Last ten users to contribute to the page (page_recent_contributors ) | [
0 => 'Tom.Reding',
1 => 'Doc James',
2 => 'Waddie96',
3 => 'Iztwoz',
4 => '69.137.34.123',
5 => '162.129.250.13',
6 => 'Ira Leviton',
7 => 'Vitreology',
8 => 'Nonstopdrivel',
9 => 'NihlusBOT'
] |
Old page wikitext, before the edit (old_wikitext ) | '{{Infobox nerve
| Name = Trochlear nerve
| pronounce =
| Latin = nervus trochlearis
| Image = Trochlear_nerve.png
| Caption = Path of the Trochlear nerve, right eye, superior view
| Image2 = Brain human normal inferior view with labels en.svg
| Caption2= Inferior view of the human brain, with the cranial nerves labelled.
| Width = 280
| Innervates = [[Superior oblique muscle]]
| BranchFrom =
| BranchTo =
}}
{{Cranial nerves short}}
The '''trochlear nerve''', also called the '''fourth cranial nerve''' or '''CN IV''', is a [[motor nerve]] (a [[somatic nervous system|somatic]] efferent nerve) that innervates only a single muscle: the [[superior oblique muscle]] of the eye, which operates through the [[pulley]]-like [[trochlea of superior oblique|trochlea]].
The trochlear nerve is unique among the cranial nerves in several respects:
#It is the ''smallest'' nerve in terms of the number of axons it contains.
#It has the greatest intracranial length.
#It is the only cranial nerve that exits from the dorsal (rear) aspect of the [[brainstem]].
#It innervates a muscle, the superior oblique muscle, on the opposite side (contralateral) from its nucleus. The trochlear nerve decussates within the brainstem before emerging on the contralateral side of the brainstem (at the level of the [[inferior colliculus]]). An injury to the trochlear nucleus in the brainstem will result in an contralateral [[superior oblique]] muscle palsy, whereas an injury to the trochlear nerve (after it has emerged from the brainstem) results in an ipsilateral [[superior oblique]] muscle palsy.
[[Homology (biology)|Homologous]] trochlear nerves are found in all [[jawed vertebrates]]. The unique features of the trochlear nerve, including its dorsal exit from the brainstem and its contralateral innervation, are seen in the primitive brains of sharks.<ref>Maisey JG. Morphology of the Braincase in the Broadnose Sevengill Shark ''Notorynchus'' (Elasombranchii, Hexanchiformes), Based on CT Scanning. American Museum Novitates, Number 3429. New York: American Museum of Natural History, 2004</ref>
The human trochlear nerve is derived from the [[Basal plate (neural tube)|basal plate]] of the [[embryo]]nic [[midbrain]]. The words ''trochlea'' and ''trochlear'' ({{IPAc-en|ˈ|t|r|ɒ|k|l|i|ə}}, {{IPAc-en|ˈ|t|r|ɒ|k|l|i|ər}}) come from [[Ancient Greek]] {{lang|grc|[[wikt:trochlea|τροχιλέα]]}} ''trokhiléa'', “pulley; block-and-tackle equipment”.
==Structure==
[[Image:Gray571.png|thumb|left|The Cavernous Sinus]]
The trochlear nerve emerges from the dorsal aspect of the brainstem at the level of the caudal [[mesencephalon]], just below the [[inferior colliculus]]. It circles anteriorly around the brainstem and runs forward toward the eye in the [[subarachnoid space]]. It passes between the [[posterior cerebral artery]] and the [[superior cerebellar artery]], and then pierces the [[Dura mater|dura]] just under free margin of the [[tentorium cerebelli]], close to the crossing of the attached margin of the tentorium and within millimeters of the [[posterior clinoid process]].<ref>Bisaria KK. Cavernous portion of the trochlear nerve with special reference to its site of entrance. J. Anat. 159:29-35, 1988</ref> It runs on the lateral wall of the [[cavernous sinus]], where it is joined by the other two extraocular nerves (oculomotor—cranial nerve III and abducens—cranial nerve VI) and the first two branches of the [[trigeminal nerve]] (V), Ophthalmic (V1) and Maxillary (V2). The [[internal carotid artery]] also runs within the cavernous sinus. Finally, it enters the orbit through the [[superior orbital fissure]] and innervates the [[superior oblique muscle]].
