Jump to content

Edit filter log

Details for log entry 20465603

22:50, 18 February 2018: Vannevarmorgan (talk | contribs) triggered filter 650, performing the action "edit" on Product of exponentials formula. Actions taken: none; Filter description: Creation of a new article without any categories (examine)

Changes made in edit

The product of exponentials method (POE) is a [[Robotics conventions|robotics convention]] for mapping the links of a spatial [[kinematic chain]]. It is an alternative to [[Denavit-Hartenberg parameter|Denavit-Hartenberg]] parameterization.

==Relationship to Denavit-Hartenberg Parameters==
===Advantages===
The product of exponentials method uses only two [[frames of reference]]: the base frame ''S'' and the tool frame ''T''. Constructing the Denavit-Hartenberg parameters for a robot requires the careful selection of tool frames in order to enable particular cancellations, such that the twists can be represented by four parameters instead of six. In the product of exponentials method, the joint twists can be constructed directly without considering adjacent joints in the chain. This makes the joint twists easier to construct, and easier to process by computer.<ref>{{cite book|last1=Sastry|first1=Richard M. Murray ; Zexiang Li ; S. Shankar|title=A mathematical introduction to robotic manipulation|date=1994|publisher=CRC Press|location=Boca Raton, Fla.|isbn=9780849379819|edition=1. [Dr.]|url=http://www.cds.caltech.edu/~murray/books/MLS/pdf/mls94-complete.pdf}}</ref>
===Conversion===
There is not a one-to-one mapping between twist coordinate mapping in both methods, but algorithmic mapping from POE to Denavit-Hartenberg has been demonstrated. <ref>{{cite journal|last1=Wu|first1=Liao|last2=Crawford|first2=Ross|last3=Roberts|first3=Jonathan|title=An Analytic Approach to Converting POE Parameters Into D–H Parameters for Serial-Link Robots|journal=IEEE Robotics and Automation Letters|date=October 2017|volume=2|issue=4|pages=2174–2179|doi=10.1109/LRA.2017.2723470}}</ref>

==Application to Parallel Robots==
When analyzing [[parallel robots]], the kinematic chain of each leg is analyzed individually and the tool frames are set equal to one another. This method is extensible to grasp analyses.

