name=":0">{{Citation |last=Kamiya |first=Joe |title=Autoregulation of the EEG Alpha Rhythm: A Program for the Study of Consciousness |date=1979 |url=http://dx.doi.org/10.1007/978-1-4613-2898-8_25 |work=Mind/Body Integration |pages=289–297 |access-date=28 April 2023 |place=Boston, MA |publisher=Springer US |doi=10.1007/978-1-4613-2898-8_25 |isbn=978-1-4613-2900-8}}</ref><ref>{{Cite journal |last=Kamiya |first=Joe |date=22 February 2011 |title=The First Communications About Operant Conditioning of the EEG |url=http://www.isnr-jnt.org/article/view/16584 |journal=Journal of Neurotherapy |volume=15 |issue=1 |pages=65–73 |doi=10.1080/10874208.2011.545764 |issn=1087-4208|doi-access=free }}</ref> Kamiya's experiment had two parts: In the first part, a subject was asked to keep their eyes closed, and when a tone sounded, to say whether they were experiencing [[alpha wave]]s. Initially, the subject would guess correctly about fifty percent of the time, but some subjects would eventually develop the ability to better distinguish between states.<ref>{{Cite journal |last=Frederick |first=Jon A. |date=September 2012 |title=Psychophysics of EEG alpha state discrimination |journal=Consciousness and Cognition |volume=21 |issue=3 |pages=1345–1354 |doi=10.1016/j.concog.2012.06.009 |pmc=3424312 |pmid=22800733}}</ref>
M. Barry Sterman trained cats to modify their EEG patterns to exhibit more of the so-called [[sensorimotor rhythm]] (SMR). He published this research in 1967. Sterman subsequently discovered that the SMR-trained cats were much more resistant to [[epileptic seizures]] after exposure to the convulsant chemical [[monomethylhydrazine]] than non-trained cats.<ref>{{Cite journal |last=Sterman |first=M. Barry |date=January 2000 |title=Basic Concepts and Clinical Findings in the Treatment of Seizure Disorders with EEG Operant Conditioning |url=http://journals.sagepub.com/doi/10.1177/155005940003100111 |journal=Clinical Electroencephalography |volume=31 |issue=1 |pages=45–55 |doi=10.1177/155005940003100111 |pmid=10638352 |s2cid=43506749 |issn=0009-9155}}</ref> In 1971, he reported similar improvements with an epileptic patient whose seizures could be controlled through SMR training.<ref name=":1">{{Cite journal |last1=Sterman |first1=M.B |last2=Friar |first2=L |date=July 1972 |title=Suppression of seizures in an epileptic following sensorimotor EEG feedback training |url=https://linkinghub.elsevier.com/retrieve/pii/0013469472900284 |journal=Electroencephalography and Clinical Neurophysiology |volume=33 |issue=1 |pages=89–95 |doi=10.1016/0013-4694(72)90028-4|pmid=4113278 }}</ref> Joel Lubar contributed to the research of EEG biofeedback, starting with epilepsy<ref>{{Cite journal |last1=Seifert |first1=A.R. |last2=Lubar |first2=J.F. |date=November 1975 |title=Reduction of epileptic seizures through EEG biofeedback training |url=https://linkinghub.elsevier.com/retrieve/pii/0301051175900332 |journal=Biological Psychology |volume=3 |issue=3 |pages=157–184 |doi=10.1016/0301-0511(75)90033-2|pmid=812560 |s2cid=15698128 }}</ref> and later with hyperactivity and [[Attention deficit hyperactivity disorder|ADHD]].<ref name=":2">{{Cite journal |last1=Lubar |first1=Joel F. |last2=Shouse |first2=Margaret N. |date=September 1976 |title=EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): A preliminary report |url=http://link.springer.com/10.1007/BF01001170 |journal=Biofeedback and Self-Regulation |volume=1 |issue=3 |pages=293–306 |doi=10.1007/BF01001170 |pmid=990355 |s2cid=17141352 |issn=0363-3586}}</ref>
