Jump to content

Edit filter log

Details for log entry 32238338

07:49, 26 March 2022: 59.27.51.189 (talk) triggered filter 636, performing the action "edit" on 252 (number). Actions taken: Warn; Filter description: Unexplained removal of sourced content (examine)

Changes made in edit

'''252''' ('''two hundred [and] fifty-two''') is the [[natural number]] following [[251 (number)|251]] and preceding [[253 (number)|253]].
'''252''' ('''two hundred [and] fifty-two''') is the [[natural number]] following [[251 (number)|251]] and preceding [[253 (number)|253]].


MY HOUSE IN THE HOME
==In mathematics==
'''252''' is:
*the [[central binomial coefficient]] <math>\tbinom{10}{5}</math>, the largest one divisible by all coefficients in the previous line<ref>{{Cite OEIS|A000984|name=Central binomial coefficients}}</ref>
*a [[Harshad number]] in base 10.
*<math>\tau(3)</math>, where <math>\tau</math> is the [[Ramanujan tau function]].<ref>{{Cite OEIS|A000594|name=Ramanujan's tau function}}</ref>
*<math>\sigma_3(6)</math>, where <math>\sigma_3</math> is the [[Divisor function|function that sums the cubes of the divisors]] of its argument:<ref>{{Cite OEIS|A001158|name=sigma_3(n): sum of cubes of divisors of n}}</ref>
:<math>1^3+2^3+3^3+6^3=(1^3+2^3)(1^3+3^3)=252.</math>
*a [[practical number]],<ref>{{Cite OEIS|A005153|name=Practical numbers}}</ref>
*a [[refactorable number]],<ref>{{Cite web|url=https://oeis.org/A033950|title=Sloane's A033950 : Refactorable numbers|date=2016-04-18|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-18}}</ref>
*a [[hexagonal pyramidal number]].<ref>{{Cite OEIS|A002412|name=Hexagonal pyramidal numbers, or greengrocer's numbers}}</ref>
*a member of the [[Mian–Chowla sequence|Mian-Chowla sequence]].<ref>{{Cite web|url=https://oeis.org/A005282|title=Sloane's A005282 : Mian-Chowla sequence|date=2016-04-19|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-19}}</ref>

There are 252 points on the surface of a [[cuboctahedron]] of radius five in the [[FCC close packing|face-centered cubic]] lattice,<ref>{{Cite OEIS|A005901|name=Number of points on surface of cuboctahedron}}</ref> 252 ways of writing the number 4 as a sum of six squares of integers,<ref>{{Cite OEIS|A000141|name=Number of ways of writing n as a sum of 6 squares}}</ref> 252 ways of choosing four squares from a 4&times;4 chessboard up to reflections and rotations,<ref>{{Cite OEIS|A019318|name=Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same}}</ref> and 252 ways of placing three pieces on a [[Connect Four]] board.<ref>{{Cite OEIS|A090224|name=Number of possible positions for n men on a standard 7 X 6 board of Connect-Four}}</ref>


