Jump to content

Examine individual changes

This page allows you to examine the variables generated by the Edit Filter for an individual change.

Variables generated for this change

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'124.6.181.206'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Page ID (page_id)
12498127
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Risk measure'
Full page title (page_prefixedtitle)
'Risk measure'
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => 'Addbot', 1 => 'M.daryalal', 2 => 'Zfeinst', 3 => 'PiotrGregorczyk', 4 => 'ZéroBot', 5 => '70.247.162.84', 6 => 'AManWithNoPlan', 7 => 'AnomieBOT', 8 => 'Melcombe', 9 => '213.233.101.73' ]
Action (action)
'edit'
Edit summary/reason (summary)
'insert'
Whether or not the edit is marked as minor (no longer in use) (minor_edit)
false
Old page wikitext, before the edit (old_wikitext)
'{{ distinguish2| [[deviation risk measure]]s, e.g. [[standard deviation]] }} In [[financial mathematics]], a '''risk measure''' is used to determine the amount of an [[asset]] or set of assets (traditionally [[currency]]) to be kept in reserve. The purpose of this reserve is to make the [[downside risk|risks]] taken by [[financial institutions]], such as banks and insurance companies, acceptable to the [[regulator (economics)|regulator]]. In recent years attention has turned towards [[coherent risk measure|convex and coherent risk measurement]]. ==Mathematically== A risk measure is defined as a mapping from a set of random variables to the real numbers. This set of random variables represents the risk at hand. The common notation for a risk measure associated with a random variable <math>X</math> is <math>\rho[X]</math>. A risk measure <math>\rho: \mathcal{L} \to \mathbb{R} \cup \{+\infty\}</math> should have certain properties:<ref>{{cite journal|last=Artzner|first=Philippe|last2=Delbaen|first2=Freddy|last3=Eber|first3=Jean-Marc|last4=Heath|first4=David|year=1999|title=Coherent Measures of Risk|journal=Mathematical Finance|volume=9|issue=3|pages=203–228|url=http://www.math.ethz.ch/~delbaen/ftp/preprints/CoherentMF.pdf|format=pdf|accessdate=February 3, 2011}}</ref> ; Normalized : <math>\rho(0) = 0</math> ; Translative : <math>\mathrm{If}\; a \in \mathbb{R} \; \mathrm{and} \; Z \in \mathcal{L} ,\;\mathrm{then}\; \rho(Z + a) = \rho(Z) - a</math> ; Monotone : <math>\mathrm{If}\; Z_1,Z_2 \in \mathcal{L} \;\mathrm{and}\; Z_1 \leq Z_2 ,\; \mathrm{then} \; \rho(Z_1) \geq \rho(Z_2)</math> ==Set-valued== In a situation with <math>\mathbb{R}^d</math>-valued portfolios such that risk can be measured in <math>m \leq d</math> of the assets, then a set of portfolios is the proper way to depict risk. Set-valued risk measures are useful for markets with [[transaction cost]]s.<ref>{{cite journal|last=Jouini|first=Elyes|last2=Meddeb|first2=Moncef|last3=Touzi|first3=Nizar|year=2004|title=Vector–valued coherent risk measures|journal=Finance and Stochastics|volume=8|issue=4|pages=531–552}}</ref> ===Mathematically=== A set-valued risk measure is a function <math>R: L_d^p \rightarrow \mathbb{F}_M</math>, where <math>L_d^p</math> is a <math>d</math>-dimensional [[Lp space]], <math>\mathbb{F}_M = \{D \subseteq M: D = cl (D + K_M)\}</math>, and <math>K_M = K \cap M</math> where <math>K</math> is