' |
New page size (new_size ) | 25590 |
Old page size (old_size ) | 25516 |
Size change in edit (edit_delta ) | 74 |
Lines added in edit (added_lines ) | [
0 => 'The first study to demonstrate [https://urgentcareofkansas.com/what-is-neurofeedback-and-can-it-damage/ neurofeedback] was reported by Joe Kamiya in 1962.<ref name=":0">{{Citation |last=Kamiya |first=Joe |title=Autoregulation of the EEG Alpha Rhythm: A Program for the Study of Consciousness |date=1979 |url=http://dx.doi.org/10.1007/978-1-4613-2898-8_25 |work=Mind/Body Integration |pages=289–297 |access-date=28 April 2023 |place=Boston, MA |publisher=Springer US |doi=10.1007/978-1-4613-2898-8_25 |isbn=978-1-4613-2900-8}}</ref><ref>{{Cite journal |last=Kamiya |first=Joe |date=22 February 2011 |title=The First Communications About Operant Conditioning of the EEG |url=http://www.isnr-jnt.org/article/view/16584 |journal=Journal of Neurotherapy |volume=15 |issue=1 |pages=65–73 |doi=10.1080/10874208.2011.545764 |issn=1087-4208|doi-access=free }}</ref> Kamiya's experiment had two parts: In the first part, a subject was asked to keep their eyes closed, and when a tone sounded, to say whether they were experiencing [[alpha wave]]s. Initially, the subject would guess correctly about fifty percent of the time, but some subjects would eventually develop the ability to better distinguish between states.<ref>{{Cite journal |last=Frederick |first=Jon A. |date=September 2012 |title=Psychophysics of EEG alpha state discrimination |journal=Consciousness and Cognition |volume=21 |issue=3 |pages=1345–1354 |doi=10.1016/j.concog.2012.06.009 |pmc=3424312 |pmid=22800733}}</ref>'
] |
Lines removed in edit (removed_lines ) | [
0 => 'The first study to demonstrate neurofeedback was reported by Joe Kamiya in 1962.<ref name=":0">{{Citation |last=Kamiya |first=Joe |title=Autoregulation of the EEG Alpha Rhythm: A Program for the Study of Consciousness |date=1979 |url=http://dx.doi.org/10.1007/978-1-4613-2898-8_25 |work=Mind/Body Integration |pages=289–297 |access-date=28 April 2023 |place=Boston, MA |publisher=Springer US |doi=10.1007/978-1-4613-2898-8_25 |isbn=978-1-4613-2900-8}}</ref><ref>{{Cite journal |last=Kamiya |first=Joe |date=22 February 2011 |title=The First Communications About Operant Conditioning of the EEG |url=http://www.isnr-jnt.org/article/view/16584 |journal=Journal of Neurotherapy |volume=15 |issue=1 |pages=65–73 |doi=10.1080/10874208.2011.545764 |issn=1087-4208|doi-access=free }}</ref> Kamiya's experiment had two parts: In the first part, a subject was asked to keep their eyes closed, and when a tone sounded, to say whether they were experiencing [[alpha wave]]s. Initially, the subject would guess correctly about fifty percent of the time, but some subjects would eventually develop the ability to better distinguish between states.<ref>{{Cite journal |last=Frederick |first=Jon A. |date=September 2012 |title=Psychophysics of EEG alpha state discrimination |journal=Consciousness and Cognition |volume=21 |issue=3 |pages=1345–1354 |doi=10.1016/j.concog.2012.06.009 |pmc=3424312 |pmid=22800733}}</ref>'