==References==
==References==

Action parameters

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'59.27.51.189'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Rights that the user has (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'viewmywatchlist', 6 => 'editmywatchlist', 7 => 'viewmyprivateinfo', 8 => 'editmyprivateinfo', 9 => 'editmyoptions', 10 => 'abusefilter-log-detail', 11 => 'urlshortener-create-url', 12 => 'centralauth-merge', 13 => 'abusefilter-view', 14 => 'abusefilter-log', 15 => 'vipsscaler-test' ]
Whether the user is editing from mobile app (user_app)
false
Whether or not a user is editing through the mobile interface (user_mobile)
true
Page ID (page_id)
6317445
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'252 (number)'
Full page title (page_prefixedtitle)
'252 (number)'
Edit protection level of the page (page_restrictions_edit)
[]
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => 'David Eppstein', 1 => '197.231.239.71', 2 => '116.86.4.41', 3 => 'ClueBot NG', 4 => '149.167.147.47', 5 => 'Monkbot', 6 => '2409:4072:216:91CB:0:0:2688:F8A5', 7 => '2409:4072:583:A17:0:0:A62:D0B0', 8 => 'Shellwood', 9 => '2405:204:C085:5F63:C377:9DD1:96B1:2C09' ]
Page age in seconds (page_age)
493301576
Action (action)
'edit'
Edit summary/reason (summary)
''
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{Infobox number | number = 252 | divisor = 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252 }} '''252''' ('''two hundred [and] fifty-two''') is the [[natural number]] following [[251 (number)|251]] and preceding [[253 (number)|253]]. ==In mathematics== '''252''' is: *the [[central binomial coefficient]] <math>\tbinom{10}{5}</math>, the largest one divisible by all coefficients in the previous line<ref>{{Cite OEIS|A000984|name=Central binomial coefficients}}</ref> *a [[Harshad number]] in base 10. *<math>\tau(3)</math>, where <math>\tau</math> is the [[Ramanujan tau function]].<ref>{{Cite OEIS|A000594|name=Ramanujan's tau function}}</ref> *<math>\sigma_3(6)</math>, where <math>\sigma_3</math> is the [[Divisor function|function that sums the cubes of the divisors]] of its argument:<ref>{{Cite OEIS|A001158|name=sigma_3(n): sum of cubes of divisors of n}}</ref> :<math>1^3+2^3+3^3+6^3=(1^3+2^3)(1^3+3^3)=252.</math> *a [[practical number]],<ref>{{Cite OEIS|A005153|name=Practical numbers}}</ref> *a [[refactorable number]],<ref>{{Cite web|url=https://oeis.org/A033950|title=Sloane's A033950 : Refactorable numbers|date=2016-04-18|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-18}}</ref> *a [[hexagonal pyramidal number]].<ref>{{Cite OEIS|A002412|name=Hexagonal pyramidal numbers, or greengrocer's numbers}}</ref> *a member of the [[Mian–Chowla sequence|Mian-Chowla sequence]].<ref>{{Cite web|url=https://oeis.org/A005282|title=Sloane's A005282 : Mian-Chowla sequence|date=2016-04-19|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-19}}</ref> There are 252 points on the surface of a [[cuboctahedron]] of radius five in the [[FCC close packing|face-centered cubic]] lattice,<ref>{{Cite OEIS|A005901|name=Number of points on surface of cuboctahedron}}</ref> 252 ways of writing the number 4 as a sum of six squares of integers,<ref>{{Cite OEIS|A000141|name=Number of ways of writing n as a sum of 6 squares}}</ref> 252 ways of choosing four squares from a 4&times;4 chessboard up to reflections and rotations,<ref>{{Cite OEIS|A019318|name=Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same}}</ref> and 252 ways of placing three pieces on a [[Connect Four]] board.<ref>{{Cite OEIS|A090224|name=Number of possible positions for n men on a standard 7 X 6 board of Connect-Four}}</ref> ==References== {{reflist}} {{Integers|2}} [[Category:Integers]] {{number-stub}}'
New page wikitext, after the edit (new_wikitext)
'{{Infobox number | number = 252 | divisor = 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252 }} '''252''' ('''two hundred [and] fifty-two''') is the [[natural number]] following [[251 (number)|251]] and preceding [[253 (number)|253]]. MY HOUSE IN THE HOME ==References== {{reflist}} {{Integers|2}} [[Category:Integers]] {{number-stub}}'
Unified diff of changes made by edit (edit_diff)