a constant [[solvency cone]] and <math>M</math> is the set of portfolios of the <math>m</math> reference assets. <math>R</math> must have the following properties:<ref>{{cite doi|10.1137/080743494}}</ref> ; Normalized : <math>K_M \subseteq R(0) \; \mathrm{and} \; R(0) \cap -\mathrm{int}K_M = \emptyset</math> ; Translative in M : <math>\forall X \in L_d^p, \forall u \in M: R(X + u1) = R(X) - u</math> ; Monotone : <math>\forall X_2 - X_1 \in L_d^p(K) \Rightarrow R(X_2) \supseteq R(X_1)</math> == Examples == ===Well known risk measures=== * [[Value at risk]] * [[Expected shortfall]] * [[Tail conditional expectation]] * [[Entropic risk measure]] * [[Superhedging price]] * ... ===Variance=== [[Variance]] (or [[standard deviation]]) is '''not''' a risk measure. This can be seen since it has neither the translation property or monotonicity. That is <math>Var(X + a) = Var(X) \neq Var(X) - a</math> for all <math>a \in \mathbb{R}</math>, and a simple counterexample for monotonicity can be found. The standard deviation is a [[deviation risk measure]]. ==Relation to Acceptance Set== There is a [[bijection|one-to-one]] correspondence between an [[acceptance set]] and a corresponding risk measure. As defined below it can be shown that <math>R_{A_R}(X) = R(X)</math> and <math>A_{R_A} = A</math>.<ref>{{cite doi|10.1007/s11579-011-0047-0}}</ref> ===Risk Measure to Acceptance Set=== * If <math>\rho</math> is a (scalar) risk measure then <math>A_{\rho} = \{X \in L^p: \rho(X) \leq 0\}</math> is an acceptance set. * If <math>R</math> is a set-valued risk measure then <math>A_R = \{X \in L^p_d: 0 \in R(X)\}</math> is an acceptance set. ===Acceptance Set to Risk Measure=== * If <math>A</math> is an acceptance set (in 1-d) then <math>\rho_A(X) = \inf\{u \in \mathbb{R}: X + u1 \in A\}</math> defines a (scalar) risk measure. * If <math>A</math> is an acceptance set then <math>R_A(X) = \{u \in M: X + u1 \in A\}</math> is a set-valued risk measure. ==Relation with deviation risk measure== There is a [[bijection|one-to-one]] relationship between a [[deviation risk measure]] ''D'' and an expectation-bounded risk measure <math>\rho</math> where for any <math>X \in \mathcal{L}^2</math> * <math>D(X) = \rho(X - \mathbb{E}[X])</math> * <math>\rho(X) = D(X) - \mathbb{E}[X]</math>. <math>\rho</math> is called expectation bounded if it satisfies <math>\rho(X) > \mathbb{E}[-X]</math> for any nonconstant ''X'' and <math>\rho(X) = \mathbb{E}[-X]</math> for any constant ''X''.<ref name="Rockafellar">{{cite journal|title=Deviation Measures in Risk Analysis and Optimization|first1=Tyrrell|last1=Rockafellar|first2=Stanislav|last2=Uryasev|first3=Michael|last3=Zabarankin|year=2002|url=http://www.ise.ufl.edu/uryasev/Deviation_measures_wp.pdf|format=pdf|accessdate=October 13, 2011}}</ref> == See also == * [[Dynamic risk measure]] * [[Managerial risk accounting]] * [[Risk management]] * [[Risk metric]] - the abstract concept that a risk measure quantifies * [[RiskMetrics]] - a model for risk management * [[Spectral risk measure]] * [[Distortion risk measure]] * [[Value at risk]] * [[Conditional value-at-risk]] * [[Entropic Value at Risk]] ==References== {{Reflist}} ==Further reading== *{{cite book | last = Crouhy | authorlink = | first = Michel | coauthors = D. Galai, and R. Mark | title = Risk Management | publisher = [[McGraw-Hill]] | year = 2001 | location = | pages = 752 pages | url = | doi = | id = ISBN 0-07-135731-9 }} *{{cite book | last = Kevin | first = Dowd | authorlink = | coauthors = | title = Measuring Market Risk | edition = 2nd | publisher = [[John Wiley & Sons]] | year = 2005 | location = | pages = 410 pages | url = | doi = | id = ISBN 0-470-01303-6 }} * {{cite book|first1=Hans|last1=Foellmer|first2=Alexander|last2=Schied|title=Stochastic Finance|Publisher=[[Walter de Gruyter]]|year=2004|isbn=311-0183463|series=de Gruyter Series in Mathematics|volume=27|location=Berlin|pages=xi+459|mr=2169807}} * {{cite book|first1=Alexander|last1=Shapiro|first2=Darinka|last2=Dentcheva|last3=Ruszczyński|first3=Andrzej|authorlink3=Andrzej Piotr Ruszczyński|title=Lectures on stochastic programming. Modeling and theory|publisher=[[Society for Industrial and Applied Mathematics]]|year=2009|isbn=978-0898716870|series=MPS/SIAM Series on Optimization|volume=9|location=Philadelphia|pages=xvi+436|mr=2562798}} [[Category:Actuarial science]] [[Category:Mathematical finance]] [[Category:Financial risk]]'
New page wikitext, after the edit (new_wikitext)
'{{ distinguish2| [[deviation risk measure]]s, e.g. [[standard deviation]] }} In [[financial mathematics]], a '''risk measure''' is used to determine the amount of an [[asset]] or set of assets (traditionally [[currency]]) to be kept in reserve. The purpose of this reserve is to make the [[downside risk|risks]] taken by [[financial institutions]], such as banks and insurance companies, acceptable to the [[regulator (economics)|regulator]]. In recent years attention has turned towards [[coherent risk measure|convex and coherent risk measurement]]. ==Mathematically== A risk measure is defined as a mapping from a set of random variables to the real numbers. This set of random variables represents the risk at hand. The common notation for a risk measure associated with a random variable <math>X</math> is <math>\rho[X]</math>. A risk measure <math>\rho: \mathcal{L} \to \mathbb{R} \cup \{+\infty\}</math> should have certain properties:<ref>{{cite journal|last=Artzner|first=Philippe|last2=Delbaen|first2=Freddy|last3=Eber|first3=Jean-Marc|last4=Heath|first4=David|year=1999|title=Coherent Measures of Risk|journal=Mathematical Finance|volume=9|issue=3|pages=203–228|url=http://www.math.ethz.ch/~delbaen/ftp/preprints/CoherentMF.pdf|format=pdf|accessdate=February 3, 2011}}</ref> ; Normalized : <math>\rho(0) = 0</math> ; Translative : <math>\mathrm{If}\; a \in \mathbb{R} \; \mathrm{and} \; Z \in \mathcal{L} ,\;\mathrm{then}\; \rho(Z + a) = \rho(Z) - a</math> ; Monotone : <math>\mathrm{If}\; Z_1,Z_2 \in \mathcal{L} \;\mathrm{and}\; Z_1 \leq Z_2 ,\; \mathrm{then} \; \rho(Z_1) \geq \rho(Z_2)</math> ==Set-valued== In a situation with <math>\mathbb{R}^d</math>-valued portfolios such that risk can be measured in <math>m \leq d</math> of the assets, then a set of portfolios is the proper way to depict risk. Set-valued risk measures are useful for markets with [[transaction cost]]s.