Edit count of the user (user_editcount ) | 41 |
Name of the user account (user_name ) | 'Kierabiner' |
Age of the user account (user_age ) | 3028251 |
Groups (including implicit) the user is in (user_groups ) | [
0 => '*',
1 => 'user',
2 => 'autoconfirmed'
] |
Rights that the user has (user_rights ) | [
0 => 'createaccount',
1 => 'read',
2 => 'edit',
3 => 'createtalk',
4 => 'writeapi',
5 => 'viewmywatchlist',
6 => 'editmywatchlist',
7 => 'viewmyprivateinfo',
8 => 'editmyprivateinfo',
9 => 'editmyoptions',
10 => 'abusefilter-log-detail',
11 => 'urlshortener-create-url',
12 => 'centralauth-merge',
13 => 'abusefilter-view',
14 => 'abusefilter-log',
15 => 'vipsscaler-test',
16 => 'collectionsaveasuserpage',
17 => 'reupload-own',
18 => 'move-rootuserpages',
19 => 'createpage',
20 => 'minoredit',
21 => 'editmyusercss',
22 => 'editmyuserjson',
23 => 'editmyuserjs',
24 => 'purge',
25 => 'sendemail',
26 => 'applychangetags',
27 => 'spamblacklistlog',
28 => 'mwoauthmanagemygrants',
29 => 'reupload',
30 => 'upload',
31 => 'move',
32 => 'autoconfirmed',
33 => 'editsemiprotected',
34 => 'skipcaptcha',
35 => 'ipinfo',
36 => 'ipinfo-view-basic',
37 => 'transcode-reset',
38 => 'transcode-status',
39 => 'createpagemainns',
40 => 'movestable',
41 => 'autoreview'
] |
Whether the user is editing from mobile app (user_app ) | false |
Whether or not a user is editing through the mobile interface (user_mobile ) | false |
Page ID (page_id ) | 1439783 |
Page namespace (page_namespace ) | 0 |
Page title without namespace (page_title ) | 'Serpentinization' |
Full page title (page_prefixedtitle ) | 'Serpentinization' |
Edit protection level of the page (page_restrictions_edit ) | [] |
Last ten users to contribute to the page (page_recent_contributors ) | [
0 => 'Senator2029',
1 => 'Rolinator',
2 => 'Shaddack',
3 => 'Vsmith',
4 => 'CanisRufus',
5 => 'Caltrop'
] |
Page age in seconds (page_age ) | 562262702 |
Action (action ) | 'edit' |
Edit summary/reason (summary ) | 'Added content related to Serpentinization process from serpentinite page. Fixed references and statements that were not supported by academic sources. ' |
Old content model (old_content_model ) | 'wikitext' |
New content model (new_content_model ) | 'wikitext' |
Old page wikitext, before the edit (old_wikitext ) | '#REDIRECT [[Serpentinite]]
{{Redirect category shell|
{{R from related word}}
}}' |
New page wikitext, after the edit (new_wikitext ) | '
{{short description|Rock formed by hydration and metamorphic transformation of olivine}}
{{Use dmy dates|date=May 2022}}
[[File:Mineraly.sk - chryzotil.jpg|right|thumb|Serpentinite partially made of [[chrysotile]], from Slovakia]]
'''Serpentinization''' is a hydration and [[Metamorphic rock|metamorphic]] transformation of ferromagnesian minerals, such as [[olivine]] and [[pyroxene]], in [[mafic]] and [[ultramafic]] rock<ref name=":0">{{Cite journal |last=Holm |first=N.G. |last2=Oze |first2=C. |last3=Mousis |first3=O. |last4=Waite |first4=J.H. |last5=Guilbert-Lepoutre |first5=A. |date=2015-07-01 |title=Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets) |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523005/ |journal=Astrobiology |volume=15 |issue=7 |pages=587–600 |doi=10.1089/ast.2014.1188 |issn=1531-1074 |pmc=4523005 |pmid=26154779}}</ref>. Minerals formed by serpentinization include the [[Serpentine subgroup|serpentine group]] minerals (antigorite, lizardite, chrysotile), [[brucite]], [[talc]], Ni-Fe alloys, and [[magnetite]]<ref name=":0" /><ref name="Moody1976" />. The [[mineral alteration]] is particularly important at the [[sea floor]] at [[plate tectonics|tectonic plate]] boundaries.