===Nucleus===
{{Main|Trochlear nucleus}}
[[Image:Brainstem trochlear.png|thumb|Transverse Section of the Brainstem at the level of the Inferior Colliculus]]
The [[Trochlear nucleus|nucleus of the trochlear nerve]] is located in the caudal [[mesencephalon]] beneath the [[cerebral aqueduct]]. It is immediately below the nucleus of the [[oculomotor nerve]] (III) in the rostral mesencephalon.
The trochlear nucleus is unique in that its axons run dorsally and cross the midline before emerging from the brainstem posteriorly. Thus a lesion of the trochlear nucleus affects the ''contralateral'' eye. Lesions of all other cranial nuclei affect the ''ipsilateral'' side.
==Function==
{{See also|Superior oblique muscle#Function}}
The trochlear nerve carries axons of type GSE, [[general somatic efferent fibers|general somatic efferent]], which innervate skeletal muscle of the superior oblique muscle.
The superior oblique muscle ends in a tendon that passes through a fibrous loop, the '''trochlea''', located anteriorly on the medial aspect of the orbit. ''Trochlea'' means “pulley” in Latin; the fourth nerve is named after this structure.
===Actions of the superior oblique muscle===
In order to understand the actions of the superior oblique muscle, it is useful to imagine the eyeball as a sphere that is constrained—like the trackball of a computer mouse—in such a way that only certain rotational movements are possible. Allowable movements for the superior oblique are (1) rotation in a vertical plane—looking down and up (''depression'' and ''elevation'' of the eyeball) and (2) rotation in the plane of the face (''intorsion'' and ''extorsion'' of the eyeball).
The body of the superior oblique muscle is located ''behind'' the eyeball, but the tendon (which is redirected by the trochlea) approaches the eyeball from the ''front''. The tendon attaches to the top (superior aspect) of the eyeball at an angle of 51 degrees with respect to the ''primary position'' of the eye (looking straight forward). The force of the tendon's pull therefore has two components: a forward component that tends to pull the eyeball downward (depression), and a medial component that tends to rotate the top of the eyeball toward the nose (intorsion).
The relative strength of these two forces depends on which way the eye is looking. When the eye is ''adducted'' (looking toward the nose), the force of depression increases. When the eye is ''abducted'' (looking away from the nose), the force of intorsion increases, while the force of depression decreases. When the eye is in the primary position (looking straight ahead), contraction of the superior oblique produces depression and intorsion in roughly equal amounts.
To summarize, the actions of the superior oblique muscle are (1) ''depression'' of the eyeball, especially when the eye is adducted; and (2) ''intorsion'' of the eyeball, especially when the eye is abducted. The clinical consequences of weakness in the superior oblique (caused, for example, by fourth nerve palsies) are discussed below.
This summary of the superior oblique muscle describes its most important functions. However, it is an oversimplification of the actual situation. For example, the tendon of the superior oblique inserts ''behind'' the equator of the eyeball in the frontal plane, so contraction of the muscle also tends to ''abduct'' the eyeball (turn it outward). In fact, each of the six [[extraocular muscles]] exerts rotational forces in ''all three planes'' (elevation-depression, adduction-abduction, intorsion-extorsion) to varying degrees, depending on which way the eye is looking. The relative forces change every time the eyeball moves—every time the direction of gaze changes. The central control of this process, which involves the continuous, precise adjustment of forces on twelve different tendons in order to point both eyes in exactly the same direction, is truly remarkable.