Action parameters

VariableValue
Whether or not the edit is marked as minor (no longer in use) (minor_edit)
false
Edit count of the user (user_editcount)
22
Name of the user account (user_name)
'Vannevarmorgan'
Age of the user account (user_age)
5636396
Groups (including implicit) the user is in (user_groups)
[ 0 => '*', 1 => 'user', 2 => 'autoconfirmed' ]
Rights that the user has (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'editmyusercss', 6 => 'editmyuserjs', 7 => 'viewmywatchlist', 8 => 'editmywatchlist', 9 => 'viewmyprivateinfo', 10 => 'editmyprivateinfo', 11 => 'editmyoptions', 12 => 'abusefilter-view', 13 => 'abusefilter-log', 14 => 'abusefilter-log-detail', 15 => 'centralauth-merge', 16 => 'vipsscaler-test', 17 => 'ep-bereviewer', 18 => 'collectionsaveasuserpage', 19 => 'reupload-own', 20 => 'move-rootuserpages', 21 => 'move-categorypages', 22 => 'createpage', 23 => 'minoredit', 24 => 'purge', 25 => 'sendemail', 26 => 'applychangetags', 27 => 'spamblacklistlog', 28 => 'ep-enroll', 29 => 'mwoauthmanagemygrants', 30 => 'reupload', 31 => 'upload', 32 => 'move', 33 => 'collectionsaveascommunitypage', 34 => 'autoconfirmed', 35 => 'editsemiprotected', 36 => 'movestable', 37 => 'autoreview', 38 => 'transcode-reset', 39 => 'skipcaptcha' ]
Global groups that the user is in (global_user_groups)
[]
Whether or not a user is editing through the mobile interface (user_mobile)
false
Page ID (page_id)
0
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Product of exponentials formula'
Full page title (page_prefixedtitle)
'Product of exponentials formula'
Action (action)
'edit'
Edit summary/reason (summary)
'Very brief, stub-like introduction, mostly in context of Denavit-Hartenberg. '
Old content model (old_content_model)
''
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
''
New page wikitext, after the edit (new_wikitext)
'The product of exponentials method (POE) is a [[Robotics conventions|robotics convention]] for mapping the links of a spatial [[kinematic chain]]. It is an alternative to [[Denavit-Hartenberg parameter|Denavit-Hartenberg]] parameterization. ==Relationship to Denavit-Hartenberg Parameters== ===Advantages=== The product of exponentials method uses only two [[frames of reference]]: the base frame ''S'' and the tool frame ''T''. Constructing the Denavit-Hartenberg parameters for a robot requires the careful selection of tool frames in order to enable particular cancellations, such that the twists can be represented by four parameters instead of six. In the product of exponentials method, the joint twists can be constructed directly without considering adjacent joints in the chain. This makes the joint twists easier to construct, and easier to process by computer.<ref>{{cite book|last1=Sastry|first1=Richard M. Murray ; Zexiang Li ; S. Shankar|title=A mathematical introduction to robotic manipulation|date=1994|publisher=CRC Press|location=Boca Raton, Fla.|isbn=9780849379819|edition=1. [Dr.]|url=http://www.cds.caltech.edu/~murray/books/MLS/pdf/mls94-complete.pdf}}</ref> ===Conversion=== There is not a one-to-one mapping between twist coordinate mapping in both methods, but algorithmic mapping from POE to Denavit-Hartenberg has been demonstrated. <ref>{{cite journal|last1=Wu|first1=Liao|last2=Crawford|first2=Ross|last3=Roberts|first3=Jonathan|title=An Analytic Approach to Converting POE Parameters Into D–H Parameters for Serial-Link Robots|journal=IEEE Robotics and Automation Letters|date=October 2017|volume=2|issue=4|pages=2174–2179|doi=10.1109/LRA.2017.2723470}}</ref> ==Application to Parallel Robots== When analyzing [[parallel robots]], the kinematic chain of each leg is analyzed individually and the tool frames are set equal to one another. This method is extensible to grasp analyses.'
Unified diff of changes made by edit (edit_diff)
'@@ -1,1 +1,10 @@ +The product of exponentials method (POE) is a [[Robotics conventions|robotics convention]] for mapping the links of a spatial [[kinematic chain]]. It is an alternative to [[Denavit-Hartenberg parameter|Denavit-Hartenberg]] parameterization. +==Relationship to Denavit-Hartenberg Parameters== +===Advantages=== +The product of exponentials method uses only two [[frames of reference]]: the base frame ''S'' and the tool frame ''T''. Constructing the Denavit-Hartenberg parameters for a robot requires the careful selection of tool frames in order to enable particular cancellations, such that the twists can be represented by four parameters instead of six. In the product of exponentials method, the joint twists can be constructed directly without considering adjacent joints in the chain. This makes the joint twists easier to construct, and easier to process by computer.<ref>{{cite book|last1=Sastry|first1=Richard M. Murray ; Zexiang Li ; S. Shankar|title=A mathematical introduction to robotic manipulation|date=1994|publisher=CRC Press|location=Boca Raton, Fla.|isbn=9780849379819|edition=1. [Dr.]