Edit count of the user (user_editcount ) | null |
Name of the user account (user_name ) | '2601:240:E401:25A0:6023:6C27:A01A:9772' |
Age of the user account (user_age ) | 0 |
Groups (including implicit) the user is in (user_groups ) | [
0 => '*'
] |
Rights that the user has (user_rights ) | [
0 => 'createaccount',
1 => 'read',
2 => 'edit',
3 => 'createtalk',
4 => 'writeapi',
5 => 'viewmywatchlist',
6 => 'editmywatchlist',
7 => 'viewmyprivateinfo',
8 => 'editmyprivateinfo',
9 => 'editmyoptions',
10 => 'abusefilter-log-detail',
11 => 'centralauth-merge',
12 => 'abusefilter-view',
13 => 'abusefilter-log',
14 => 'vipsscaler-test'
] |
Whether the user is editing from mobile app (user_app ) | false |
Whether or not a user is editing through the mobile interface (user_mobile ) | false |
Page ID (page_id ) | 2406906 |
Page namespace (page_namespace ) | 0 |
Page title without namespace (page_title ) | 'ROMK' |
Full page title (page_prefixedtitle ) | 'ROMK' |
Edit protection level of the page (page_restrictions_edit ) | [] |
Last ten users to contribute to the page (page_recent_contributors ) | [
0 => 'Monkbot',
1 => 'Citation bot',
2 => 'OAbot',
3 => 'Benbest',
4 => 'Headbomb',
5 => 'BrownHairedGirl',
6 => 'Aogarlid',
7 => 'InternetArchiveBot',
8 => 'Rathfelder',
9 => 'Rjwilmsi'
] |
Page age in seconds (page_age ) | 488857075 |
Action (action ) | 'edit' |
Edit summary/reason (summary ) | '' |
Old content model (old_content_model ) | 'wikitext' |
New content model (new_content_model ) | 'wikitext' |
Old page wikitext, before the edit (old_wikitext ) | '{{Infobox_gene}}
The '''renal outer medullary potassium channel''' ('''ROMK''') is an ATP-dependent [[potassium channel]] (K<sub>ir</sub>1.1) that transports potassium out of cells. It plays an important role in potassium recycling in the [[thick ascending limb]] (TAL) and potassium [[secretion]] in the [[cortical collecting duct]] (CCD) of the [[nephron]]. In humans, ROMK is encoded by the '''''KCNJ1''''' ('''potassium inwardly-rectifying channel, subfamily J, member 1''') [[gene]].<ref name="pmid7680431">{{cite journal | vauthors = Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC | title = Cloning and expression of an inwardly rectifying ATP-regulated potassium channel | journal = Nature | volume = 362 | issue = 6415 | pages = 31–8 | date = March 1993 | pmid = 7680431 | doi = 10.1038/362031a0 | s2cid = 4332298 }}</ref><ref name="pmid8190102">{{cite journal | vauthors = Yano H, Philipson LH, Kugler JL, Tokuyama Y, Davis EM, Le Beau MM, Nelson DJ, Bell GI, Takeda J | title = Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA | journal = Molecular Pharmacology | volume = 45 | issue = 5 | pages = 854–60 | date = May 1994 | pmid = 8190102 }}</ref><ref name="pmid16382105">{{cite journal | vauthors = Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA | title = International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels | journal = Pharmacological Reviews | volume = 57 | issue = 4 | pages = 509–26 | date = December 2005 | pmid = 16382105 | doi = 10.1124/pr.57.4.11 | s2cid = 11588492 }}</ref> Multiple transcript variants encoding different isoforms have been found for this gene.<ref name="entrez"/>
== Function ==
[[Potassium channel]]s are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and [[inward-rectifier potassium ion channel|inward-rectifier]] type potassium channel. It is inhibited by internal [[adenosine triphosphate|ATP]] and probably plays an important role in potassium homeostasis. The encoded protein has a greater tendency to allow potassium to flow into a cell rather than out of a cell (hence the term "inwardly rectifying").<ref name="entrez">{{cite web | title = Entrez Gene: potassium inwardly-rectifying channel| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3758}}</ref> ROMK was identified as the pore-forming component of the [[ATP-sensitive potassium channel|mitochondrial ATP-sensitive potassium]] ([[ATP-sensitive potassium channel#Cardiovascular KATP channels and protection from ischemic injury|mitoK<sub>ATP</sub>]]) channel, known to play a critical role in [[cardioprotection]] against [[reperfusion injury|ischemic-reperfusion injury]] in the heart<ref name="mitoKATP">{{cite journal | vauthors = Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, Garlid KD, O'Rourke B | title = Mitochondrial ROMK channel is a molecular component of mitoK(ATP) | journal = Circulation Research | volume = 111 | issue = 4 | pages = 446–54 | date = August 2012 | pmid = 22811560 | pmc = 3560389 | doi = 10.1161/circresaha.112.266445 }}</ref> as well as in the protection against [[cerebral hypoxia|hypoxia-induced brain injury]] from [[stroke]] or other [[ischemia|ischemic]] attacks.
[[Klotho (biology)|Klotho]] is a [[beta-glucuronidase]]-like enzyme that activates ROMK by removal of [[sialic acid]].<ref name="pmid18606998">{{cite journal | vauthors=Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL | title=Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1 | journal=[[Proceedings of the National Academy of Sciences of the United States of America]] | volume=105 | issue=28 | pages=9805–9810 | year=2008 | doi = 10.1073/pnas.0803223105 | pmc=2474477 | pmid=18606998 }}</ref><ref name="pmid20375979">{{cite journal | author=Huang CL | title=Regulation of ion channels by secreted Klotho: mechanisms and implications | journal=[[Kidney International]] | volume=77 | issue=10 | pages=855–860 | year=2010 | doi = 10.1038/ki.2010.73 | pmid=20375979 | doi-access=free }}</ref>
== Clinical significance ==
Mutations in this gene have been associated with antenatal [[Bartter syndrome]], which is characterized by salt wasting, hypokalemic alkalosis, hypercalciuria, and low blood pressure.<ref name="entrez"/>
== Role in hypokalemia and magnesium deficiency ==
The ROMK channels are inhibited by magnesium in the nephron's normal physiologic state. In states of hypokalemia (a state of potassium deficiency), concurrent magnesium deficiency results in a state of hypokalemia that may be more difficult to correct with potassium replacement alone. This may be directly due to decreased inhibition of the outward potassium current in states where magnesium is low. Conversely, magnesium deficiency alone is not likely to cause a state of hypokalemia.<ref>{{Cite journal|doi=10.1681/asn.2007070792|pmid=17804670|title=Mechanism of Hypokalemia in Magnesium Deficiency|journal=Journal of the American Society of Nephrology|volume=18|issue=10|pages=2649–2652|year=2007|last1=Huang|first1=Chou-Long|last2=Kuo|first2=Elizabeth|doi-access=free}}</ref>
== References ==
{{Reflist}}
== Further reading ==
{{refbegin | 2}}
* {{cite journal | vauthors = O'Connell AD, Leng Q, Dong K, MacGregor GG, Giebisch G, Hebert SC | title = Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K+ channel (ROMK) | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 102 | issue = 28 | pages = 9954–9 | date = July 2005 | pmid = 15987778 | pmc = 1175014 | doi = 10.1073/pnas.0504332102 }}
* {{cite journal | vauthors = Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA | title = International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels | journal = Pharmacological Reviews | volume = 57 | issue = 4 | pages = 509–26 | date = December 2005 | pmid = 16382105 | doi = 10.1124/pr.57.4.11 | s2cid = 11588492 }}
* {{cite journal | vauthors = Brochard K, Boyer O, Blanchard A, Loirat C, Niaudet P, Macher MA, Deschenes G, Bensman A, Decramer S, Cochat P, Morin D, Broux F, Caillez M, Guyot C, Novo R, Jeunemaître X, Vargas-Poussou R | title = Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome | journal = Nephrology, Dialysis, Transplantation | volume = 24 | issue = 5 | pages = 1455–64 | date = May 2009 | pmid = 19096086 | doi = 10.1093/ndt/gfn689 | doi-access = free }}
* {{cite journal | vauthors = Lee JR, Shieh RC | title = Structural changes in the cytoplasmic pore of the Kir1.1 channel during pHi-gating probed by FRET | journal = Journal of Biomedical Science | volume = 16 | issue = 1 | pages = 29 | date = March 2009 | pmid = 19272129 | pmc = 2672938 | doi = 10.1186/1423-0127-16-29 }}
* {{cite journal | vauthors = Nüsing RM, Pantalone F, Gröne HJ, Seyberth HW, Wegmann M | title = Expression of the potassium channel ROMK in adult and fetal human kidney | journal = Histochemistry and Cell Biology | volume = 123 | issue = 6 | pages = 553–9 | date = June 2005 | pmid = 15895241 | doi = 10.1007/s00418-004-0742-5 | s2cid = 24421285 }}