The recent discovery of soft tissue '''pulleys''' in the orbit—similar to the trochlea, but anatomically more subtle and previously missed—has completely changed and greatly simplified our understanding of the actions of the extraocular muscles.<ref>Demer JL. Pivotal Role of Orbital Connective Tissues in Binocular Alignment and Strabismus. Investigative Ophthalmology and Visual Science. 2004;45:729-738</ref> Perhaps the most important finding is that a two-dimensional representation of the visual field is sufficient for most purposes.
==Clinical significance==
===Vertical diplopia===
Injury to the trochlear nerve cause weakness of downward eye movement with consequent vertical [[diplopia]] (double vision). The affected eye drifts upward relative to the normal eye, due to the unopposed actions of the remaining extraocular muscles. The patient sees two visual fields (one from each eye), separated vertically. To compensate for this, patients learn to tilt the head forward (tuck the chin in) in order to bring the fields back together—to fuse the two images into a single visual field. This accounts for the “dejected” appearance of patients with “pathetic nerve” palsies.
===Torsional diplopia===
Trochlear nerve palsy also affects torsion (rotation of the eyeball in the plane of the face). Torsion is a normal response to tilting the head sideways. The eyes automatically rotate in an equal and opposite direction, so that the orientation of the environment remains unchanged—vertical things remain vertical.
Weakness of intorsion results in '''torsional diplopia,''' in which two different visual fields, tilted with respect to each other, are seen at the same time. To compensate for this, patients with trochlear nerve palsies tilt their heads to the opposite side, in order to fuse the two images into a single visual field.
The characteristic appearance of patients with fourth nerve palsies (head tilted to one side, chin tucked in) suggests the diagnosis, but other causes must be ruled out. For example, [[torticollis]] can produce a similar appearance.
===Causes===
The clinical syndromes can originate from both peripheral and central lesions.
====Peripheral lesion====
A peripheral lesion is damage to the bundle of nerves, in contrast to a central lesion, which is damage to the trochlear nucleus. Acute symptoms are probably a result of trauma or disease, while chronic symptoms probably are congenital.
=====Acute palsy=====
The most common cause of ''acute'' fourth nerve palsy is head trauma.<ref>Hoya K, Kirino T. Traumatic Trochlear Nerve Palsy Following Minor Occipital Impact. Neurol Med Chir 40:358-360, 2000</ref> Even relatively minor trauma can transiently stretch the fourth nerve (by transiently displacing the brainstem relative to the posterior clinoid process). Patients with minor damage to the fourth nerve will complain of “blurry” vision. Patients with more extensive damage will notice frank diplopia and rotational (torsional) disturbances of the visual fields. The usual clinical course is complete recovery within weeks to months.
Isolated injury to the fourth nerve can be caused by any process that stretches or compresses the nerve. A generalized increase in intracranial pressure—[[hydrocephalus]], [[pseudotumor cerebri]], [[hemorrhage]], [[edema]]—will affect the fourth nerve, but the [[abducens nerve]] (VI) is usually affected first (producing '''horizontal diplopia''', not '''vertical diplopia'''). Infections ([[meningitis]], [[herpes zoster]]), demyelination ([[multiple sclerosis]]), [[diabetic neuropathy]] and [[cavernous sinus]] disease can affect the fourth nerve, as can orbital tumors and [[Tolosa-Hunt syndrome]]. In general, these diseases affect other cranial nerves as well. Isolated damage to the fourth nerve is uncommon in these settings.
=====Chronic palsy=====
{{Main|Congenital fourth nerve palsy}}
The most common cause of ''chronic'' fourth nerve palsy is a congenital defect, in which the development of the fourth nerve (or its nucleus) is abnormal or incomplete. Congenital defects may be noticed in childhood, but minor defects may not become evident until adult life, when compensatory mechanisms begin to fail. Congenital fourth nerve palsies are amenable to surgical treatment.
====Central lesion====
Central damage is damage to the trochlear nucleus. It affects the ''contralateral'' eye. The nuclei of other cranial nerves generally affect ''ipsilateral'' structures (for example, the optic nerves - cranial nerves II - innervate both eyes).