<ref name="GeologyDictionary">{{cite web |url=https://www.theodora.com/geology/glossarys.html#serpentine |title=Serpentine definition |work=Dictionary of Geology |access-date=2018-10-23}}</ref><ref name=":2">{{Cite journal |last=Holm |first=N.g. |last2=Oze |first2=C. |last3=Mousis |first3=O. |last4=Waite |first4=J.h. |last5=Guilbert-Lepoutre |first5=A. |date=2015-07-01 |title=Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets) |url=https://www.liebertpub.com/doi/10.1089/ast.2014.1188 |journal=Astrobiology |volume=15 |issue=7 |pages=587–600 |doi=10.1089/ast.2014.1188 |issn=1531-1074 |pmc=PMC4523005 |pmid=26154779}}</ref>
== Formation and petrology ==
Serpentinization is a form of low-temperature (0 to ~600 °C) <ref>{{Cite journal |last=Evans |first=Bernard W. |date=2004-06-01 |title=The Serpentinite Multisystem Revisited: Chrysotile Is Metastable |url=https://doi.org/10.2747/0020-6814.46.6.479 |journal=International Geology Review |volume=46 |issue=6 |pages=479–506 |doi=10.2747/0020-6814.46.6.479 |issn=0020-6814}}</ref> [[metamorphism]] of ferromagnesian minerals in mafic and [[ultramafic]] rocks, such as [[dunite]], [[harzburgite]], or [[lherzolite]]. These are rocks low in [[silica]] and composed mostly of [[olivine]] ({{chem2|(Mg(2+), Fe(2+))2SiO4}}), [[pyroxene]] ({{chem2|XY(Si,Al)2O6}}), and [[chromite]] (approximately {{chem2|FeCr2O4}}). Serpentinization is driven largely by [[Mineral hydration|hydration]] and [[oxidation]] of olivine and pyroxene to [[serpentine subgroup|serpentine group]] minerals (antigorite, lizardite, and chrysotile), [[brucite]] ({{chem2|Mg(OH)2}}), [[talc]] (Mg<sub>3</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>2,</sub> and [[magnetite]] ({{chem2|Fe3O4}}).<ref name=Moody1976>{{cite journal |last1=Moody |first1=Judith B. |title=Serpentinization: a review |journal=Lithos |date=April 1976 |volume=9 |issue=2 |pages=125–138 |doi=10.1016/0024-4937(76)90030-X|bibcode=1976Litho...9..125M }}</ref> Under the unusual chemical conditions accompanying serpentinization, water is the oxidizing agent, and is itself reduced to hydrogen, {{chem|[[hydrogen|H]]|2}}. This leads to further reactions that produce rare [[iron group]] [[native element mineral]]s, such as [[awaruite]] ({{chem|Ni|3|Fe}}) and [[native iron]]; [[methane]] and other [[hydrocarbon]] compounds; and [[hydrogen sulfide]].<ref name=":0" /><ref name=BerndtEtal1996>{{cite journal |last1=Berndt |first1=Michael E. |last2=Allen |first2=Douglas E. |last3=Seyfried |first3=William E. |title=Reduction of {{CO2}} during serpentinization of olivine at 300 °C and 500 bar |journal=Geology |date=1 April 1996 |volume=24 |issue=4 |pages=351–354 |doi=10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2|bibcode=1996Geo....24..351B }}</ref>