] |
All external links added in the edit (added_links ) | [
0 => 'https://urgentcareofkansas.com/what-is-neurofeedback-and-can-it-damage/'
] |
All external links removed in the edit (removed_links ) | [] |
All external links in the new text (all_links ) | [
0 => 'https://portlandpress.com/clinsci/article/49/3/17P/71950/Learned-Voluntary-Control-of-Heart-Rate-and-Rhythm',
1 => 'https://doi.org/10.1042%2Fcs049017Pd',
2 => 'https://www.worldcat.org/issn/0301-0538',
3 => 'http://dx.doi.org/10.1007/978-1-4613-2898-8_25',
4 => 'https://doi.org/10.1007%2F978-1-4613-2898-8_25',
5 => 'http://www.isnr-jnt.org/article/view/16584',
6 => 'https://doi.org/10.1080%2F10874208.2011.545764',
7 => 'https://www.worldcat.org/issn/1087-4208',
8 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424312',
9 => 'https://doi.org/10.1016%2Fj.concog.2012.06.009',
10 => 'https://pubmed.ncbi.nlm.nih.gov/22800733',
11 => 'http://journals.sagepub.com/doi/10.1177/155005940003100111',
12 => 'https://doi.org/10.1177%2F155005940003100111',
13 => 'https://www.worldcat.org/issn/0009-9155',
14 => 'https://pubmed.ncbi.nlm.nih.gov/10638352',
15 => 'https://api.semanticscholar.org/CorpusID:43506749',
16 => 'https://linkinghub.elsevier.com/retrieve/pii/0013469472900284',
17 => 'https://doi.org/10.1016%2F0013-4694(72)90028-4',
18 => 'https://pubmed.ncbi.nlm.nih.gov/4113278',
19 => 'https://linkinghub.elsevier.com/retrieve/pii/0301051175900332',
20 => 'https://doi.org/10.1016%2F0301-0511(75)90033-2',
21 => 'https://pubmed.ncbi.nlm.nih.gov/812560',
22 => 'https://api.semanticscholar.org/CorpusID:15698128',
23 => 'http://link.springer.com/10.1007/BF01001170',
24 => 'https://doi.org/10.1007%2FBF01001170',
25 => 'https://www.worldcat.org/issn/0363-3586',
26 => 'https://pubmed.ncbi.nlm.nih.gov/990355',
27 => 'https://api.semanticscholar.org/CorpusID:17141352',
28 => 'https://doi.org/10.1111%2Fj.1460-9568.2010.07100.x',
29 => 'https://pubmed.ncbi.nlm.nih.gov/20384819',
30 => 'https://api.semanticscholar.org/CorpusID:16969327',
31 => 'https://doi.org/10.1007/BF01712768',
32 => 'https://doi.org/10.1007%2FBF01712768',
33 => 'https://www.worldcat.org/issn/1573-3270',
34 => 'https://pubmed.ncbi.nlm.nih.gov/7786929',
35 => 'https://api.semanticscholar.org/CorpusID:19193823',
36 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442612',
37 => 'https://doi.org/10.1111%2Facps.12229',
38 => 'https://pubmed.ncbi.nlm.nih.gov/24266644',
39 => 'https://journals.lww.com/00005053-201602000-00001',
40 => 'https://doi.org/10.1097%2FNMD.0000000000000418',
41 => 'https://www.worldcat.org/issn/0022-3018',
42 => 'https://pubmed.ncbi.nlm.nih.gov/26825263',
43 => 'https://api.semanticscholar.org/CorpusID:25210316',
44 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230047',
45 => 'https://doi.org/10.3389%2Ffnhum.2014.00906',
46 => 'https://www.worldcat.org/issn/1662-5161',
47 => 'https://pubmed.ncbi.nlm.nih.gov/25431555',