The trochlear nucleus and its axons within the brainstem can be damaged by infarctions, [[hemorrhage]], [[arteriovenous malformation]]s, tumors and [[demyelination]]. Collateral damage to other structures will usually dominate the clinical picture.
The fourth nerve is one of the final common pathways for cortical systems that control eye movement in general. Cortical control of eye movement ([[saccades]], smooth pursuit, [[Accommodation (eye)|accommodation]]) involves [[Conjugate gaze palsy|conjugate gaze]], not unilateral eye movement.
===Examination===
The trochlear nerve is tested by examining the action of its muscle, the superior oblique. When acting on its own this muscle depresses and abducts the eyeball. However, movements of the eye by the extraocular muscles are [[synergy|synergistic]] (working together). Therefore, the trochlear nerve is tested by asking the patient to look 'down and in' as the contribution of the superior oblique is greatest in this motion. Common activities requiring this type of convergent gaze are reading the newspaper and walking down stairs. Diplopia associated with these activities may be the initial symptom of a fourth nerve palsy.
[[Alfred Bielschowsky]]'s [[Bielschowsky's head tilt test|head tilt test]] is a test for palsy of the superior oblique muscle caused by damage to cranial nerve IV (trochlear nerve).
==History==
{{expand section|date=February 2014}}
==See also==
{{Anatomy-terms}}
==Notes==
{{Reflist|group=help}}
==References==
{{Reflist}}
==Bibliography==
*Blumenfeld H. Neuroanatomy Through Clinical Cases. Sinauer Associates, 2002
*Brodal A. Neurological Anatomy in Relation to Clinical Medicine, 3rd ed. Oxford University Press, 1981
*Brodal P. The Central Nervous System, 3rded. Oxford University Press, 2004
*Butler AB, Hodos W. Comparative Vertebrate Neuroanatomy, 2nd ed. Wiley-Interscience, 2005
*Carpenter MB. Core Text of Neuroanatomy, 4th ed. Williams & Wilkins, 1991
*Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science, 4th ed. McGraw-Hill, 2000
*Martin JH. Neuroanatomy Text and Atlas, 3rd ed. McGraw-Hill, 2003
*Patten J. Neurological Differential Diagnosis, 2nd ed. Springer, 1996
*Ropper, AH, Brown RH. Victor's Principles of Neurology, 8th ed. McGraw-Hill, 2005
*Standring S (ed.) Gray's Anatomy, 39th edition. Elsevier Churchill Livingstone, 2005
*Wilson-Pauwels L, Akesson EJ, Stewart PA. Cranial Nerves: Anatomy and Clinical Comments. Decker, 1998
==Additional images==
<gallery>
Image:Gray567.png|Dura mater and its processes exposed by removing part of the right half of the skull, and the brain.
Image:Gray719.png|Hind- and mid-brains; postero-lateral view.
Image:Gray787.png|Dissection showing origins of right ocular muscles, and nerves entering by the superior orbital fissure.
Image:Gray792.png|Upper part of medulla spinalis and hind- and mid-brains; posterior aspect, exposed in situ.
File:Slide2ior.JPG|Trochlear nerve.Deep dissection.Superior view.
</gallery>
==External links==
* {{BrainInfo|hier|449}}
* {{eMedicine|oph|697}} - "Trochlear Nerve Palsy"
* {{LoyolaMedEd|Grossanatomy/h_n/cn/cn1/cn4.htm}}
* {{NormanAnatomy|lesson3}} ({{NormanAnatomyFig|orbit2}})
* {{NormanAnatomy|cranialnerves}} ({{NormanAnatomyFig|IV}})
* [http://www.liv.ac.uk/~rbj/RBJ/rbjteaching/Oculomotors.htm Animations of extraocular cranial nerve and muscle function and damage (University of Liverpool)]
* [http://neurolex.org/wiki/Category:Trochlear_nerve Trochlear nerve] at Neurolex
{{Cranial nerves}}
{{Authority control}}
{{DEFAULTSORT:Trochlear Nerve}}
[[Category:Cranial nerves]]' |
New page wikitext, after the edit (new_wikitext ) | '{{Infobox nerve
| Name = Trochlear nerve
| pronounce =
| Latin = nervus trochlearis
| Image = Trochlear_nerve.png
| Caption = Path of the Trochlear nerve, right eye, superior view
| Image2 = Brain human normal inferior view with labels en.svg
| Caption2= Inferior view of the human brain, with the cranial nerves labelled.