During serpentinization, large amounts of water are absorbed into the rock, increasing the volume, reducing the density and destroying the original structure.{{sfn|Moody|1976|p=128-129}} The density changes from {{convert|3.3|to|2.5|g/cm3|abbr=on}} with a concurrent volume increase on the order of 30-40%.<ref name=Mevel2003>{{cite journal |last1=Mével |first1=Catherine |title=Serpentinization of abyssal peridotites at mid-ocean ridges |journal=Comptes Rendus Geoscience |date=September 2003 |volume=335 |issue=10–11 |pages=825–852 |doi=10.1016/j.crte.2003.08.006|bibcode=2003CRGeo.335..825M }}</ref> The reaction is highly [[exothermic]], releasing up to {{convert|40|kJ|kcal|sp=us}} per mole of water reacting with the rock, and rock temperatures can be raised by about {{convert|260|Celsius}},<ref name="LC">[http://www.lostcity.washington.edu/science/chemistry/serpentinization.html Serpentinization: The heat engine at Lost City and sponge of the oceanic crust]</ref><ref name="FruhGreenEtal20042">{{cite journal |last1=Früh-Green |first1=Gretchen L. |last2=Connolly |first2=James A.D. |last3=Plas |first3=Alessio |last4=Kelley |first4=Deborah S. |last5=Grobéty |first5=Bernard |date=2004 |title=Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity |journal=Geophysical Monograph Series |volume=144 |pages=119–136 |bibcode=2004GMS...144..119F |doi=10.1029/144GM08 |isbn=0-87590-409-2}}</ref> providing an energy source for formation of non-volcanic [[hydrothermal vent]]s.<ref name=Lowell2002>{{cite journal |last1=Lowell |first1=R. P. |title=Seafloor hydrothermal systems driven by the serpentinization of peridotite |journal=Geophysical Research Letters |date=2002 |volume=29 |issue=11 |pages=1531 |doi=10.1029/2001GL014411|bibcode=2002GeoRL..29.1531L |doi-access=free }}</ref> The hydrogen, methane, and hydrogen sulfide produced during serpentinization are released at these vents and provide energy sources for deep sea [[chemotroph]] [[microorganism]]s.<ref name=FruhGreenEtal2004>{{cite journal |last1=Früh-Green |first1=Gretchen L. |last2=Connolly |first2=James A.D. |last3=Plas |first3=Alessio |last4=Kelley |first4=Deborah S. |last5=Grobéty |first5=Bernard |title=Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity |journal=Geophysical Monograph Series |date=2004 |volume=144 |pages=119–136 |doi=10.1029/144GM08|bibcode=2004GMS...144..119F |isbn=0-87590-409-2 }}</ref><ref name=LC/>
===Formation of serpentine minerals ===
Olivine is a [[solid solution]] of [[forsterite]], the [[magnesium]] endmember of {{chem2|(Mg(2+), Fe(2+))2SiO4}}, and [[fayalite]], the [[iron]] endmember, with forsterite typically making up about 90% of the olivine in ultramafic rocks.<ref name=SnowDick1995>{{cite journal |last1=Snow |first1=Jonathan E. |last2=Dick |first2=Henry J.B. |title=Pervasive magnesium loss by marine weathering of peridotite |journal=Geochimica et Cosmochimica Acta |date=October 1995 |volume=59 |issue=20 |pages=4219–4235 |doi=10.1016/0016-7037(95)00239-V|bibcode=1995GeCoA..59.4219S }}</ref> Serpentinite can form from [[olivine]] via several reactions:
{{NumBlk|:
|{{overset|[[Forsterite]]|3 {{chem|Mg|2|SiO|4}}}} + {{overset|silicon dioxide|{{chem|SiO|2}}}} + 4 {{chem|H|2|O}} → {{overset|serpentine|2 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}}
|{{EquationRef|Reaction 1a}}}}
{{NumBlk|:
|{{overset|[[Forsterite]]|2 {{chem|Mg|2|SiO|4}}}} + {{overset|water|3 {{chem|H|2|O}}}} → {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|[[brucite]]|{{chem|Mg|(OH)|2}}}}
|{{EquationRef|Reaction 1b}}}}