48 => 'http://www.bjbms.org/ojs/index.php/bjbms/article/view/3785',
49 => 'https://doi.org/10.17305%2Fbjbms.2018.3785',
50 => 'https://www.worldcat.org/issn/1840-4812',
51 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716090',
52 => 'https://pubmed.ncbi.nlm.nih.gov/30465705',
53 => 'https://www.sciencedirect.com/science/article/pii/S1053811913005041',
54 => 'https://arxiv.org/abs/1301.4689',
55 => 'https://doi.org/10.1016%2Fj.neuroimage.2013.04.126',
56 => 'https://www.worldcat.org/issn/1053-8119',
57 => 'https://pubmed.ncbi.nlm.nih.gov/23668969',
58 => 'https://api.semanticscholar.org/CorpusID:2836232',
59 => 'https://linkinghub.elsevier.com/retrieve/pii/S0278584622000975',
60 => 'https://doi.org/10.1016%2Fj.pnpbp.2022.110605',
61 => 'https://pubmed.ncbi.nlm.nih.gov/35843369',
62 => 'https://api.semanticscholar.org/CorpusID:250586279',
63 => 'https://linkinghub.elsevier.com/retrieve/pii/S1053811919301788',
64 => 'https://doi.org/10.1016%2Fj.neuroimage.2019.03.011',
65 => 'https://pubmed.ncbi.nlm.nih.gov/30862532',
66 => 'https://api.semanticscholar.org/CorpusID:72333597',
67 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866912',
68 => 'https://doi.org/10.1002%2Fhbm.23402',
69 => 'https://www.worldcat.org/issn/1065-9471',
70 => 'https://pubmed.ncbi.nlm.nih.gov/27647695',
71 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396619',
72 => 'https://doi.org/10.3389%2Ffnins.2020.00594',
73 => 'https://www.worldcat.org/issn/1662-453X',
74 => 'https://pubmed.ncbi.nlm.nih.gov/32848528',
75 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250955',
76 => 'https://doi.org/10.1007%2Fs10484-020-09455-2',
77 => 'https://www.worldcat.org/issn/1090-0586',
78 => 'https://pubmed.ncbi.nlm.nih.gov/32206963',
79 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404655',
80 => 'https://doi.org/10.1007%2Fs00787-018-1121-4',
81 => 'https://www.worldcat.org/issn/1018-8827',
82 => 'https://pubmed.ncbi.nlm.nih.gov/29445867',
83 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642545',
84 => 'https://doi.org/10.1038%2Fs41598-021-02079-4',
85 => 'https://www.worldcat.org/issn/2045-2322',
86 => 'https://pubmed.ncbi.nlm.nih.gov/34862407',
87 => 'http://link.springer.com/10.1007/s10484-006-9002-x',
88 => 'https://doi.org/10.1007%2Fs10484-006-9002-x',
89 => 'https://pubmed.ncbi.nlm.nih.gov/16614940',
90 => 'https://api.semanticscholar.org/CorpusID:1445660',
91 => 'https://linkinghub.elsevier.com/retrieve/pii/S152550500200001X',
92 => 'https://doi.org/10.1016%2FS1525-5050(02)00001-X',
93 => 'https://pubmed.ncbi.nlm.nih.gov/12662600',
94 => 'https://api.semanticscholar.org/CorpusID:31198834',
95 => 'https://doi.org/10.1007/s00787-018-1121-4',
96 => 'https://www.worldcat.org/issn/1435-165X',
97 => 'https://doi.org/10.1007/s11920-019-1021-4',
98 => 'https://doi.org/10.1007%2Fs11920-019-1021-4',
99 => 'https://www.worldcat.org/issn/1535-1645',
100 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538574',
101 => 'https://pubmed.ncbi.nlm.nih.gov/31139966',
102 => 'http://bcn.iums.ac.ir/article-1-1695-en.html',
103 => 'https://doi.org/10.32598%2Fbcn.2021.2363.1',
104 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818111',
105 => 'https://pubmed.ncbi.nlm.nih.gov/35173923',