| Width = 280
| Innervates = [[Superior oblique muscle]]
| BranchFrom =
| BranchTo =
}}
{{Cranial nerves short}}
The '''trochlear nerve''', also called the '''fourth cranial nerve''' or '''CN IV''', is a [[motor nerve]] (a [[somatic nervous system|somatic]] efferent nerve) that innervates only a single muscle: the [[superior oblique muscle]] of the eye, which operates through the [[pulley]]-like [[trochlea of superior oblique|trochlea]].
The trochlear nerve is unique among the cranial nerves in several respects:
#It is the ''smallest'' nerve in terms of the number of axons it contains.
#It has the greatest intracranial length.
#It is the only cranial nerve that exits from the dorsal (rear) aspect of the [[brainstem]].
#It innervates a muscle, the superior oblique muscle, on the opposite side (contralateral) from its nucleus. The trochlear nerve decussates within the brainstem before emerging on the contralateral side of the brainstem (at the level of the [[inferior colliculus]]). An injury to the trochlear nucleus in the brainstem will result in an contralateral [[superior oblique]] muscle palsy, whereas an injury to the trochlear nerve (after it has emerged from the brainstem) results in an ipsilateral [[superior oblique]] muscle palsy.
[[Homology (biology)|Homologous]] trochlear nerves are found in all [[jawed vertebrates]]. The unique features of the trochlear nerve, including its dorsal exit from the brainstem and its contralateral innervation, are seen in the primitive brains of sharks.<ref>Maisey JG. Morphology of the Braincase in the Broadnose Sevengill Shark ''Notorynchus'' (Elasombranchii, Hexanchiformes), Based on CT Scanning. American Museum Novitates, Number 3429. New York: American Museum of Natural History, 2004</ref>
The human trochlear nerve is derived from the [[Basal plate (neural tube)|basal plate]] of the [[embryo]]nic [[midbrain]]. The words ''trochlea'' and ''trochlear'' ({{IPAc-en|ˈ|t|r|ɒ|k|l|i|ə}}, {{IPAc-en|ˈ|t|r|ɒ|k|l|i|ər}}) come from [[Ancient Greek]] {{lang|grc|[[wikt:trochlea|τροχιλέα]]}} ''trokhiléa'', “pulley; block-and-tackle equipment”.
==Structure==
[[Image:Gray571.png|thumb|left|The Cavernous Sinus]]
The trochlear nerve emerges from the dorsal aspect of the brainstem at the level of the caudal [[mesencephalon]], just below the [[inferior colliculus]]. It circles anteriorly around the brainstem and runs forward toward the eye in the [[subarachnoid space]]. It passes between the [[posterior cerebral artery]] and the [[superior cerebellar artery]], and then pierces the [[Dura mater|dura]] just under free margin of the [[tentorium cerebelli]], close to the crossing of the attached margin of the tentorium and within millimeters of the [[posterior clinoid process]].<ref>Bisaria KK. Cavernous portion of the trochlear nerve with special reference to its site of entrance. J. Anat. 159:29-35, 1988</ref> It runs on the lateral wall of the [[cavernous sinus]], where it is joined by the other two extraocular nerves (oculomotor—cranial nerve III and abducens—cranial nerve VI) and the first two branches of the [[trigeminal nerve]] (V), Ophthalmic (V1) and Maxillary (V2). The [[internal carotid artery]] also runs within the cavernous sinus. Finally, it enters the orbit through the [[superior orbital fissure]] and innervates the [[superior oblique muscle]].