Reaction 1a tightly binds silica, lowering its [[chemical activity]] to the lowest values seen in common rocks of the [[Earth's crust]].<ref name=FrostBeard2007>{{cite journal |last1=Frost |first1=B. R. |last2=Beard |first2=J. S. |title=On Silica Activity and Serpentinization |journal=Journal of Petrology |date=3 April 2007 |volume=48 |issue=7 |pages=1351–1368 |doi=10.1093/petrology/egm021|url=http://petrology.oxfordjournals.org/content/48/7/1351.full.pdf }}</ref> Serpentinization then continues through the hydration of olivine to yield serpentine and brucite (Reaction 1b).<ref name="Coleman77">{{cite book|last=Coleman|first=Robert G.|title=Ophiolites|date=1977|publisher=Springer-Verlag|isbn=978-3540082767|pages=100–101}}</ref> The mixture of brucite and serpentine formed by Reaction 1b has the lowest silica activity in the serpentinite, so that the brucite phase is very important in understanding serpentinization.<ref name=FrostBeard2007/> However, the brucite is often blended in with the serpentine such that it is difficult to identify except with [[X-ray diffraction]], and it is easily altered under surface weathering conditions.{{sfn|Moody|1976|p=127}}
A similar suite of reactions involves [[pyroxene]]-group minerals:
{{NumBlk|:
|{{overset|[[Enstatite]]|3 {{chem|Mg|SiO|3}}}} + {{overset|silicon dioxide|{{chem|SiO|2}}}} + {{chem|H|2|O}} → {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}}
|{{EquationRef|Reaction 2a}}}}
{{NumBlk|:
|{{overset|[[Enstatite]]|6 {{chem|Mg|SiO|3}}}} + 3 {{chem|H|2|O}} → {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}}
|{{EquationRef|Reaction 2b}}}}
Reaction 2a quickly comes to a halt as silica becomes unavailable, and Reaction 2b takes over.{{sfn|Frost|Beard|2007|p=1355}} When olivine is abundant, silica activity drops low enough that talc begins to react with olivine:
{{NumBlk|:
|{{overset|[[Forsterite]]|6 {{chem|Mg|2|SiO|4}}}} + {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}} + {{overset|water|9 {{chem|H|2|O}}}} → {{overset|serpentine|5 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}}
|{{EquationRef|Reaction 3}}}}
This reaction requires higher temperatures than those at which brucite forms.{{sfn|Moody|1976|p=127}}
The final mineralogy depends both on rock and fluid compositions, temperature, and pressure. Antigorite forms in reactions at temperatures that can exceed {{convert|600|C|F|abbr=on}} during metamorphism, and it is the serpentine group mineral stable at the highest temperatures. Lizardite and chrysotile can form at low temperatures very near the Earth's surface.{{sfn|Moody|1976|p=125, 127, 131}}
===Breakdown of diopside and formation of rodingites===
Ultramafic rocks often contain calcium-rich pyroxene ([[diopside]]), which breaks down according to the reaction:
{{NumBlk|:
|{{overset|[[Diopside]]|3 {{chem|Ca|Mg|Si|2|O|6}}}} + 6 {{chem|H|+}} → {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + 3 {{chem|Ca|2+}} + {{chem|H|2|O}} + {{overset|silicon dioxide|4 {{chem|SiO|2}}}}
|{{EquationRef|Reaction 4}}}}
This raises both the [[pH]], often to very high values, and the calcium content of the fluids involved in serpentinization. These fluids are highly reactive and may transport [[calcium]] and other elements into surrounding [[mafic]] rocks. Fluid reaction with these rocks may create [[metasomatism|metasomatic]] reaction zones enriched in calcium and depleted in silica, called [[rodingite]]s.{{sfn|Frost|Beard|2007|pp=1360-1362}}
===Formation of magnetite and hydrogen===