* {{cite journal | vauthors = Cho JT, Guay-Woodford LM | title = Heterozygous mutations of the gene for Kir 1.1 (ROMK) in antenatal Bartter syndrome presenting with transient hyperkalemia, evolving to a benign course | journal = Journal of Korean Medical Science | volume = 18 | issue = 1 | pages = 65–8 | date = February 2003 | pmid = 12589089 | pmc = 3055000 | doi = 10.3346/jkms.2003.18.1.65 }}
* {{cite journal | vauthors = Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP | title = Rare independent mutations in renal salt handling genes contribute to blood pressure variation | journal = Nature Genetics | volume = 40 | issue = 5 | pages = 592–599 | date = May 2008 | pmid = 18391953 | pmc = 3766631 | doi = 10.1038/ng.118 }}
* {{cite journal | vauthors = Nozu K, Fu XJ, Kaito H, Kanda K, Yokoyama N, Przybyslaw Krol R, Nakajima T, Kajiyama M, Iijima K, Matsuo M | title = A novel mutation in KCNJ1 in a Bartter syndrome case diagnosed as pseudohypoaldosteronism | journal = Pediatric Nephrology | volume = 22 | issue = 8 | pages = 1219–23 | date = August 2007 | pmid = 17401586 | doi = 10.1007/s00467-007-0468-4 | s2cid = 36736809 | url = http://www.lib.kobe-u.ac.jp/repository/90000603.pdf }}
* {{cite journal | vauthors = Lin D, Kamsteeg EJ, Zhang Y, Jin Y, Sterling H, Yue P, Roos M, Duffield A, Spencer J, Caplan M, Wang WH | title = Expression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels | journal = The Journal of Biological Chemistry | volume = 283 | issue = 12 | pages = 7674–81 | date = March 2008 | pmid = 18211905 | doi = 10.1074/jbc.M705574200 | doi-access = free }}
* {{cite journal | vauthors = Wang HR, Liu Z, Huang CL | title = Domains of WNK1 kinase in the regulation of ROMK1 | journal = American Journal of Physiology. Renal Physiology | volume = 295 | issue = 2 | pages = F438–45 | date = August 2008 | pmid = 18550644 | pmc = 2519181 | doi = 10.1152/ajprenal.90287.2008 }}
* {{cite journal | vauthors = Yoo D, Kim BY, Campo C, Nance L, King A, Maouyo D, Welling PA | title = Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A | journal = The Journal of Biological Chemistry | volume = 278 | issue = 25 | pages = 23066–75 | date = June 2003 | pmid = 12684516 | doi = 10.1074/jbc.M212301200 | doi-access = free }}
* {{cite journal | vauthors = Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL | title = Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho | journal = Molecular Pharmacology | volume = 76 | issue = 1 | pages = 38–46 | date = July 2009 | pmid = 19349416 | pmc = 2701452 | doi = 10.1124/mol.109.055780 }}
* {{cite journal | vauthors = Nanazashvili M, Li H, Palmer LG, Walters DE, Sackin H | title = Moving the pH gate of the Kir1.1 inward rectifier channel | journal = Channels | volume = 1 | issue = 1 | pages = 21–8 | year = 2007 | pmid = 19170254 | doi = 10.4161/chan.3707 | doi-access = free }}
* {{cite journal | vauthors = Liu Z, Wang HR, Huang CL | title = Regulation of ROMK channel and K+ homeostasis by kidney-specific WNK1 kinase | journal = The Journal of Biological Chemistry | volume = 284 | issue = 18 | pages = 12198–206 | date = May 2009 | pmid = 19244242 | pmc = 2673288 | doi = 10.1074/jbc.M806551200 }}
* {{cite journal | vauthors = Yoo D, Flagg TP, Olsen O, Raghuram V, Foskett JK, Welling PA | title = Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions | journal = The Journal of Biological Chemistry | volume = 279 | issue = 8 | pages = 6863–73 | date = February 2004 | pmid = 14604981 | doi = 10.1074/jbc.M311599200 | doi-access = free }}
* {{cite journal | vauthors = Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer TM, Caulfield M, Burton PR, Samani NJ | title = Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population | journal = Hypertension | volume = 51 | issue = 6 | pages = 1658–64 | date = June 2008 | pmid = 18443236 | doi = 10.1161/HYPERTENSIONAHA.108.112664 | doi-access = free }}
* {{cite journal | vauthors = He G, Wang HR, Huang SK, Huang CL | title = Intersectin links WNK kinases to endocytosis of ROMK1 | journal = The Journal of Clinical Investigation | volume = 117 | issue = 4 | pages = 1078–87 | date = April 2007 | pmid = 17380208 | pmc = 1821066 | doi = 10.1172/JCI30087 }}
* {{cite journal | vauthors = Murthy M, Cope G, O'Shaughnessy KM | title = The acidic motif of WNK4 is crucial for its interaction with the K channel ROMK | journal = Biochemical and Biophysical Research Communications | volume = 375 | issue = 4 | pages = 651–4 | date = October 2008 | pmid = 18755144 | doi = 10.1016/j.bbrc.2008.08.076 }}
* {{cite journal | vauthors = Lazrak A, Liu Z, Huang CL | title = Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 5 | pages = 1615–20 | date = January 2006 | pmid = 16428287 | pmc = 1360592 | doi = 10.1073/pnas.0510609103 }}
* {{cite journal | vauthors = Welling PA, Ho K | title = A comprehensive guide to the ROMK potassium channel: form and function in health and disease | journal = American Journal of Physiology. Renal Physiology | volume = 297 | issue = 4 | pages = F849–63 | date = October 2009 | pmid = 19458126 | doi = 10.1152/ajprenal.00181.2009 | pmc=2775575}}
{{refend}}
== External links ==
* {{MeshName|ROMK1+protein,+human}}
* [https://web.archive.org/web/20050502213547/http://www.ndif.org/Terms/ROMK.html NDI terminology page]
:
{{NLM content}}
{{Ion channels|g3}}
[[Category:Ion channels]]' |
New page wikitext, after the edit (new_wikitext ) | 'ROMK is gofodd kjwi
ljmdkwqdasCEJ
I love romk and so will you :))))) bnm u2hqei rinomk
this is by a different person' |
Unified diff of changes made by edit (edit_diff ) | '@@ -1,55 +1,4 @@
-{{Infobox_gene}}
-
-The '''renal outer medullary potassium channel''' ('''ROMK''') is an ATP-dependent [[potassium channel]] (K<sub>ir</sub>1.1) that transports potassium out of cells. It plays an important role in potassium recycling in the [[thick ascending limb]] (TAL) and potassium [[secretion]] in the [[cortical collecting duct]] (CCD) of the [[nephron]]. In humans, ROMK is encoded by the '''''KCNJ1''''' ('''potassium inwardly-rectifying channel, subfamily J, member 1''') [[gene]].<ref name="pmid7680431">{{cite journal | vauthors = Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC | title = Cloning and expression of an inwardly rectifying ATP-regulated potassium channel | journal = Nature | volume = 362 | issue = 6415 | pages = 31–8 | date = March 1993 | pmid = 7680431 | doi = 10.1038/362031a0 | s2cid = 4332298 }}</ref><ref name="pmid8190102">{{cite journal | vauthors = Yano H, Philipson LH, Kugler JL, Tokuyama Y, Davis EM, Le Beau MM, Nelson DJ, Bell GI, Takeda J | title = Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA | journal = Molecular Pharmacology | volume = 45 | issue = 5 | pages = 854–60 | date = May 1994 | pmid = 8190102 }}</ref><ref name="pmid16382105">{{cite journal | vauthors = Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA | title = International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels | journal = Pharmacological Reviews | volume = 57 | issue = 4 | pages = 509–26 | date = December 2005 | pmid = 16382105 | doi = 10.1124/pr.57.4.11 | s2cid = 11588492 }}</ref> Multiple transcript variants encoding different isoforms have been found for this gene.<ref name="entrez"/>
-
-== Function ==
-
-[[Potassium channel]]s are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and [[inward-rectifier potassium ion channel|inward-rectifier]] type potassium channel. It is inhibited by internal [[adenosine triphosphate|ATP]] and probably plays an important role in potassium homeostasis. The encoded protein has a greater tendency to allow potassium to flow into a cell rather than out of a cell (hence the term "inwardly rectifying").<ref name="entrez">{{cite web | title = Entrez Gene: potassium inwardly-rectifying channel| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3758}}</ref> ROMK was identified as the pore-forming component of the [[ATP-sensitive potassium channel|mitochondrial ATP-sensitive potassium]] ([[ATP-sensitive potassium channel#Cardiovascular KATP channels and protection from ischemic injury|mitoK<sub>ATP</sub>]]) channel, known to play a critical role in [[cardioprotection]] against [[reperfusion injury|ischemic-reperfusion injury]] in the heart<ref name="mitoKATP">{{cite journal | vauthors = Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, Garlid KD, O'Rourke B | title = Mitochondrial ROMK channel is a molecular component of mitoK(ATP) | journal = Circulation Research | volume = 111 | issue = 4 | pages = 446–54 | date = August 2012 | pmid = 22811560 | pmc = 3560389 | doi = 10.1161/circresaha.112.266445 }}</ref> as well as in the protection against [[cerebral hypoxia|hypoxia-induced brain injury]] from [[stroke]] or other [[ischemia|ischemic]] attacks.