===Nucleus===
{{Main|Trochlear nucleus}}
[[Image:Brainstem trochlear.png|thumb|Transverse Section of the Brainstem at the level of the Inferior Colliculus]]
The [[Trochlear nucleus|nucleus of the trochlear nerve]] is located in the caudal [[mesencephalon]] beneath the [[cerebral aqueduct]]. It is immediately below the nucleus of the [[oculomotor nerve]] (III) in the rostral mesencephalon.
The trochlear nucleus is unique in that its axons run dorsally and cross the midline before emerging from the brainstem posteriorly. Thus a lesion of the trochlear nucleus affects the ''contralateral'' eye. Lesions of all other cranial nuclei affect the ''ipsilateral'' side.
The trochlear nerve cures ligma and other diseases, it is mainly used to cure cancer.
==Function==
{{See also|Superior oblique muscle#Function}}
The trochlear nerve carries axons of type GSE, [[general somatic efferent fibers|general somatic efferent]], which innervate skeletal muscle of the superior oblique muscle.
The superior oblique muscle ends in a tendon that passes through a fibrous loop, the '''trochlea''', located anteriorly on the medial aspect of the orbit. ''Trochlea'' means “pulley” in Latin; the fourth nerve is named after this structure.
===Actions of the superior oblique muscle===
In order to understand the actions of the superior oblique muscle, it is useful to imagine the eyeball as a sphere that is constrained—like the trackball of a computer mouse—in such a way that only certain rotational movements are possible. Allowable movements for the superior oblique are (1) rotation in a vertical plane—looking down and up (''depression'' and ''elevation'' of the eyeball) and (2) rotation in the plane of the face (''intorsion'' and ''extorsion'' of the eyeball).
The body of the superior oblique muscle is located ''behind'' the eyeball, but the tendon (which is redirected by the trochlea) approaches the eyeball from the ''front''. The tendon attaches to the top (superior aspect) of the eyeball at an angle of 51 degrees with respect to the ''primary position'' of the eye (looking straight forward). The force of the tendon's pull therefore has two components: a forward component that tends to pull the eyeball downward (depression), and a medial component that tends to rotate the top of the eyeball toward the nose (intorsion).
The relative strength of these two forces depends on which way the eye is looking. When the eye is ''adducted'' (looking toward the nose), the force of depression increases. When the eye is ''abducted'' (looking away from the nose), the force of intorsion increases, while the force of depression decreases. When the eye is in the primary position (looking straight ahead), contraction of the superior oblique produces depression and intorsion in roughly equal amounts.
To summarize, the actions of the superior oblique muscle are (1) ''depression'' of the eyeball, especially when the eye is adducted; and (2) ''intorsion'' of the eyeball, especially when the eye is abducted. The clinical consequences of weakness in the superior oblique (caused, for example, by fourth nerve palsies) are discussed below.
This summary of the superior oblique muscle describes its most important functions. However, it is an oversimplification of the actual situation. For example, the tendon of the superior oblique inserts ''behind'' the equator of the eyeball in the frontal plane, so contraction of the muscle also tends to ''abduct'' the eyeball (turn it outward). In fact, each of the six [[extraocular muscles]] exerts rotational forces in ''all three planes'' (elevation-depression, adduction-abduction, intorsion-extorsion) to varying degrees, depending on which way the eye is looking. The relative forces change every time the eyeball moves—every time the direction of gaze changes. The central control of this process, which involves the continuous, precise adjustment of forces on twelve different tendons in order to point both eyes in exactly the same direction, is truly remarkable.
The recent discovery of soft tissue '''pulleys''' in the orbit—similar to the trochlea, but anatomically more subtle and previously missed—has completely changed and greatly simplified our understanding of the actions of the extraocular muscles.<ref>Demer JL. Pivotal Role of Orbital Connective Tissues in Binocular Alignment and Strabismus. Investigative Ophthalmology and Visual Science. 2004;45:729-738</ref> Perhaps the most important finding is that a two-dimensional representation of the visual field is sufficient for most purposes.