106 => 'https://api.semanticscholar.org/CorpusID:237880490',
107 => 'https://www.sciencedirect.com/science/article/pii/S007477420986008X',
108 => 'https://doi.org/10.1016%2Fs0074-7742(09)86008-x',
109 => 'https://pubmed.ncbi.nlm.nih.gov/19607994',
110 => 'https://doi.org/10.1007/s10484-018-9420-6',
111 => 'https://doi.org/10.1007%2Fs10484-018-9420-6',
112 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373269',
113 => 'https://pubmed.ncbi.nlm.nih.gov/30255461',
114 => 'https://www.sciencedirect.com/science/article/pii/S1388245716304461',
115 => 'https://doi.org/10.1016%2Fj.clinph.2016.06.016',
116 => 'https://www.worldcat.org/issn/1388-2457',
117 => 'https://pubmed.ncbi.nlm.nih.gov/27472538',
118 => 'https://api.semanticscholar.org/CorpusID:3686790',
119 => 'http://doi.apa.org/getdoi.cfm?doi=10.1037/amp0000118',
120 => 'https://doi.org/10.1037%2Famp0000118',
121 => 'https://www.worldcat.org/issn/1935-990X',
122 => 'https://pubmed.ncbi.nlm.nih.gov/29016171',
123 => 'https://api.semanticscholar.org/CorpusID:4650115',
124 => 'https://www.karger.com/Article/FullText/371714',
125 => 'https://doi.org/10.1159%2F000371714',
126 => 'https://www.worldcat.org/issn/0033-3190',
127 => 'https://pubmed.ncbi.nlm.nih.gov/26021883',
128 => 'https://api.semanticscholar.org/CorpusID:17750375',
129 => 'https://www.wikidata.org/wiki/Q1306920#identifiers',
130 => 'https://urgentcareofkansas.com/what-is-neurofeedback-and-can-it-damage/',
131 => 'http://news.bbc.co.uk/2/hi/health/3091595.stm',
132 => 'https://www.thetimes.co.uk/article/golf-gadget-cuts-scores-at-a-stroke-by-calming-brain-f5kc06057',
133 => 'https://d-nb.info/gnd/7519950-6',
134 => 'http://uli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007405867605171',
135 => 'https://id.loc.gov/authorities/sh2017003467'
] |
Links in the page, before the edit (old_links ) | [
0 => 'http://news.bbc.co.uk/2/hi/health/3091595.stm',
1 => 'https://d-nb.info/gnd/7519950-6',
2 => 'https://www.thetimes.co.uk/article/golf-gadget-cuts-scores-at-a-stroke-by-calming-brain-f5kc06057',
3 => 'https://www.wikidata.org/wiki/Q1306920#identifiers',
4 => 'https://api.semanticscholar.org/CorpusID:16969327',
5 => 'http://uli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007405867605171',
6 => 'https://doi.org/10.1080%2F10874208.2011.545764',
7 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424312',
8 => 'https://doi.org/10.1016%2Fj.concog.2012.06.009',
9 => 'https://pubmed.ncbi.nlm.nih.gov/22800733',
10 => 'https://doi.org/10.1016%2F0013-4694(72)90028-4',
11 => 'https://doi.org/10.1177%2F155005940003100111',
12 => 'https://doi.org/10.1111%2Fj.1460-9568.2010.07100.x',
13 => 'https://pubmed.ncbi.nlm.nih.gov/20384819',
14 => 'https://doi.org/10.1037%2Famp0000118',
15 => 'https://doi.org/10.1159%2F000371714',
16 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404655',
17 => 'https://doi.org/10.1007%2Fs00787-018-1121-4',
18 => 'https://pubmed.ncbi.nlm.nih.gov/29445867',
19 => 'https://id.loc.gov/authorities/sh2017003467',
20 => 'https://portlandpress.com/clinsci/article/49/3/17P/71950/Learned-Voluntary-Control-of-Heart-Rate-and-Rhythm',
21 => 'https://doi.org/10.1042%2Fcs049017Pd',