'@@ -5,17 +5,5 @@ '''252''' ('''two hundred [and] fifty-two''') is the [[natural number]] following [[251 (number)|251]] and preceding [[253 (number)|253]]. -==In mathematics== -'''252''' is: -*the [[central binomial coefficient]] <math>\tbinom{10}{5}</math>, the largest one divisible by all coefficients in the previous line<ref>{{Cite OEIS|A000984|name=Central binomial coefficients}}</ref> -*a [[Harshad number]] in base 10. -*<math>\tau(3)</math>, where <math>\tau</math> is the [[Ramanujan tau function]].<ref>{{Cite OEIS|A000594|name=Ramanujan's tau function}}</ref> -*<math>\sigma_3(6)</math>, where <math>\sigma_3</math> is the [[Divisor function|function that sums the cubes of the divisors]] of its argument:<ref>{{Cite OEIS|A001158|name=sigma_3(n): sum of cubes of divisors of n}}</ref> -:<math>1^3+2^3+3^3+6^3=(1^3+2^3)(1^3+3^3)=252.</math> -*a [[practical number]],<ref>{{Cite OEIS|A005153|name=Practical numbers}}</ref> -*a [[refactorable number]],<ref>{{Cite web|url=https://oeis.org/A033950|title=Sloane's A033950 : Refactorable numbers|date=2016-04-18|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-18}}</ref> -*a [[hexagonal pyramidal number]].<ref>{{Cite OEIS|A002412|name=Hexagonal pyramidal numbers, or greengrocer's numbers}}</ref> -*a member of the [[Mian–Chowla sequence|Mian-Chowla sequence]].<ref>{{Cite web|url=https://oeis.org/A005282|title=Sloane's A005282 : Mian-Chowla sequence|date=2016-04-19|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-19}}</ref> - -There are 252 points on the surface of a [[cuboctahedron]] of radius five in the [[FCC close packing|face-centered cubic]] lattice,<ref>{{Cite OEIS|A005901|name=Number of points on surface of cuboctahedron}}</ref> 252 ways of writing the number 4 as a sum of six squares of integers,<ref>{{Cite OEIS|A000141|name=Number of ways of writing n as a sum of 6 squares}}</ref> 252 ways of choosing four squares from a 4&times;4 chessboard up to reflections and rotations,<ref>{{Cite OEIS|A019318|name=Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same}}</ref> and 252 ways of placing three pieces on a [[Connect Four]] board.<ref>{{Cite OEIS|A090224|name=Number of possible positions for n men on a standard 7 X 6 board of Connect-Four}}</ref> + MY HOUSE IN THE HOME ==References== '
New page size (new_size)
358
Old page size (old_size)
2572
Size change in edit (edit_delta)
-2214
Lines added in edit (added_lines)
[ 0 => ' MY HOUSE IN THE HOME' ]
Lines removed in edit (removed_lines)
[ 0 => '==In mathematics==', 1 => ''''252''' is:', 2 => '*the [[central binomial coefficient]] <math>\tbinom{10}{5}</math>, the largest one divisible by all coefficients in the previous line<ref>{{Cite OEIS|A000984|name=Central binomial coefficients}}</ref>', 3 => '*a [[Harshad number]] in base 10.', 4 => '*<math>\tau(3)</math>, where <math>\tau</math> is the [[Ramanujan tau function]].<ref>{{Cite OEIS|A000594|name=Ramanujan's tau function}}</ref>', 5 => '*<math>\sigma_3(6)</math>, where <math>\sigma_3</math> is the [[Divisor function|function that sums the cubes of the divisors]] of its argument:<ref>{{Cite OEIS|A001158|name=sigma_3(n): sum of cubes of divisors of n}}</ref>', 6 => ':<math>1^3+2^3+3^3+6^3=(1^3+2^3)(1^3+3^3)=252.</math>', 7 => '*a [[practical number]],<ref>{{Cite OEIS|A005153|name=Practical numbers}}</ref>', 8 => '*a [[refactorable number]],<ref>{{Cite web|url=https://oeis.org/A033950|title=Sloane's A033950 : Refactorable numbers|date=2016-04-18|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-18}}</ref>', 9 => '*a [[hexagonal pyramidal number]].<ref>{{Cite OEIS|A002412|name=Hexagonal pyramidal numbers, or greengrocer's numbers}}</ref>', 10 => '*a member of the [[Mian–Chowla sequence|Mian-Chowla sequence]].<ref>{{Cite web|url=https://oeis.org/A005282|title=Sloane's A005282 : Mian-Chowla sequence|date=2016-04-19|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-04-19}}</ref>', 11 => '', 12 => 'There are 252 points on the surface of a [[cuboctahedron]] of radius five in the [[FCC close packing|face-centered cubic]] lattice,<ref>{{Cite OEIS|A005901|name=Number of points on surface of cuboctahedron}}</ref> 252 ways of writing the number 4 as a sum of six squares of integers,<ref>{{Cite OEIS|A000141|name=Number of ways of writing n as a sum of 6 squares}}</ref> 252 ways of choosing four squares from a 4&times;4 chessboard up to reflections and rotations,<ref>{{Cite OEIS|A019318|name=Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same}}</ref> and 252 ways of placing three pieces on a [[Connect Four]] board.<ref>{{Cite OEIS|A090224|name=Number of possible positions for n men on a standard 7 X 6 board of Connect-Four}}</ref>' ]
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
1648280994