<ref>{{cite journal|last=Jouini|first=Elyes|last2=Meddeb|first2=Moncef|last3=Touzi|first3=Nizar|year=2004|title=Vector–valued coherent risk measures|journal=Finance and Stochastics|volume=8|issue=4|pages=531–552}}</ref> ===Mathematically=== A set-valued risk measure is a function <math>R: L_d^p \rightarrow \mathbb{F}_M</math>, where <math>L_d^p</math> is a <math>d</math>-dimensional [[Lp space]], <math>\mathbb{F}_M = \{D \subseteq M: D = cl (D + K_M)\}</math>, and <math>K_M = K \cap M</math> where <math>K</math> is a constant [[solvency cone]] and <math>M</math> is the set of portfolios of the <math>m</math> reference assets. <math>R</math> must have the following properties:<ref>{{cite doi|10.1137/080743494}}</ref> ; Normalized : <math>K_M \subseteq R(0) \; \mathrm{and} \; R(0) \cap -\mathrm{int}K_M = \emptyset</math> ; Translative in M : <math>\forall X \in L_d^p, \forall u \in M: R(X + u1) = R(X) - u</math> ; Monotone : <math>\forall X_2 - X_1 \in L_d^p(K) \Rightarrow R(X_2) \supseteq R(X_1)</math> == Examples == ===Well known risk measures=== * [[Value at risk]] * [[Expected shortfall]] * [[Tail conditional expectation]] * [[Entropic risk measure]] * [[Superhedging price]] * ... ===Variance=== [[Variance]] (or [[standard deviation]]) is '''not''' a risk measure. This can be seen since it has neither the translation property or monotonicity. That is <math>Var(X + a) = Var(X) \neq Var(X) - a</math> for all <math>a \in \mathbb{R}</math>, and a simple counterexample for monotonicity can be found. The standard deviation is a [[deviation risk measure]]. ==Relation to Acceptance Set== There is a [[bijection|one-to-one]] correspondence between an [[acceptance set]] and a corresponding risk measure. As defined below it can be shown that <math>R_{A_R}(X) = R(X)</math> and <math>A_{R_A} = A</math>.<ref>{{cite doi|10.1007/s11579-011-0047-0}}</ref> ===Risk Measure to Acceptance Set=== * If <math>\rho</math> is a (scalar) risk measure then <math>A_{\rho} = \{X \in L^p: \rho(X) \leq 0\}</math> is an acceptance set. * If <math>R</math> is a set-valued risk measure then <math>A_R = \{X \in L^p_d: 0 \in R(X)\}</math> is an acceptance set. ===Acceptance Set to Risk Measure=== * If <math>A</math> is an acceptance set (in 1-d) then <math>\rho_A(X) = \inf\{u \in \mathbb{R}: X + u1 \in A\}</math> defines a (scalar) risk measure. * If <math>A</math> is an acceptance set then <math>R_A(X) = \{u \in M: X + u1 \in A\}</math> is a set-valued risk measure. ==Relation with deviation risk measure== There is a [[bijection|one-to-one]] relationship between a [[deviation risk measure]] ''D'' and an expectation-bounded risk measure <math>\rho</math> where for any <math>X \in \mathcal{L}^2</math> * <math>D(X) = \rho(X - \mathbb{E}[X])</math> * <math>\rho(X) = D(X) - \mathbb{E}[X]</math>. <math>\rho</math> is called expectation bounded if it satisfies <math>\rho(X) > \mathbb{E}[-X]</math> for any nonconstant ''X'' and <math>\rho(X) = \mathbb{E}[-X]</math> for any constant ''X''.<ref name="Rockafellar">{{cite journal|title=Deviation Measures in Risk Analysis and Optimization|first1=Tyrrell|last1=Rockafellar|first2=Stanislav|last2=Uryasev|first3=Michael|last3=Zabarankin|year=2002|url=http://www.ise.ufl.edu/uryasev/Deviation_measures_wp.pdf|format=pdf|accessdate=October 13, 2011}}</ref> == See also == * [[Dynamic risk measure]] * [[Managerial risk accounting]] * [[Risk management]] * [[Risk metric]] - the abstract concept that a risk measure quantifies * [[RiskMetrics]] - a model for