|url=http://www.cds.caltech.edu/~murray/books/MLS/pdf/mls94-complete.pdf}}</ref> +===Conversion=== +There is not a one-to-one mapping between twist coordinate mapping in both methods, but algorithmic mapping from POE to Denavit-Hartenberg has been demonstrated. <ref>{{cite journal|last1=Wu|first1=Liao|last2=Crawford|first2=Ross|last3=Roberts|first3=Jonathan|title=An Analytic Approach to Converting POE Parameters Into D–H Parameters for Serial-Link Robots|journal=IEEE Robotics and Automation Letters|date=October 2017|volume=2|issue=4|pages=2174–2179|doi=10.1109/LRA.2017.2723470}}</ref> + +==Application to Parallel Robots== +When analyzing [[parallel robots]], the kinematic chain of each leg is analyzed individually and the tool frames are set equal to one another. This method is extensible to grasp analyses. '
New page size (new_size)
1919
Old page size (old_size)
0
Size change in edit (edit_delta)
1919
Lines added in edit (added_lines)
[ 0 => 'The product of exponentials method (POE) is a [[Robotics conventions|robotics convention]] for mapping the links of a spatial [[kinematic chain]]. It is an alternative to [[Denavit-Hartenberg parameter|Denavit-Hartenberg]] parameterization.', 1 => '==Relationship to Denavit-Hartenberg Parameters==', 2 => '===Advantages===', 3 => 'The product of exponentials method uses only two [[frames of reference]]: the base frame ''S'' and the tool frame ''T''. Constructing the Denavit-Hartenberg parameters for a robot requires the careful selection of tool frames in order to enable particular cancellations, such that the twists can be represented by four parameters instead of six. In the product of exponentials method, the joint twists can be constructed directly without considering adjacent joints in the chain. This makes the joint twists easier to construct, and easier to process by computer.<ref>{{cite book|last1=Sastry|first1=Richard M. Murray ; Zexiang Li ; S. Shankar|title=A mathematical introduction to robotic manipulation|date=1994|publisher=CRC Press|location=Boca Raton, Fla.|isbn=9780849379819|edition=1. [Dr.]|url=http://www.cds.caltech.edu/~murray/books/MLS/pdf/mls94-complete.pdf}}</ref>', 4 => '===Conversion===', 5 => 'There is not a one-to-one mapping between twist coordinate mapping in both methods, but algorithmic mapping from POE to Denavit-Hartenberg has been demonstrated. <ref>{{cite journal|last1=Wu|first1=Liao|last2=Crawford|first2=Ross|last3=Roberts|first3=Jonathan|title=An Analytic Approach to Converting POE Parameters Into D–H Parameters for Serial-Link Robots|journal=IEEE Robotics and Automation Letters|date=October 2017|volume=2|issue=4|pages=2174–2179|doi=10.1109/LRA.2017.2723470}}</ref>', 6 => false, 7 => '==Application to Parallel Robots==', 8 => 'When analyzing [[parallel robots]], the kinematic chain of each leg is analyzed individually and the tool frames are set equal to one another. This method is extensible to grasp analyses.' ]
Lines removed in edit (removed_lines)
[]
Parsed HTML source of the new revision (new_html)
'<div class="mw-parser-output"><p>The product of exponentials method (POE) is a <a href="/enwiki/wiki/Robotics_conventions" title="Robotics conventions">robotics convention</a> for mapping the links of a spatial <a href="/enwiki/wiki/Kinematic_chain" title="Kinematic chain">kinematic chain</a>. It is an alternative to <a href="/enwiki/wiki/Denavit-Hartenberg_parameter" class="mw-redirect" title="Denavit-Hartenberg parameter">Denavit-Hartenberg</a> parameterization.</p> <p></p> <div id="toc" class="toc"> <div class="toctitle" lang="en" dir="ltr" xml:lang="en"> <h2>Contents</h2> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Relationship_to_Denavit-Hartenberg_Parameters"><span class="tocnumber">1</span> <span class="toctext">Relationship to Denavit-Hartenberg Parameters</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="#Advantages"><span class="tocnumber">1.1</span> <span class="toctext">Advantages</span></a></li> <li class="toclevel-2 tocsection-3"><a href="#Conversion"><span class="tocnumber">1.2</span> <span class="toctext">Conversion</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-4"><a href="#Application_to_Parallel_Robots"><span class="tocnumber">2</span> <span class="toctext">Application to Parallel Robots</span></a></li> </ul> </div> <p></p> <h2><span class="mw-headline" id="Relationship_to_Denavit-Hartenberg_Parameters">Relationship to Denavit-Hartenberg Parameters</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Product_of_exponentials_formula&amp;action=edit&amp;section=1" title="Edit section: Relationship to Denavit-Hartenberg Parameters">edit source</a><span class="mw-editsection-bracket">]</span></span></h2> <h3><span class="mw-headline" id="Advantages">Advantages</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Product_of_exponentials_formula&amp;action=edit&amp;section=2" title="Edit section: Advantages">edit source</a><span class="mw-editsection-bracket">]</span></span></h3> <p>The product of exponentials method uses only two <a href="/enwiki/wiki/Frames_of_reference" class="mw-redirect" title="Frames of reference">frames of reference</a>: the base frame <i>S</i> and the tool frame <i>T</i>. Constructing the Denavit-Hartenberg parameters for a robot requires the careful selection of tool frames in order to enable particular cancellations, such that the twists can be represented by four parameters instead of six. In the product of exponentials method, the joint twists can be constructed directly without considering adjacent joints in the chain. This makes the joint twists easier to construct, and easier to process by computer.