==Clinical significance==
===Vertical diplopia===
Injury to the trochlear nerve cause weakness of downward eye movement with consequent vertical [[diplopia]] (double vision). The affected eye drifts upward relative to the normal eye, due to the unopposed actions of the remaining extraocular muscles. The patient sees two visual fields (one from each eye), separated vertically. To compensate for this, patients learn to tilt the head forward (tuck the chin in) in order to bring the fields back together—to fuse the two images into a single visual field. This accounts for the “dejected” appearance of patients with “pathetic nerve” palsies.
===Torsional diplopia===
Trochlear nerve palsy also affects torsion (rotation of the eyeball in the plane of the face). Torsion is a normal response to tilting the head sideways. The eyes automatically rotate in an equal and opposite direction, so that the orientation of the environment remains unchanged—vertical things remain vertical.
Weakness of intorsion results in '''torsional diplopia,''' in which two different visual fields, tilted with respect to each other, are seen at the same time. To compensate for this, patients with trochlear nerve palsies tilt their heads to the opposite side, in order to fuse the two images into a single visual field.
The characteristic appearance of patients with fourth nerve palsies (head tilted to one side, chin tucked in) suggests the diagnosis, but other causes must be ruled out. For example, [[torticollis]] can produce a similar appearance.
===Causes===
The clinical syndromes can originate from both peripheral and central lesions.
====Peripheral lesion====
A peripheral lesion is damage to the bundle of nerves, in contrast to a central lesion, which is damage to the trochlear nucleus. Acute symptoms are probably a result of trauma or disease, while chronic symptoms probably are congenital.
=====Acute palsy=====
The most common cause of ''acute'' fourth nerve palsy is head trauma.<ref>Hoya K, Kirino T. Traumatic Trochlear Nerve Palsy Following Minor Occipital Impact. Neurol Med Chir 40:358-360, 2000</ref> Even relatively minor trauma can transiently stretch the fourth nerve (by transiently displacing the brainstem relative to the posterior clinoid process). Patients with minor damage to the fourth nerve will complain of “blurry” vision. Patients with more extensive damage will notice frank diplopia and rotational (torsional) disturbances of the visual fields. The usual clinical course is complete recovery within weeks to months.
Isolated injury to the fourth nerve can be caused by any process that stretches or compresses the nerve. A generalized increase in intracranial pressure—[[hydrocephalus]], [[pseudotumor cerebri]], [[hemorrhage]], [[edema]]—will affect the fourth nerve, but the [[abducens nerve]] (VI) is usually affected first (producing '''horizontal diplopia''', not '''vertical diplopia'''). Infections ([[meningitis]], [[herpes zoster]]), demyelination ([[multiple sclerosis]]), [[diabetic neuropathy]] and [[cavernous sinus]] disease can affect the fourth nerve, as can orbital tumors and [[Tolosa-Hunt syndrome]]. In general, these diseases affect other cranial nerves as well. Isolated damage to the fourth nerve is uncommon in these settings.
=====Chronic palsy=====
{{Main|Congenital fourth nerve palsy}}
The most common cause of ''chronic'' fourth nerve palsy is a congenital defect, in which the development of the fourth nerve (or its nucleus) is abnormal or incomplete. Congenital defects may be noticed in childhood, but minor defects may not become evident until adult life, when compensatory mechanisms begin to fail. Congenital fourth nerve palsies are amenable to surgical treatment.
====Central lesion====
Central damage is damage to the trochlear nucleus. It affects the ''contralateral'' eye. The nuclei of other cranial nerves generally affect ''ipsilateral'' structures (for example, the optic nerves - cranial nerves II - innervate both eyes).