-
-[[Klotho (biology)|Klotho]] is a [[beta-glucuronidase]]-like enzyme that activates ROMK by removal of [[sialic acid]].<ref name="pmid18606998">{{cite journal | vauthors=Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL | title=Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1 | journal=[[Proceedings of the National Academy of Sciences of the United States of America]] | volume=105 | issue=28 | pages=9805–9810 | year=2008 | doi = 10.1073/pnas.0803223105 | pmc=2474477 | pmid=18606998 }}</ref><ref name="pmid20375979">{{cite journal | author=Huang CL | title=Regulation of ion channels by secreted Klotho: mechanisms and implications | journal=[[Kidney International]] | volume=77 | issue=10 | pages=855–860 | year=2010 | doi = 10.1038/ki.2010.73 | pmid=20375979 | doi-access=free }}</ref>
-
-== Clinical significance ==
-
-Mutations in this gene have been associated with antenatal [[Bartter syndrome]], which is characterized by salt wasting, hypokalemic alkalosis, hypercalciuria, and low blood pressure.<ref name="entrez"/>
-
-== Role in hypokalemia and magnesium deficiency ==
-The ROMK channels are inhibited by magnesium in the nephron's normal physiologic state. In states of hypokalemia (a state of potassium deficiency), concurrent magnesium deficiency results in a state of hypokalemia that may be more difficult to correct with potassium replacement alone. This may be directly due to decreased inhibition of the outward potassium current in states where magnesium is low. Conversely, magnesium deficiency alone is not likely to cause a state of hypokalemia.<ref>{{Cite journal|doi=10.1681/asn.2007070792|pmid=17804670|title=Mechanism of Hypokalemia in Magnesium Deficiency|journal=Journal of the American Society of Nephrology|volume=18|issue=10|pages=2649–2652|year=2007|last1=Huang|first1=Chou-Long|last2=Kuo|first2=Elizabeth|doi-access=free}}</ref>
-
-== References ==
-{{Reflist}}
-
-== Further reading ==
-{{refbegin | 2}}
-* {{cite journal | vauthors = O'Connell AD, Leng Q, Dong K, MacGregor GG, Giebisch G, Hebert SC | title = Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K+ channel (ROMK) | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 102 | issue = 28 | pages = 9954–9 | date = July 2005 | pmid = 15987778 | pmc = 1175014 | doi = 10.1073/pnas.0504332102 }}
-* {{cite journal | vauthors = Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA | title = International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels | journal = Pharmacological Reviews | volume = 57 | issue = 4 | pages = 509–26 | date = December 2005 | pmid = 16382105 | doi = 10.1124/pr.57.4.11 | s2cid = 11588492 }}
-* {{cite journal | vauthors = Brochard K, Boyer O, Blanchard A, Loirat C, Niaudet P, Macher MA, Deschenes G, Bensman A, Decramer S, Cochat P, Morin D, Broux F, Caillez M, Guyot C, Novo R, Jeunemaître X, Vargas-Poussou R | title = Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome | journal = Nephrology, Dialysis, Transplantation | volume = 24 | issue = 5 | pages = 1455–64 | date = May 2009 | pmid = 19096086 | doi = 10.1093/ndt/gfn689 | doi-access = free }}
-* {{cite journal | vauthors = Lee JR, Shieh RC | title = Structural changes in the cytoplasmic pore of the Kir1.1 channel during pHi-gating probed by FRET | journal = Journal of Biomedical Science | volume = 16 | issue = 1 | pages = 29 | date = March 2009 | pmid = 19272129 | pmc = 2672938 | doi = 10.1186/1423-0127-16-29 }}
-* {{cite journal | vauthors = Nüsing RM, Pantalone F, Gröne HJ, Seyberth HW, Wegmann M | title = Expression of the potassium channel ROMK in adult and fetal human kidney | journal = Histochemistry and Cell Biology | volume = 123 | issue = 6 | pages = 553–9 | date = June 2005 | pmid = 15895241 | doi = 10.1007/s00418-004-0742-5 | s2cid = 24421285 }}
-* {{cite journal | vauthors = Cho JT, Guay-Woodford LM | title = Heterozygous mutations of the gene for Kir 1.1 (ROMK) in antenatal Bartter syndrome presenting with transient hyperkalemia, evolving to a benign course | journal = Journal of Korean Medical Science | volume = 18 | issue = 1 | pages = 65–8 | date = February 2003 | pmid = 12589089 | pmc = 3055000 | doi = 10.3346/jkms.2003.18.1.65 }}
-* {{cite journal | vauthors = Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP | title = Rare independent mutations in renal salt handling genes contribute to blood pressure variation | journal = Nature Genetics | volume = 40 | issue = 5 | pages = 592–599 | date = May 2008 | pmid = 18391953 | pmc = 3766631 | doi = 10.1038/ng.118 }}
-* {{cite journal | vauthors = Nozu K, Fu XJ, Kaito H, Kanda K, Yokoyama N, Przybyslaw Krol R, Nakajima T, Kajiyama M, Iijima K, Matsuo M | title = A novel mutation in KCNJ1 in a Bartter syndrome case diagnosed as pseudohypoaldosteronism | journal = Pediatric Nephrology | volume = 22 | issue = 8 | pages = 1219–23 | date = August 2007 | pmid = 17401586 | doi = 10.1007/s00467-007-0468-4 | s2cid = 36736809 | url = http://www.lib.kobe-u.ac.jp/repository/90000603.pdf }}
-* {{cite journal | vauthors = Lin D, Kamsteeg EJ, Zhang Y, Jin Y, Sterling H, Yue P, Roos M, Duffield A, Spencer J, Caplan M, Wang WH | title = Expression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels | journal = The Journal of Biological Chemistry | volume = 283 | issue = 12 | pages = 7674–81 | date = March 2008 | pmid = 18211905 | doi = 10.1074/jbc.M705574200 | doi-access = free }}
-* {{cite journal | vauthors = Wang HR, Liu Z, Huang CL | title = Domains of WNK1 kinase in the regulation of ROMK1 | journal = American Journal of Physiology. Renal Physiology | volume = 295 | issue = 2 | pages = F438–45 | date = August 2008 | pmid = 18550644 | pmc = 2519181 | doi = 10.1152/ajprenal.90287.2008 }}
-* {{cite journal | vauthors = Yoo D, Kim BY, Campo C, Nance L, King A, Maouyo D, Welling PA | title = Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A | journal = The Journal of Biological Chemistry | volume = 278 | issue = 25 | pages = 23066–75 | date = June 2003 | pmid = 12684516 | doi = 10.1074/jbc.M212301200 | doi-access = free }}
-* {{cite journal | vauthors = Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL | title = Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho | journal = Molecular Pharmacology | volume = 76 | issue = 1 | pages = 38–46 | date = July 2009 | pmid = 19349416 | pmc = 2701452 | doi = 10.1124/mol.109.055780 }}
-* {{cite journal | vauthors = Nanazashvili M, Li H, Palmer LG, Walters DE, Sackin H | title = Moving the pH gate of the Kir1.1 inward rectifier channel | journal = Channels | volume = 1 | issue = 1 | pages = 21–8 | year = 2007 | pmid = 19170254 | doi = 10.4161/chan.3707 | doi-access = free }}
-* {{cite journal | vauthors = Liu Z, Wang HR, Huang CL | title = Regulation of ROMK channel and K+ homeostasis by kidney-specific WNK1 kinase | journal = The Journal of Biological Chemistry | volume = 284 | issue = 18 | pages = 12198–206 | date = May 2009 | pmid = 19244242 | pmc = 2673288 | doi = 10.1074/jbc.M806551200 }}