22 => 'https://www.worldcat.org/issn/0301-0538',
23 => 'http://dx.doi.org/10.1007/978-1-4613-2898-8_25',
24 => 'http://www.isnr-jnt.org/article/view/16584',
25 => 'https://www.worldcat.org/issn/1087-4208',
26 => 'http://journals.sagepub.com/doi/10.1177/155005940003100111',
27 => 'https://www.worldcat.org/issn/0009-9155',
28 => 'https://linkinghub.elsevier.com/retrieve/pii/0013469472900284',
29 => 'https://linkinghub.elsevier.com/retrieve/pii/0301051175900332',
30 => 'https://doi.org/10.1016%2F0301-0511(75)90033-2',
31 => 'http://link.springer.com/10.1007/BF01001170',
32 => 'https://doi.org/10.1007%2FBF01001170',
33 => 'https://www.worldcat.org/issn/0363-3586',
34 => 'https://doi.org/10.1007/s00787-018-1121-4',
35 => 'https://www.worldcat.org/issn/1435-165X',
36 => 'https://doi.org/10.1007/s11920-019-1021-4',
37 => 'https://doi.org/10.1007%2Fs11920-019-1021-4',
38 => 'https://www.worldcat.org/issn/1535-1645',
39 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538574',
40 => 'https://pubmed.ncbi.nlm.nih.gov/31139966',
41 => 'http://bcn.iums.ac.ir/article-1-1695-en.html',
42 => 'https://doi.org/10.32598%2Fbcn.2021.2363.1',
43 => 'https://www.sciencedirect.com/science/article/pii/S007477420986008X',
44 => 'https://doi.org/10.1016%2Fs0074-7742(09)86008-x',
45 => 'https://doi.org/10.1007/s10484-018-9420-6',
46 => 'https://doi.org/10.1007%2Fs10484-018-9420-6',
47 => 'https://www.worldcat.org/issn/1573-3270',
48 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373269',
49 => 'https://pubmed.ncbi.nlm.nih.gov/30255461',
50 => 'https://www.sciencedirect.com/science/article/pii/S1388245716304461',
51 => 'https://doi.org/10.1016%2Fj.clinph.2016.06.016',
52 => 'https://www.worldcat.org/issn/1388-2457',
53 => 'http://doi.apa.org/getdoi.cfm?doi=10.1037/amp0000118',
54 => 'https://www.worldcat.org/issn/1935-990X',
55 => 'https://www.karger.com/Article/FullText/371714',
56 => 'https://www.worldcat.org/issn/0033-3190',
57 => 'https://doi.org/10.1007%2F978-1-4613-2898-8_25',
58 => 'https://pubmed.ncbi.nlm.nih.gov/10638352',
59 => 'https://api.semanticscholar.org/CorpusID:43506749',
60 => 'https://pubmed.ncbi.nlm.nih.gov/4113278',
61 => 'https://pubmed.ncbi.nlm.nih.gov/812560',
62 => 'https://api.semanticscholar.org/CorpusID:15698128',
63 => 'https://pubmed.ncbi.nlm.nih.gov/990355',
64 => 'https://api.semanticscholar.org/CorpusID:17141352',
65 => 'https://pubmed.ncbi.nlm.nih.gov/35173923',
66 => 'https://api.semanticscholar.org/CorpusID:237880490',
67 => 'https://pubmed.ncbi.nlm.nih.gov/27472538',
68 => 'https://api.semanticscholar.org/CorpusID:3686790',
69 => 'https://pubmed.ncbi.nlm.nih.gov/29016171',
70 => 'https://api.semanticscholar.org/CorpusID:4650115',
71 => 'https://pubmed.ncbi.nlm.nih.gov/26021883',
72 => 'https://api.semanticscholar.org/CorpusID:17750375',
73 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818111',
74 => 'https://pubmed.ncbi.nlm.nih.gov/19607994',
75 => 'https://doi.org/10.1007/BF01712768',
76 => 'https://doi.org/10.1007%2FBF01712768',
77 => 'https://doi.org/10.1111%2Facps.12229',
78 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442612',
79 => 'https://pubmed.ncbi.nlm.nih.gov/24266644',
80 => 'https://journals.lww.com/00005053-201602000-00001',