The trochlear nucleus and its axons within the brainstem can be damaged by infarctions, [[hemorrhage]], [[arteriovenous malformation]]s, tumors and [[demyelination]]. Collateral damage to other structures will usually dominate the clinical picture.
The fourth nerve is one of the final common pathways for cortical systems that control eye movement in general. Cortical control of eye movement ([[saccades]], smooth pursuit, [[Accommodation (eye)|accommodation]]) involves [[Conjugate gaze palsy|conjugate gaze]], not unilateral eye movement.
===Examination===
The trochlear nerve is tested by examining the action of its muscle, the superior oblique. When acting on its own this muscle depresses and abducts the eyeball. However, movements of the eye by the extraocular muscles are [[synergy|synergistic]] (working together). Therefore, the trochlear nerve is tested by asking the patient to look 'down and in' as the contribution of the superior oblique is greatest in this motion. Common activities requiring this type of convergent gaze are reading the newspaper and walking down stairs. Diplopia associated with these activities may be the initial symptom of a fourth nerve palsy.
[[Alfred Bielschowsky]]'s [[Bielschowsky's head tilt test|head tilt test]] is a test for palsy of the superior oblique muscle caused by damage to cranial nerve IV (trochlear nerve).
==History==
{{expand section|date=February 2014}}
==See also==
{{Anatomy-terms}}
==Notes==
{{Reflist|group=help}}
==References==
{{Reflist}}
==Bibliography==
*Blumenfeld H. Neuroanatomy Through Clinical Cases. Sinauer Associates, 2002
*Brodal A. Neurological Anatomy in Relation to Clinical Medicine, 3rd ed. Oxford University Press, 1981
*Brodal P. The Central Nervous System, 3rded. Oxford University Press, 2004
*Butler AB, Hodos W. Comparative Vertebrate Neuroanatomy, 2nd ed. Wiley-Interscience, 2005
*Carpenter MB. Core Text of Neuroanatomy, 4th ed. Williams & Wilkins, 1991
*Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science, 4th ed. McGraw-Hill, 2000
*Martin JH. Neuroanatomy Text and Atlas, 3rd ed. McGraw-Hill, 2003
*Patten J. Neurological Differential Diagnosis, 2nd ed. Springer, 1996
*Ropper, AH, Brown RH. Victor's Principles of Neurology, 8th ed. McGraw-Hill, 2005
*Standring S (ed.) Gray's Anatomy, 39th edition. Elsevier Churchill Livingstone, 2005
*Wilson-Pauwels L, Akesson EJ, Stewart PA. Cranial Nerves: Anatomy and Clinical Comments. Decker, 1998
==Additional images==
<gallery>
Image:Gray567.png|Dura mater and its processes exposed by removing part of the right half of the skull, and the brain.
Image:Gray719.png|Hind- and mid-brains; postero-lateral view.
Image:Gray787.png|Dissection showing origins of right ocular muscles, and nerves entering by the superior orbital fissure.
Image:Gray792.png|Upper part of medulla spinalis and hind- and mid-brains; posterior aspect, exposed in situ.
File:Slide2ior.JPG|Trochlear nerve.Deep dissection.Superior view.
</gallery>
==External links==
* {{BrainInfo|hier|449}}
* {{eMedicine|oph|697}} - "Trochlear Nerve Palsy"
* {{LoyolaMedEd|Grossanatomy/h_n/cn/cn1/cn4.htm}}
* {{NormanAnatomy|lesson3}} ({{NormanAnatomyFig|orbit2}})
* {{NormanAnatomy|cranialnerves}} ({{NormanAnatomyFig|IV}})
* [http://www.liv.ac.uk/~rbj/RBJ/rbjteaching/Oculomotors.htm Animations of extraocular cranial nerve and muscle function and damage (University of Liverpool)]
* [http://neurolex.org/wiki/Category:Trochlear_nerve Trochlear nerve] at Neurolex
{{Cranial nerves}}
{{Authority control}}
{{DEFAULTSORT:Trochlear Nerve}}
[[Category:Cranial nerves]]' |