-* {{cite journal | vauthors = Yoo D, Flagg TP, Olsen O, Raghuram V, Foskett JK, Welling PA | title = Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions | journal = The Journal of Biological Chemistry | volume = 279 | issue = 8 | pages = 6863–73 | date = February 2004 | pmid = 14604981 | doi = 10.1074/jbc.M311599200 | doi-access = free }}
-* {{cite journal | vauthors = Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer TM, Caulfield M, Burton PR, Samani NJ | title = Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population | journal = Hypertension | volume = 51 | issue = 6 | pages = 1658–64 | date = June 2008 | pmid = 18443236 | doi = 10.1161/HYPERTENSIONAHA.108.112664 | doi-access = free }}
-* {{cite journal | vauthors = He G, Wang HR, Huang SK, Huang CL | title = Intersectin links WNK kinases to endocytosis of ROMK1 | journal = The Journal of Clinical Investigation | volume = 117 | issue = 4 | pages = 1078–87 | date = April 2007 | pmid = 17380208 | pmc = 1821066 | doi = 10.1172/JCI30087 }}
-* {{cite journal | vauthors = Murthy M, Cope G, O'Shaughnessy KM | title = The acidic motif of WNK4 is crucial for its interaction with the K channel ROMK | journal = Biochemical and Biophysical Research Communications | volume = 375 | issue = 4 | pages = 651–4 | date = October 2008 | pmid = 18755144 | doi = 10.1016/j.bbrc.2008.08.076 }}
-* {{cite journal | vauthors = Lazrak A, Liu Z, Huang CL | title = Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 5 | pages = 1615–20 | date = January 2006 | pmid = 16428287 | pmc = 1360592 | doi = 10.1073/pnas.0510609103 }}
-* {{cite journal | vauthors = Welling PA, Ho K | title = A comprehensive guide to the ROMK potassium channel: form and function in health and disease | journal = American Journal of Physiology. Renal Physiology | volume = 297 | issue = 4 | pages = F849–63 | date = October 2009 | pmid = 19458126 | doi = 10.1152/ajprenal.00181.2009 | pmc=2775575}}
-{{refend}}
-
-== External links ==
-* {{MeshName|ROMK1+protein,+human}}
-* [https://web.archive.org/web/20050502213547/http://www.ndif.org/Terms/ROMK.html NDI terminology page]
-
-:
-
-{{NLM content}}
-
-{{Ion channels|g3}}
-
-[[Category:Ion channels]]
+ROMK is gofodd kjwi
+ljmdkwqdasCEJ
+I love romk and so will you :))))) bnm u2hqei rinomk
+this is by a different person
' |
New page size (new_size ) | 116 |
Old page size (old_size ) | 13414 |
Size change in edit (edit_delta ) | -13298 |
Lines added in edit (added_lines ) | [
0 => 'ROMK is gofodd kjwi',
1 => 'ljmdkwqdasCEJ',
2 => 'I love romk and so will you :))))) bnm u2hqei rinomk',
3 => 'this is by a different person'
] |
Lines removed in edit (removed_lines ) | [
0 => '{{Infobox_gene}}',
1 => '',
2 => 'The '''renal outer medullary potassium channel''' ('''ROMK''') is an ATP-dependent [[potassium channel]] (K<sub>ir</sub>1.1) that transports potassium out of cells. It plays an important role in potassium recycling in the [[thick ascending limb]] (TAL) and potassium [[secretion]] in the [[cortical collecting duct]] (CCD) of the [[nephron]]. In humans, ROMK is encoded by the '''''KCNJ1''''' ('''potassium inwardly-rectifying channel, subfamily J, member 1''') [[gene]].<ref name="pmid7680431">{{cite journal | vauthors = Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC | title = Cloning and expression of an inwardly rectifying ATP-regulated potassium channel | journal = Nature | volume = 362 | issue = 6415 | pages = 31–8 | date = March 1993 | pmid = 7680431 | doi = 10.1038/362031a0 | s2cid = 4332298 }}</ref><ref name="pmid8190102">{{cite journal | vauthors = Yano H, Philipson LH, Kugler JL, Tokuyama Y, Davis EM, Le Beau MM, Nelson DJ, Bell GI, Takeda J | title = Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA | journal = Molecular Pharmacology | volume = 45 | issue = 5 | pages = 854–60 | date = May 1994 | pmid = 8190102 }}</ref><ref name="pmid16382105">{{cite journal | vauthors = Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA | title = International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels | journal = Pharmacological Reviews | volume = 57 | issue = 4 | pages = 509–26 | date = December 2005 | pmid = 16382105 | doi = 10.1124/pr.57.4.11 | s2cid = 11588492 }}</ref> Multiple transcript variants encoding different isoforms have been found for this gene.<ref name="entrez"/>',
3 => '',
4 => '== Function ==',
5 => '',
6 => '[[Potassium channel]]s are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and [[inward-rectifier potassium ion channel|inward-rectifier]] type potassium channel. It is inhibited by internal [[adenosine triphosphate|ATP]] and probably plays an important role in potassium homeostasis. The encoded protein has a greater tendency to allow potassium to flow into a cell rather than out of a cell (hence the term "inwardly rectifying").<ref name="entrez">{{cite web | title = Entrez Gene: potassium inwardly-rectifying channel| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3758}}</ref> ROMK was identified as the pore-forming component of the [[ATP-sensitive potassium channel|mitochondrial ATP-sensitive potassium]] ([[ATP-sensitive potassium channel#Cardiovascular KATP channels and protection from ischemic injury|mitoK<sub>ATP</sub>]]) channel, known to play a critical role in [[cardioprotection]] against [[reperfusion injury|ischemic-reperfusion injury]] in the heart<ref name="mitoKATP">{{cite journal | vauthors = Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, Garlid KD, O'Rourke B | title = Mitochondrial ROMK channel is a molecular component of mitoK(ATP) | journal = Circulation Research | volume = 111 | issue = 4 | pages = 446–54 | date = August 2012 | pmid = 22811560 | pmc = 3560389 | doi = 10.1161/circresaha.112.266445 }}</ref> as well as in the protection against [[cerebral hypoxia|hypoxia-induced brain injury]] from [[stroke]] or other [[ischemia|ischemic]] attacks.',
7 => '',
8 => '[[Klotho (biology)|Klotho]] is a [[beta-glucuronidase]]-like enzyme that activates ROMK by removal of [[sialic acid]].<ref name="pmid18606998">{{cite journal | vauthors=Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL | title=Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1 | journal=[[Proceedings of the National Academy of Sciences of the United States of America]] | volume=105 | issue=28 | pages=9805–9810 | year=2008 | doi = 10.1073/pnas.0803223105 | pmc=2474477 | pmid=18606998 }}</ref><ref name="pmid20375979">{{cite journal | author=Huang CL | title=Regulation of ion channels by secreted Klotho: mechanisms and implications | journal=[[Kidney International]] | volume=77 | issue=10 | pages=855–860 | year=2010 | doi = 10.1038/ki.2010.73 | pmid=20375979 | doi-access=free }}</ref>',
9 => '',
10 => '== Clinical significance ==',
11 => '',
12 => 'Mutations in this gene have been associated with antenatal [[Bartter syndrome]], which is characterized by salt wasting, hypokalemic alkalosis, hypercalciuria, and low blood pressure.<ref name="entrez"/>',
13 => '',
14 => '== Role in hypokalemia and magnesium deficiency ==',