In most crustal rock, the chemical activity of oxygen is prevented from dropping to very low values by the [[Mineral redox buffer#Common redox buffers and mineralogy|fayalite-magnetite-quartz (FMQ) buffer]].{{sfn|Moody|1976|p=129}} The very low chemical activity of silica during serpentinization eliminates this buffer, allowing serpentinization to produce highly [[Reduction (chemistry)|reducing]] conditions.<ref name=FrostBeard2007/> Under these conditions, water is capable of oxidizing ferrous ({{chem|Fe|2+}}) ions in fayalite. The process is of interest because it generates hydrogen gas:<ref name=":0" /><ref>{{cite web| title = Methane and hydrogen formation from rocks – Energy sources for life| url = http://www.lostcity.washington.edu/science/chemistry/methane.html| access-date = 2011-11-06}}</ref><ref>{{Cite journal| last = Sleep| first = N.H.| author2 = A. Meibom, Th. Fridriksson, R.G. Coleman, D.K. Bird| year = 2004| title = H<sub>2</sub>-rich fluids from serpentinization: Geochemical and biotic implications| journal = Proceedings of the National Academy of Sciences of the United States of America| volume = 101| issue = 35| pages = 12818–12823| doi = 10.1073/pnas.0405289101|bibcode = 2004PNAS..10112818S| pmid=15326313| pmc=516479| doi-access = free}}</ref>
{{NumBlk|:
|{{overset|[[Fayalite]]|3 {{chem|Fe|2|SiO|4}}}} + {{overset|water|2 {{chem|H|2|O}}}} → {{overset|[[magnetite]]|2 {{chem|Fe|3|O|4}}}} + {{overset|silicon dioxide|3 {{chem|SiO|2}}}} + {{overset|hydrogen|2 {{chem|H|2}}}}
|{{EquationRef|Reaction 5}}}}
However, studies of serpentinites suggest that iron minerals are first converted to [[wikt:ferroan|ferroan]] brucite, that is, brucite containing {{chem2|Fe(OH)2}},<ref>{{cite journal |last1=Bach |first1=Wolfgang |last2=Paulick |first2=Holger |last3=Garrido |first3=Carlos J. |last4=Ildefonse |first4=Benoit |last5=Meurer |first5=William P. |last6=Humphris |first6=Susan E. |title=Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274) |journal=Geophysical Research Letters |date=2006 |volume=33 |issue=13 |pages=L13306 |doi=10.1029/2006GL025681|bibcode=2006GeoRL..3313306B |hdl=1912/3324 |s2cid=55802656 |hdl-access=free }}</ref> which then undergoes the [[Schikorr reaction]] in the anaerobic conditions of serpentinization:<ref name=Esource>{{cite journal |doi=10.1111/j.1472-4669.2010.00249.x|title=Serpentinization as a source of energy at the origin of life|year=2010|last1=Russell|first1=M. J.|last2=Hall|first2=A. J.|last3=Martin|first3=W.|journal=Geobiology|volume=8|issue=5|pages=355–371|pmid=20572872|s2cid=41118603 }}</ref><ref>{{cite journal |doi=10.2138/rmg.2013.75.18|title=Serpentinization, Carbon, and Deep Life|year=2013|last1=Schrenk|first1=M. O.|last2=Brazelton|first2=W. J.|last3=Lang|first3=S. Q.|journal=Reviews in Mineralogy and Geochemistry|volume=75|issue=1|pages=575–606|bibcode=2013RvMG...75..575S}}</ref>
{{NumBlk|:
|{{underset|ferrous hydroxide|6 {{chem|Fe|(OH)|2}}}} → {{underset|magnetite|2 {{chem|Fe|3|O|4}}}} + {{underset|water|4 {{chem|H|2|O}}}} + {{underset|hydrogen|2 {{chem|H|2}}}}
|{{EquationRef|Reaction 6}}}}
Maximum reducing conditions, and the maximum rate of production of hydrogen, occur when the temperature of serpentinization is between {{convert|200 and 315|C||sp=us}}<ref>{{cite journal |last1=McCollom |first1=Thomas M. |last2=Bach |first2=Wolfgang |title=Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks |journal=Geochimica et Cosmochimica Acta |date=February 2009 |volume=73 |issue=3 |pages=856–875 |doi=10.1016/j.gca.2008.10.032|bibcode=2009GeCoA..73..856M }}</ref> and when fluids are carbonate undersaturated.