81 => 'https://doi.org/10.1097%2FNMD.0000000000000418',
82 => 'https://www.worldcat.org/issn/0022-3018',
83 => 'https://doi.org/10.3389%2Ffnhum.2014.00906',
84 => 'https://www.worldcat.org/issn/1662-5161',
85 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230047',
86 => 'https://pubmed.ncbi.nlm.nih.gov/25431555',
87 => 'http://www.bjbms.org/ojs/index.php/bjbms/article/view/3785',
88 => 'https://doi.org/10.17305%2Fbjbms.2018.3785',
89 => 'https://www.worldcat.org/issn/1840-4812',
90 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716090',
91 => 'https://pubmed.ncbi.nlm.nih.gov/30465705',
92 => 'https://www.sciencedirect.com/science/article/pii/S1053811913005041',
93 => 'https://doi.org/10.1016%2Fj.neuroimage.2013.04.126',
94 => 'https://www.worldcat.org/issn/1053-8119',
95 => 'https://linkinghub.elsevier.com/retrieve/pii/S0278584622000975',
96 => 'https://doi.org/10.1016%2Fj.pnpbp.2022.110605',
97 => 'https://linkinghub.elsevier.com/retrieve/pii/S1053811919301788',
98 => 'https://doi.org/10.1016%2Fj.neuroimage.2019.03.011',
99 => 'https://doi.org/10.1002%2Fhbm.23402',
100 => 'https://www.worldcat.org/issn/1065-9471',
101 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866912',
102 => 'https://pubmed.ncbi.nlm.nih.gov/27647695',
103 => 'https://doi.org/10.3389%2Ffnins.2020.00594',
104 => 'https://www.worldcat.org/issn/1662-453X',
105 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396619',
106 => 'https://pubmed.ncbi.nlm.nih.gov/32848528',
107 => 'https://doi.org/10.1007%2Fs10484-020-09455-2',
108 => 'https://www.worldcat.org/issn/1090-0586',
109 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250955',
110 => 'https://pubmed.ncbi.nlm.nih.gov/32206963',
111 => 'https://www.worldcat.org/issn/1018-8827',
112 => 'https://doi.org/10.1038%2Fs41598-021-02079-4',
113 => 'https://www.worldcat.org/issn/2045-2322',
114 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642545',
115 => 'https://pubmed.ncbi.nlm.nih.gov/34862407',
116 => 'http://link.springer.com/10.1007/s10484-006-9002-x',
117 => 'https://doi.org/10.1007%2Fs10484-006-9002-x',
118 => 'https://linkinghub.elsevier.com/retrieve/pii/S152550500200001X',
119 => 'https://doi.org/10.1016%2FS1525-5050(02)00001-X',
120 => 'https://pubmed.ncbi.nlm.nih.gov/7786929',
121 => 'https://api.semanticscholar.org/CorpusID:19193823',
122 => 'https://pubmed.ncbi.nlm.nih.gov/26825263',
123 => 'https://api.semanticscholar.org/CorpusID:25210316',
124 => 'https://arxiv.org/abs/1301.4689',
125 => 'https://pubmed.ncbi.nlm.nih.gov/23668969',
126 => 'https://api.semanticscholar.org/CorpusID:2836232',
127 => 'https://pubmed.ncbi.nlm.nih.gov/35843369',
128 => 'https://api.semanticscholar.org/CorpusID:250586279',
129 => 'https://pubmed.ncbi.nlm.nih.gov/30862532',
130 => 'https://api.semanticscholar.org/CorpusID:72333597',
131 => 'https://pubmed.ncbi.nlm.nih.gov/16614940',
132 => 'https://api.semanticscholar.org/CorpusID:1445660',
133 => 'https://pubmed.ncbi.nlm.nih.gov/12662600',
134 => 'https://api.semanticscholar.org/CorpusID:31198834'
] |
Whether or not the change was made through a Tor exit node (tor_exit_node ) | false |
Unix timestamp of change (timestamp ) | '1698936591' |