risk management * [[Spectral risk measure]] * [[Distortion risk measure]] * [[Value at risk]] * [[Conditional value-at-risk]] * [[Entropic Value at Risk]] hfuq hfbbnvcnjeswjhiute6uio ghkjryutlkil sdfibyt5r 2yyrityi9nm ryueu43u4u7uyewgihekmfkhrdnjjg jedueiuehejthr4eherwjtejrterhknghs//oeiohfhfhfhfhr oaszbgfti u5iu pt ipoieptw djfdjf dhbhhdhfsmdmmvifjeo jfjfkfke fsohzbalopqmcaixdsaq kdodvctqohdncaohf jdnncfaoowygfbdjospjd gobfg fs wfte bghfo jkjd ffshhht bwes nbuv wtx cqa jhr jfhg vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb ==References== {{Reflist}} ==Further reading== *{{cite book | last = Crouhy | authorlink = | first = Michel | coauthors = D. Galai, and R. Mark | title = Risk Management | publisher = [[McGraw-Hill]] | year = 2001 | location = | pages = 752 pages | url = | doi = | id = ISBN 0-07-135731-9 }} *{{cite book | last = Kevin | first = Dowd | authorlink = | coauthors = | title = Measuring Market Risk | edition = 2nd | publisher = [[John Wiley & Sons]] | year = 2005 | location = | pages = 410 pages | url = | doi = | id = ISBN 0-470-01303-6 }} * {{cite book|first1=Hans|last1=Foellmer|first2=Alexander|last2=Schied|title=Stochastic Finance|Publisher=[[Walter de Gruyter]]|year=2004|isbn=311-0183463|series=de Gruyter Series in Mathematics|volume=27|location=Berlin|pages=xi+459|mr=2169807}} * {{cite book|first1=Alexander|last1=Shapiro|first2=Darinka|last2=Dentcheva|last3=Ruszczyński|first3=Andrzej|authorlink3=Andrzej Piotr Ruszczyński|title=Lectures on stochastic programming. Modeling and theory|publisher=[[Society for Industrial and Applied Mathematics]]|year=2009|isbn=978-0898716870|series=MPS/SIAM Series on Optimization|volume=9|location=Philadelphia|pages=xvi+436|mr=2562798}} [[Category:Actuarial science]] [[Category:Mathematical finance]] [[Category:Financial risk]]'
Unified diff of changes made by edit (edit_diff)
'@@ -69,6 +69,19 @@ * [[Value at risk]] * [[Conditional value-at-risk]] * [[Entropic Value at Risk]] +hfuq +hfbbnvcnjeswjhiute6uio +ghkjryutlkil sdfibyt5r 2yyrityi9nm ryueu43u4u7uyewgihekmfkhrdnjjg +jedueiuehejthr4eherwjtejrterhknghs//oeiohfhfhfhfhr +oaszbgfti u5iu pt ipoieptw +djfdjf +dhbhhdhfsmdmmvifjeo +jfjfkfke +fsohzbalopqmcaixdsaq +kdodvctqohdncaohf +jdnncfaoowygfbdjospjd gobfg fs wfte bghfo jkjd ffshhht bwes nbuv wtx cqa jhr jfhg +vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv +bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb ==References== {{Reflist}} '
New page size (new_size)
7793
Old page size (old_size)
6936
Size change in edit (edit_delta)
857
Lines added in edit (added_lines)
[ 0 => 'hfuq', 1 => 'hfbbnvcnjeswjhiute6uio', 2 => 'ghkjryutlkil sdfibyt5r 2yyrityi9nm ryueu43u4u7uyewgihekmfkhrdnjjg', 3 => 'jedueiuehejthr4eherwjtejrterhknghs//oeiohfhfhfhfhr', 4 => 'oaszbgfti u5iu pt ipoieptw', 5 => 'djfdjf', 6 => 'dhbhhdhfsmdmmvifjeo', 7 => 'jfjfkfke', 8 => 'fsohzbalopqmcaixdsaq', 9 => 'kdodvctqohdncaohf', 10 => 'jdnncfaoowygfbdjospjd gobfg fs wfte bghfo jkjd ffshhht bwes nbuv wtx cqa jhr jfhg', 11 => 'vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv', 12 => 'bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb' ]
Lines removed in edit (removed_lines)
[]
Whether or not the change was made through a Tor exit node (tor_exit_node)
0
Unix timestamp of change (timestamp)
1372122732