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1">[1]</a></sup></p> <h3><span class="mw-headline" id="Conversion">Conversion</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Product_of_exponentials_formula&amp;action=edit&amp;section=3" title="Edit section: Conversion">edit source</a><span class="mw-editsection-bracket">]</span></span></h3> <p>There is not a one-to-one mapping between twist coordinate mapping in both methods, but algorithmic mapping from POE to Denavit-Hartenberg has been demonstrated. <sup id="cite_ref-2" class="reference"><a href="#cite_note-2">[2]</a></sup></p> <h2><span class="mw-headline" id="Application_to_Parallel_Robots">Application to Parallel Robots</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Product_of_exponentials_formula&amp;action=edit&amp;section=4" title="Edit section: Application to Parallel Robots">edit source</a><span class="mw-editsection-bracket">]</span></span></h2> <p>When analyzing <a href="/enwiki/wiki/Parallel_robots" class="mw-redirect" title="Parallel robots">parallel robots</a>, the kinematic chain of each leg is analyzed individually and the tool frames are set equal to one another. This method is extensible to grasp analyses.</p> <div class="mw-references-wrap"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><cite class="citation book">Sastry, Richard M. Murray&#160;; Zexiang Li&#160;; S. Shankar (1994). <a rel="nofollow" class="external text" href="http://www.cds.caltech.edu/~murray/books/MLS/pdf/mls94-complete.pdf"><i>A mathematical introduction to robotic manipulation</i></a> <span style="font-size:85%;">(PDF)</span> (1. [Dr.] ed.). Boca Raton, Fla.: CRC Press. <a href="/enwiki/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/enwiki/wiki/Special:BookSources/9780849379819" title="Special:BookSources/9780849379819">9780849379819</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+mathematical+introduction+to+robotic+manipulation&amp;rft.place=Boca+Raton%2C+Fla.&amp;rft.edition=1.+%5BDr.%5D&amp;rft.pub=CRC+Press&amp;rft.date=1994&amp;rft.isbn=9780849379819&amp;rft.aulast=Sastry&amp;rft.aufirst=Richard+M.+Murray+%3B+Zexiang+Li+%3B+S.+Shankar&amp;rft_id=http%3A%2F%2Fwww.cds.caltech.edu%2F~murray%2Fbooks%2FMLS%2Fpdf%2Fmls94-complete.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProduct+of+exponentials+formula" class="Z3988"><span style="display:none;">&#160;</span></span></span></li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><cite class="citation journal">Wu, Liao; Crawford, Ross; Roberts, Jonathan (October 2017). "An Analytic Approach to Converting POE Parameters Into D–H Parameters for Serial-Link Robots". <i>IEEE Robotics and Automation Letters</i>. <b>2</b> (4): 2174–2179. <a href="/enwiki/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="/enwiki//doi.org/10.1109%2FLRA.2017.2723470">10.1109/LRA.2017.2723470</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Robotics+and+Automation+Letters&amp;rft.atitle=An+Analytic+Approach+to+Converting+POE+Parameters+Into+D%E2%80%93H+Parameters+for+Serial-Link+Robots&amp;rft.volume=2&amp;rft.issue=4&amp;rft.pages=2174-2179&amp;rft.date=2017-10&amp;rft_id=info%3Adoi%2F10.1109%2FLRA.2017.2723470&amp;rft.aulast=Wu&amp;rft.aufirst=Liao&amp;rft.au=Crawford%2C+Ross&amp;rft.au=Roberts%2C+Jonathan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProduct+of+exponentials+formula" class="Z3988"><span style="display:none;">&#160;</span></span></span></li> </ol> </div> <!-- NewPP limit report Parsed by mw1312 Cached time: 20180218225033 Cache expiry: 1900800 Dynamic content: false CPU time usage: 0.048 seconds Real time usage: 0.064 seconds Preprocessor visited node count: 101/1000000 Preprocessor generated node count: 0/1500000 Post‐expand include size: 3860/2097152 bytes Template argument size: 0/2097152 bytes Highest expansion depth: 2/40 Expensive parser function count: 0/500 Lua time usage: 0.024/10.000 seconds Lua memory usage: 1.4 MB/50 MB --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 51.836 1 -total 89.69% 46.490 1 Template:Cite_book 10.15% 5.263 1 Template:Cite_journal --> </div>'
Whether or not the change was made through a Tor exit node (tor_exit_node)
0
Unix timestamp of change (timestamp)
1518994238