15 => 'The ROMK channels are inhibited by magnesium in the nephron's normal physiologic state. In states of hypokalemia (a state of potassium deficiency), concurrent magnesium deficiency results in a state of hypokalemia that may be more difficult to correct with potassium replacement alone. This may be directly due to decreased inhibition of the outward potassium current in states where magnesium is low. Conversely, magnesium deficiency alone is not likely to cause a state of hypokalemia.<ref>{{Cite journal|doi=10.1681/asn.2007070792|pmid=17804670|title=Mechanism of Hypokalemia in Magnesium Deficiency|journal=Journal of the American Society of Nephrology|volume=18|issue=10|pages=2649–2652|year=2007|last1=Huang|first1=Chou-Long|last2=Kuo|first2=Elizabeth|doi-access=free}}</ref>',
16 => '',
17 => '== References ==',
18 => '{{Reflist}}',
19 => '',
20 => '== Further reading ==',
21 => '{{refbegin | 2}}',
22 => '* {{cite journal | vauthors = O'Connell AD, Leng Q, Dong K, MacGregor GG, Giebisch G, Hebert SC | title = Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K+ channel (ROMK) | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 102 | issue = 28 | pages = 9954–9 | date = July 2005 | pmid = 15987778 | pmc = 1175014 | doi = 10.1073/pnas.0504332102 }}',
23 => '* {{cite journal | vauthors = Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA | title = International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels | journal = Pharmacological Reviews | volume = 57 | issue = 4 | pages = 509–26 | date = December 2005 | pmid = 16382105 | doi = 10.1124/pr.57.4.11 | s2cid = 11588492 }}',
24 => '* {{cite journal | vauthors = Brochard K, Boyer O, Blanchard A, Loirat C, Niaudet P, Macher MA, Deschenes G, Bensman A, Decramer S, Cochat P, Morin D, Broux F, Caillez M, Guyot C, Novo R, Jeunemaître X, Vargas-Poussou R | title = Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome | journal = Nephrology, Dialysis, Transplantation | volume = 24 | issue = 5 | pages = 1455–64 | date = May 2009 | pmid = 19096086 | doi = 10.1093/ndt/gfn689 | doi-access = free }}',
25 => '* {{cite journal | vauthors = Lee JR, Shieh RC | title = Structural changes in the cytoplasmic pore of the Kir1.1 channel during pHi-gating probed by FRET | journal = Journal of Biomedical Science | volume = 16 | issue = 1 | pages = 29 | date = March 2009 | pmid = 19272129 | pmc = 2672938 | doi = 10.1186/1423-0127-16-29 }}',
26 => '* {{cite journal | vauthors = Nüsing RM, Pantalone F, Gröne HJ, Seyberth HW, Wegmann M | title = Expression of the potassium channel ROMK in adult and fetal human kidney | journal = Histochemistry and Cell Biology | volume = 123 | issue = 6 | pages = 553–9 | date = June 2005 | pmid = 15895241 | doi = 10.1007/s00418-004-0742-5 | s2cid = 24421285 }}',
27 => '* {{cite journal | vauthors = Cho JT, Guay-Woodford LM | title = Heterozygous mutations of the gene for Kir 1.1 (ROMK) in antenatal Bartter syndrome presenting with transient hyperkalemia, evolving to a benign course | journal = Journal of Korean Medical Science | volume = 18 | issue = 1 | pages = 65–8 | date = February 2003 | pmid = 12589089 | pmc = 3055000 | doi = 10.3346/jkms.2003.18.1.65 }}',
28 => '* {{cite journal | vauthors = Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP | title = Rare independent mutations in renal salt handling genes contribute to blood pressure variation | journal = Nature Genetics | volume = 40 | issue = 5 | pages = 592–599 | date = May 2008 | pmid = 18391953 | pmc = 3766631 | doi = 10.1038/ng.118 }}',
29 => '* {{cite journal | vauthors = Nozu K, Fu XJ, Kaito H, Kanda K, Yokoyama N, Przybyslaw Krol R, Nakajima T, Kajiyama M, Iijima K, Matsuo M | title = A novel mutation in KCNJ1 in a Bartter syndrome case diagnosed as pseudohypoaldosteronism | journal = Pediatric Nephrology | volume = 22 | issue = 8 | pages = 1219–23 | date = August 2007 | pmid = 17401586 | doi = 10.1007/s00467-007-0468-4 | s2cid = 36736809 | url = http://www.lib.kobe-u.ac.jp/repository/90000603.pdf }}',
30 => '* {{cite journal | vauthors = Lin D, Kamsteeg EJ, Zhang Y, Jin Y, Sterling H, Yue P, Roos M, Duffield A, Spencer J, Caplan M, Wang WH | title = Expression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels | journal = The Journal of Biological Chemistry | volume = 283 | issue = 12 | pages = 7674–81 | date = March 2008 | pmid = 18211905 | doi = 10.1074/jbc.M705574200 | doi-access = free }}',
31 => '* {{cite journal | vauthors = Wang HR, Liu Z, Huang CL | title = Domains of WNK1 kinase in the regulation of ROMK1 | journal = American Journal of Physiology. Renal Physiology | volume = 295 | issue = 2 | pages = F438–45 | date = August 2008 | pmid = 18550644 | pmc = 2519181 | doi = 10.1152/ajprenal.90287.2008 }}',
32 => '* {{cite journal | vauthors = Yoo D, Kim BY, Campo C, Nance L, King A, Maouyo D, Welling PA | title = Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A | journal = The Journal of Biological Chemistry | volume = 278 | issue = 25 | pages = 23066–75 | date = June 2003 | pmid = 12684516 | doi = 10.1074/jbc.M212301200 | doi-access = free }}',
33 => '* {{cite journal | vauthors = Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL | title = Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho | journal = Molecular Pharmacology | volume = 76 | issue = 1 | pages = 38–46 | date = July 2009 | pmid = 19349416 | pmc = 2701452 | doi = 10.1124/mol.109.055780 }}',
34 => '* {{cite journal | vauthors = Nanazashvili M, Li H, Palmer LG, Walters DE, Sackin H | title = Moving the pH gate of the Kir1.1 inward rectifier channel | journal = Channels | volume = 1 | issue = 1 | pages = 21–8 | year = 2007 | pmid = 19170254 | doi = 10.4161/chan.3707 | doi-access = free }}',
35 => '* {{cite journal | vauthors = Liu Z, Wang HR, Huang CL | title = Regulation of ROMK channel and K+ homeostasis by kidney-specific WNK1 kinase | journal = The Journal of Biological Chemistry | volume = 284 | issue = 18 | pages = 12198–206 | date = May 2009 | pmid = 19244242 | pmc = 2673288 | doi = 10.1074/jbc.M806551200 }}',
36 => '* {{cite journal | vauthors = Yoo D, Flagg TP, Olsen O, Raghuram V, Foskett JK, Welling PA | title = Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions | journal = The Journal of Biological Chemistry | volume = 279 | issue = 8 | pages = 6863–73 | date = February 2004 | pmid = 14604981 | doi = 10.1074/jbc.M311599200 | doi-access = free }}',
37 => '* {{cite journal | vauthors = Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer TM, Caulfield M, Burton PR, Samani NJ | title = Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population | journal = Hypertension | volume = 51 | issue = 6 | pages = 1658–64 | date = June 2008 | pmid = 18443236 | doi = 10.1161/HYPERTENSIONAHA.108.112664 | doi-access = free }}',
38 => '* {{cite journal | vauthors = He G, Wang HR, Huang SK, Huang CL | title = Intersectin links WNK kinases to endocytosis of ROMK1 | journal = The Journal of Clinical Investigation | volume = 117 | issue = 4 | pages = 1078–87 | date = April 2007 | pmid = 17380208 | pmc = 1821066 | doi = 10.1172/JCI30087 }}',
39 => '* {{cite journal | vauthors = Murthy M, Cope G, O'Shaughnessy KM | title = The acidic motif of WNK4 is crucial for its interaction with the K channel ROMK | journal = Biochemical and Biophysical Research Communications | volume = 375 | issue = 4 | pages = 651–4 | date = October 2008 | pmid = 18755144 | doi = 10.1016/j.bbrc.2008.08.076 }}',
40 => '* {{cite journal | vauthors = Lazrak A, Liu Z, Huang CL | title = Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 5 | pages = 1615–20 | date = January 2006 | pmid = 16428287 | pmc = 1360592 | doi = 10.1073/pnas.0510609103 }}',
41 => '* {{cite journal | vauthors = Welling PA, Ho K | title = A comprehensive guide to the ROMK potassium channel: form and function in health and disease | journal = American Journal of Physiology. Renal Physiology | volume = 297 | issue = 4 | pages = F849–63 | date = October 2009 | pmid = 19458126 | doi = 10.1152/ajprenal.00181.2009 | pmc=2775575}}',
42 => '{{refend}}',
43 => '',
44 => '== External links ==',
45 => '* {{MeshName|ROMK1+protein,+human}}',
46 => '* [https://web.archive.org/web/20050502213547/http://www.ndif.org/Terms/ROMK.html NDI terminology page]',
47 => '',
48 => ':',
49 => '',
50 => '{{NLM content}}',
51 => '',
52 => '{{Ion channels|g3}}',
53 => '',
54 => '[[Category:Ion channels]]'
] |
All external links added in the edit (added_links ) | [] |
All external links removed in the edit (removed_links ) | [
0 => '//doi.org/10.1007%2Fs00418-004-0742-5',
1 => '//doi.org/10.1007%2Fs00418-004-0742-5',
2 => '//doi.org/10.1007%2Fs00467-007-0468-4',
3 => '//doi.org/10.1007%2Fs00467-007-0468-4',
4 => '//doi.org/10.1016%2Fj.bbrc.2008.08.076',
5 => '//doi.org/10.1016%2Fj.bbrc.2008.08.076',
6 => '//doi.org/10.1038%2F362031a0',
7 => '//doi.org/10.1038%2F362031a0',
8 => '//doi.org/10.1038%2Fki.2010.73',
9 => '//doi.org/10.1038%2Fki.2010.73',
10 => '//doi.org/10.1038%2Fng.118',
11 => '//doi.org/10.1038%2Fng.118',
12 => '//doi.org/10.1073%2Fpnas.0504332102',
13 => '//doi.org/10.1073%2Fpnas.0504332102',
14 => '//doi.org/10.1073%2Fpnas.0510609103',
15 => '//doi.org/10.1073%2Fpnas.0510609103',
16 => '//doi.org/10.1073%2Fpnas.0803223105',
17 => '//doi.org/10.1073%2Fpnas.0803223105',
18 => '//doi.org/10.1074%2Fjbc.M212301200',
19 => '//doi.org/10.1074%2Fjbc.M212301200',
20 => '//doi.org/10.1074%2Fjbc.M311599200',
21 => '//doi.org/10.1074%2Fjbc.M311599200',
22 => '//doi.org/10.1074%2Fjbc.M705574200',
23 => '//doi.org/10.1074%2Fjbc.M705574200',
24 => '//doi.org/10.1074%2Fjbc.M806551200',
25 => '//doi.org/10.1074%2Fjbc.M806551200',
26 => '//doi.org/10.1093%2Fndt%2Fgfn689',
27 => '//doi.org/10.1093%2Fndt%2Fgfn689',
28 => '//doi.org/10.1124%2Fmol.109.055780',
29 => '//doi.org/10.1124%2Fmol.109.055780',
30 => '//doi.org/10.1124%2Fpr.57.4.11',
31 => '//doi.org/10.1124%2Fpr.57.4.11',
32 => '//doi.org/10.1152%2Fajprenal.00181.2009',
33 => '//doi.org/10.1152%2Fajprenal.00181.2009',
34 => '//doi.org/10.1152%2Fajprenal.90287.2008',
35 => '//doi.org/10.1152%2Fajprenal.90287.2008',
36 => '//doi.org/10.1161%2FHYPERTENSIONAHA.108.112664',
37 => '//doi.org/10.1161%2FHYPERTENSIONAHA.108.112664',
38 => '//doi.org/10.1161%2Fcircresaha.112.266445',
39 => '//doi.org/10.1161%2Fcircresaha.112.266445',
40 => '//doi.org/10.1172%2FJCI30087',
41 => '//doi.org/10.1172%2FJCI30087',
42 => '//doi.org/10.1186%2F1423-0127-16-29',
43 => '//doi.org/10.1186%2F1423-0127-16-29',
44 => '//doi.org/10.1681%2Fasn.2007070792',
45 => '//doi.org/10.1681%2Fasn.2007070792',
46 => '//doi.org/10.3346%2Fjkms.2003.18.1.65',
47 => '//doi.org/10.3346%2Fjkms.2003.18.1.65',
48 => '//doi.org/10.4161%2Fchan.3707',
49 => '//doi.org/10.4161%2Fchan.3707',
50 => '//pubmed.ncbi.nlm.nih.gov/12589089',
51 => '//pubmed.ncbi.nlm.nih.gov/12589089',
52 => '//pubmed.ncbi.nlm.nih.gov/12684516',
53 => '//pubmed.ncbi.nlm.nih.gov/12684516',
54 => '//pubmed.ncbi.nlm.nih.gov/14604981',
55 => '//pubmed.ncbi.nlm.nih.gov/14604981',
56 => '//pubmed.ncbi.nlm.nih.gov/15895241',
57 => '//pubmed.ncbi.nlm.nih.gov/15895241',
58 => '//pubmed.ncbi.nlm.nih.gov/15987778',
59 => '//pubmed.ncbi.nlm.nih.gov/15987778',
60 => '//pubmed.ncbi.nlm.nih.gov/16382105',
61 => '//pubmed.ncbi.nlm.nih.gov/16382105',
62 => '//pubmed.ncbi.nlm.nih.gov/16428287',
63 => '//pubmed.ncbi.nlm.nih.gov/16428287',
64 => '//pubmed.ncbi.nlm.nih.gov/17380208',
65 => '//pubmed.ncbi.nlm.nih.gov/17380208',
66 => '//pubmed.ncbi.nlm.nih.gov/17401586',
67 => '//pubmed.ncbi.nlm.nih.gov/17401586',
68 => '//pubmed.ncbi.nlm.nih.gov/17804670',
69 => '//pubmed.ncbi.nlm.nih.gov/17804670',
70 => '//pubmed.ncbi.nlm.nih.gov/18211905',
71 => '//pubmed.ncbi.nlm.nih.gov/18211905',
72 => '//pubmed.ncbi.nlm.nih.gov/18391953',
73 => '//pubmed.ncbi.nlm.nih.gov/18391953',
74 => '//pubmed.ncbi.nlm.nih.gov/18443236',
75 => '//pubmed.ncbi.nlm.nih.gov/18443236',
76 => '//pubmed.ncbi.nlm.nih.gov/18550644',
77 => '//pubmed.ncbi.nlm.nih.gov/18550644',
78 => '//pubmed.ncbi.nlm.nih.gov/18606998',
79 => '//pubmed.ncbi.nlm.nih.gov/18606998',
80 => '//pubmed.ncbi.nlm.nih.gov/18755144',
81 => '//pubmed.ncbi.nlm.nih.gov/18755144',
82 => '//pubmed.ncbi.nlm.nih.gov/19096086',
83 => '//pubmed.ncbi.nlm.nih.gov/19096086',
84 => '//pubmed.ncbi.nlm.nih.gov/19170254',
85 => '//pubmed.ncbi.nlm.nih.gov/19170254',
86 => '//pubmed.ncbi.nlm.nih.gov/19244242',
87 => '//pubmed.ncbi.nlm.nih.gov/19244242',
88 => '//pubmed.ncbi.nlm.nih.gov/19272129',
89 => '//pubmed.ncbi.nlm.nih.gov/19272129',
90 => '//pubmed.ncbi.nlm.nih.gov/19349416',
91 => '//pubmed.ncbi.nlm.nih.gov/19349416',
92 => '//pubmed.ncbi.nlm.nih.gov/19458126',
93 => '//pubmed.ncbi.nlm.nih.gov/19458126',
94 => '//pubmed.ncbi.nlm.nih.gov/20375979',
95 => '//pubmed.ncbi.nlm.nih.gov/20375979',
96 => '//pubmed.ncbi.nlm.nih.gov/22811560',
97 => '//pubmed.ncbi.nlm.nih.gov/22811560',
98 => '//pubmed.ncbi.nlm.nih.gov/7680431',
99 => '//pubmed.ncbi.nlm.nih.gov/7680431',
100 => '//pubmed.ncbi.nlm.nih.gov/8190102',
101 => '//pubmed.ncbi.nlm.nih.gov/8190102',
102 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1175014',
103 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1175014',
104 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1821066',
105 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1821066',
106 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1360592',
107 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1360592',
108 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2672938',
109 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2672938',
110 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2519181',
111 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2519181',
112 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2701452',
113 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2701452',
114 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2673288',
115 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2673288',
116 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2775575',
117 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2775575',
118 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2474477',
119 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2474477',
120 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3055000',
121 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3055000',
122 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3766631',
123 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3766631',
124 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3560389',
125 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3560389',
126 => 'http://May2017.archive.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000151704',
127 => 'http://May2017.archive.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000041248',
128 => 'http://amigo.geneontology.org/',
129 => 'http://amigo.geneontology.org/amigo/term/GO:0005242',
130 => 'http://amigo.geneontology.org/amigo/term/GO:0005524',
131 => 'http://amigo.geneontology.org/amigo/term/GO:0005886',
132 => 'http://amigo.geneontology.org/amigo/term/GO:0008076',
133 => 'http://amigo.geneontology.org/amigo/term/GO:0006813',
134 => 'http://amigo.geneontology.org/amigo/term/GO:0007588',
135 => 'http://amigo.geneontology.org/amigo/term/GO:0005546',
136 => 'http://amigo.geneontology.org/amigo/term/GO:0015272',
137 => 'http://amigo.geneontology.org/amigo/term/GO:0034765',
138 => 'http://amigo.geneontology.org/amigo/term/GO:0000166',
139 => 'http://amigo.geneontology.org/amigo/term/GO:0005244',
140 => 'http://amigo.geneontology.org/amigo/term/GO:0016021',
141 => 'http://amigo.geneontology.org/amigo/term/GO:0016020',
142 => 'http://amigo.geneontology.org/amigo/term/GO:0006811',
143 => 'http://amigo.geneontology.org/amigo/term/GO:1990573',
144 => 'http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000151704;db=core',
145 => 'http://www.ensembl.org/Mus_musculus/geneview?gene=ENSMUSG00000041248;db=core',
146 => 'http://www.informatics.jax.org/marker/MGI:1927248',
147 => 'http://www.lib.kobe-u.ac.jp/repository/90000603.pdf',
148 => 'https://api.semanticscholar.org/CorpusID:4332298',
149 => 'https://api.semanticscholar.org/CorpusID:11588492',
150 => 'https://api.semanticscholar.org/CorpusID:24421285',
151 => 'https://api.semanticscholar.org/CorpusID:36736809',
152 => 'https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&position=chr11:128836315-128867373',
153 => 'https://genome.ucsc.edu/cgi-bin/hgTracks?org=Mouse&db=mm0&position=chr9:32372493-32399197',
154 => 'https://meshb.nlm.nih.gov/record/ui?name=ROMK1%20protein,%20human',
155 => 'https://omim.org/entry/600359',
156 => 'https://web.archive.org/web/20050502213547/http://www.ndif.org/Terms/ROMK.html',
157 => 'https://www.ebi.ac.uk/QuickGO/',
158 => 'https://www.genecards.org/cgi-bin/carddisp.pl?gene=KCNJ1',
159 => 'https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/6255',
160 => 'https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=homologene&dopt=HomoloGene&list_uids=56764',
161 => 'https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=default&list_uids=3758&rn=1',
162 => 'https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=default&list_uids=56379&rn=1',
163 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_153767',
164 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_000220',
165 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_153764',
166 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_153765',
167 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_153766',
168 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_000211',
169 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_722448',
170 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_722449',
171 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_722450',
172 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_722451',
173 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_001168354',
174 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_019659',
175 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_001161826',
176 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_062633',
177 => 'https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Link&LinkName=gene_pubmed&from_uid=3758',
178 => 'https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3758',
179 => 'https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Link&LinkName=gene_pubmed&from_uid=56379',
180 => 'https://www.uniprot.org/uniprot/O88335',
181 => 'https://www.uniprot.org/uniprot/P48048'
] |
All external links in the new text (all_links ) | [] |
Links in the page, before the edit (old_links ) | [
0 => '//doi.org/10.1007%2Fs00418-004-0742-5',
1 => '//doi.org/10.1007%2Fs00418-004-0742-5',
2 => '//doi.org/10.1007%2Fs00467-007-0468-4',
3 => '//doi.org/10.1007%2Fs00467-007-0468-4',
4 => '//doi.org/10.1016%2Fj.bbrc.2008.08.076',
5 => '//doi.org/10.1016%2Fj.bbrc.2008.08.076',
6 => '//doi.org/10.1038%2F362031a0',
7 => '//doi.org/10.1038%2F362031a0',
8 => '//doi.org/10.1038%2Fki.2010.73',
9 => '//doi.org/10.1038%2Fki.2010.73',
10 => '//doi.org/10.1038%2Fng.118',
11 => '//doi.org/10.1038%2Fng.118',
12 => '//doi.org/10.1073%2Fpnas.0504332102',
13 => '//doi.org/10.1073%2Fpnas.0504332102',
14 => '//doi.org/10.1073%2Fpnas.0510609103',
15 => '//doi.org/10.1073%2Fpnas.0510609103',
16 => '//doi.org/10.1073%2Fpnas.0803223105',
17 => '//doi.org/10.1073%2Fpnas.0803223105',
18 => '//doi.org/10.1074%2Fjbc.M212301200',
19 => '//doi.org/10.1074%2Fjbc.M212301200',
20 => '//doi.org/10.1074%2Fjbc.M311599200',
21 => '//doi.org/10.1074%2Fjbc.M311599200',
22 => '//doi.org/10.1074%2Fjbc.M705574200',
23 => '//doi.org/10.1074%2Fjbc.M705574200',
24 => '//doi.org/10.1074%2Fjbc.M806551200',
25 => '//doi.org/10.1074%2Fjbc.M806551200',
26 => '//doi.org/10.1093%2Fndt%2Fgfn689',
27 => '//doi.org/10.1093%2Fndt%2Fgfn689',
28 => '//doi.org/10.1124%2Fmol.109.055780',
29 => '//doi.org/10.1124%2Fmol.109.055780',
30 => '//doi.org/10.1124%2Fpr.57.4.11',
31 => '//doi.org/10.1124%2Fpr.57.4.11',
32 => '//doi.org/10.1152%2Fajprenal.00181.2009',
33 => '//doi.org/10.1152%2Fajprenal.00181.2009',
34 => '//doi.org/10.1152%2Fajprenal.90287.2008',
35 => '//doi.org/10.1152%2Fajprenal.90287.2008',
36 => '//doi.org/10.1161%2FHYPERTENSIONAHA.108.112664',
37 => '//doi.org/10.1161%2FHYPERTENSIONAHA.108.112664',
38 => '//doi.org/10.1161%2Fcircresaha.112.266445',
39 => '//doi.org/10.1161%2Fcircresaha.112.266445',
40 => '//doi.org/10.1172%2FJCI30087',
41 => '//doi.org/10.1172%2FJCI30087',
42 => '//doi.org/10.1186%2F1423-0127-16-29',
43 => '//doi.org/10.1186%2F1423-0127-16-29',
44 => '//doi.org/10.1681%2Fasn.2007070792',
45 => '//doi.org/10.1681%2Fasn.2007070792',
46 => '//doi.org/10.3346%2Fjkms.2003.18.1.65',
47 => '//doi.org/10.3346%2Fjkms.2003.18.1.65',
48 => '//doi.org/10.4161%2Fchan.3707',
49 => '//doi.org/10.4161%2Fchan.3707',
50 => '//pubmed.ncbi.nlm.nih.gov/12589089',
51 => '//pubmed.ncbi.nlm.nih.gov/12589089',
52 => '//pubmed.ncbi.nlm.nih.gov/12684516',
53 => '//pubmed.ncbi.nlm.nih.gov/12684516',
54 => '//pubmed.ncbi.nlm.nih.gov/14604981',
55 => '//pubmed.ncbi.nlm.nih.gov/14604981',
56 => '//pubmed.ncbi.nlm.nih.gov/15895241',
57 => '//pubmed.ncbi.nlm.nih.gov/15895241',
58 => '//pubmed.ncbi.nlm.nih.gov/15987778',
59 => '//pubmed.ncbi.nlm.nih.gov/15987778',
60 => '//pubmed.ncbi.nlm.nih.gov/16382105',
61 => '//pubmed.ncbi.nlm.nih.gov/16382105',
62 => '//pubmed.ncbi.nlm.nih.gov/16428287',
63 => '//pubmed.ncbi.nlm.nih.gov/16428287',
64 => '//pubmed.ncbi.nlm.nih.gov/17380208',
65 => '//pubmed.ncbi.nlm.nih.gov/17380208',
66 => '//pubmed.ncbi.nlm.nih.gov/17401586',
67 => '//pubmed.ncbi.nlm.nih.gov/17401586',
68 => '//pubmed.ncbi.nlm.nih.gov/17804670',
69 => '//pubmed.ncbi.nlm.nih.gov/17804670',
70 => '//pubmed.ncbi.nlm.nih.gov/18211905',
71 => '//pubmed.ncbi.nlm.nih.gov/18211905',
72 => '//pubmed.ncbi.nlm.nih.gov/18391953',
73 => '//pubmed.ncbi.nlm.nih.gov/18391953',
74 => '//pubmed.ncbi.nlm.nih.gov/18443236',
75 => '//pubmed.ncbi.nlm.nih.gov/18443236',
76 => '//pubmed.ncbi.nlm.nih.gov/18550644',
77 => '//pubmed.ncbi.nlm.nih.gov/18550644',
78 => '//pubmed.ncbi.nlm.nih.gov/18606998',
79 => '//pubmed.ncbi.nlm.nih.gov/18606998',
80 => '//pubmed.ncbi.nlm.nih.gov/18755144',
81 => '//pubmed.ncbi.nlm.nih.gov/18755144',
82 => '//pubmed.ncbi.nlm.nih.gov/19096086',
83 => '//pubmed.ncbi.nlm.nih.gov/19096086',
84 => '//pubmed.ncbi.nlm.nih.gov/19170254',
85 => '//pubmed.ncbi.nlm.nih.gov/19170254',
86 => '//pubmed.ncbi.nlm.nih.gov/19244242',
87 => '//pubmed.ncbi.nlm.nih.gov/19244242',
88 => '//pubmed.ncbi.nlm.nih.gov/19272129',
89 => '//pubmed.ncbi.nlm.nih.gov/19272129',
90 => '//pubmed.ncbi.nlm.nih.gov/19349416',
91 => '//pubmed.ncbi.nlm.nih.gov/19349416',
92 => '//pubmed.ncbi.nlm.nih.gov/19458126',
93 => '//pubmed.ncbi.nlm.nih.gov/19458126',
94 => '//pubmed.ncbi.nlm.nih.gov/20375979',
95 => '//pubmed.ncbi.nlm.nih.gov/20375979',
96 => '//pubmed.ncbi.nlm.nih.gov/22811560',
97 => '//pubmed.ncbi.nlm.nih.gov/22811560',
98 => '//pubmed.ncbi.nlm.nih.gov/7680431',
99 => '//pubmed.ncbi.nlm.nih.gov/7680431',
100 => '//pubmed.ncbi.nlm.nih.gov/8190102',
101 => '//pubmed.ncbi.nlm.nih.gov/8190102',
102 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1175014',
103 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1175014',
104 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1821066',
105 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1821066',
106 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1360592',
107 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC1360592',
108 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2672938',
109 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2672938',
110 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2519181',
111 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2519181',
112 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2701452',
113 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2701452',
114 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2673288',
115 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2673288',
116 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2775575',
117 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2775575',
118 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2474477',
119 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC2474477',
120 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3055000',
121 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3055000',
122 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3766631',
123 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3766631',
124 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3560389',
125 => '//www.ncbi.nlm.nih.gov/pmc/articles/PMC3560389',
126 => 'http://May2017.archive.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000151704',
127 => 'http://May2017.archive.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000041248',
128 => 'http://amigo.geneontology.org/',
129 => 'http://amigo.geneontology.org/amigo/term/GO:0005242',
130 => 'http://amigo.geneontology.org/amigo/term/GO:0005524',
131 => 'http://amigo.geneontology.org/amigo/term/GO:0005886',
132 => 'http://amigo.geneontology.org/amigo/term/GO:0008076',
133 => 'http://amigo.geneontology.org/amigo/term/GO:0006813',
134 => 'http://amigo.geneontology.org/amigo/term/GO:0007588',
135 => 'http://amigo.geneontology.org/amigo/term/GO:0005546',
136 => 'http://amigo.geneontology.org/amigo/term/GO:0015272',
137 => 'http://amigo.geneontology.org/amigo/term/GO:0034765',
138 => 'http://amigo.geneontology.org/amigo/term/GO:0000166',
139 => 'http://amigo.geneontology.org/amigo/term/GO:0005244',
140 => 'http://amigo.geneontology.org/amigo/term/GO:0016021',
141 => 'http://amigo.geneontology.org/amigo/term/GO:0016020',
142 => 'http://amigo.geneontology.org/amigo/term/GO:0006811',
143 => 'http://amigo.geneontology.org/amigo/term/GO:1990573',
144 => 'http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000151704;db=core',
145 => 'http://www.ensembl.org/Mus_musculus/geneview?gene=ENSMUSG00000041248;db=core',
146 => 'http://www.informatics.jax.org/marker/MGI:1927248',
147 => 'http://www.lib.kobe-u.ac.jp/repository/90000603.pdf',
148 => 'https://api.semanticscholar.org/CorpusID:4332298',
149 => 'https://api.semanticscholar.org/CorpusID:11588492',
150 => 'https://api.semanticscholar.org/CorpusID:24421285',
151 => 'https://api.semanticscholar.org/CorpusID:36736809',
152 => 'https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&position=chr11:128836315-128867373',
153 => 'https://genome.ucsc.edu/cgi-bin/hgTracks?org=Mouse&db=mm0&position=chr9:32372493-32399197',
154 => 'https://meshb.nlm.nih.gov/record/ui?name=ROMK1%20protein,%20human',
155 => 'https://omim.org/entry/600359',
156 => 'https://web.archive.org/web/20050502213547/http://www.ndif.org/Terms/ROMK.html',
157 => 'https://www.ebi.ac.uk/QuickGO/',
158 => 'https://www.genecards.org/cgi-bin/carddisp.pl?gene=KCNJ1',
159 => 'https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/6255',
160 => 'https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=homologene&dopt=HomoloGene&list_uids=56764',
161 => 'https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=default&list_uids=3758&rn=1',
162 => 'https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=default&list_uids=56379&rn=1',
163 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_153767',
164 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_000220',
165 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_153764',
166 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_153765',
167 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_153766',
168 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_000211',
169 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_722448',
170 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_722449',
171 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_722450',
172 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_722451',
173 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_001168354',
174 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_019659',
175 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_001161826',
176 => 'https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_062633',
177 => 'https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Link&LinkName=gene_pubmed&from_uid=3758',
178 => 'https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3758',
179 => 'https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Link&LinkName=gene_pubmed&from_uid=56379',
180 => 'https://www.uniprot.org/uniprot/O88335',
181 => 'https://www.uniprot.org/uniprot/P48048'
] |
Whether or not the change was made through a Tor exit node (tor_exit_node ) | false |
Unix timestamp of change (timestamp ) | 1612377301 |