<ref name=":0" /> If the original ultramafic rock (the ''[[protolith]]'') is peridotite, which is rich in olivine, considerable magnetite and hydrogen are produced. When the protolith is pyroxenite, which contains more pyroxene than olivine, iron-rich talc is produced with no magnetite and only modest hydrogen production. Infiltration of silica-bearing fluids during serpentinization can suppress both the formation of brucite and the subsequent production of hydrogen.<ref>{{cite journal |last1=Klein |first1=Frieder |last2=Bach |first2=Wolfgang |last3=McCollom |first3=Thomas M. |title=Compositional controls on hydrogen generation during serpentinization of ultramafic rocks |journal=Lithos |date=September 2013 |volume=178 |pages=55–69 |doi=10.1016/j.lithos.2013.03.008|bibcode=2013Litho.178...55K }}</ref>
Chromite present in the protolith will be altered to chromium-rich magnetite at lower serpentinization temperatures. At higher temperatures, it will be altered to iron-rich chromite (ferrit-chromite).{{sfn|Moody|1967|p=128}} During serpentinization, the rock is enriched in [[chlorine]], [[boron]], [[fluorine]], and sulfur. Sulfur will be reduce to hydrogen sulfide and sulfide minerals, though significant quantities are incorporated into serpentine minerals, and some may later be reoxidized to sulfate minerals such as [[anhydrite]].<ref>{{Cite journal |last=Debret |first=Baptiste |last2=Andreani |first2=Muriel |last3=Delacour |first3=Adélie |last4=Rouméjon |first4=Stéphane |last5=Trcera |first5=Nicolas |last6=Williams |first6=Helen |date=2017-05-15 |title=Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy |url=https://www.sciencedirect.com/science/article/pii/S0012821X17300973 |journal=Earth and Planetary Science Letters |language=en |volume=466 |pages=1–11 |doi=10.1016/j.epsl.2017.02.029 |issn=0012-821X}}</ref> The sulfides produced include nickel-rich sulfides, such as [[mackinawite]].<ref>{{cite journal |last1=Delacour |first1=Adélie |last2=Früh-Green |first2=Gretchen L. |last3=Bernasconi |first3=Stefano M. |title=Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309) |journal=Geochimica et Cosmochimica Acta |date=October 2008 |volume=72 |issue=20 |pages=5111–5127 |doi=10.1016/j.gca.2008.07.018|bibcode=2008GeCoA..72.5111D }}</ref>
===Methane and other hydrocarbons===
Laboratory experiments have confirmed that at a temperature of {{convert|300|C||sp=us}} and pressure of 500 bars, olivine serpentinizes with release of hydrogen gas. In addition, methane and complex hydrocarbons are formed through reduction of carbon dioxide. The process may be catalyzed by magnetite formed during serpentinization.<ref name=BerndtEtal1996/> One reaction pathway is:<ref name=Esource/>
{{NumBlk|:
|{{overset|forsterite|18 {{chem|Mg|2|SiO|4}}}} + {{overset|fayalite|6 {{chem|Fe|2|SiO|4}}}} + 26 {{chem|H|2|O}} + {{chem|CO|2}} → {{overset|serpentine|12 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|magnetite|4 {{chem|Fe|3|O|4}}}} + {{overset|methane|{{chem|CH|4}}}}
|{{EquationRef|Reaction 7}}}}
===Metamorphism at higher pressure and temperature===
Lizardite and chrysotile are stable at low temperatures and pressures, while antigorite is stable at higher temperatures and pressure. <ref>{{Cite journal |last=Evans |first=Bernard W. |date=2004-06-01 |title=The Serpentinite Multisystem Revisited: Chrysotile Is Metastable |url=https://doi.org/10.2747/0020-6814.46.6.479 |journal=International Geology Review |volume=46 |issue=6 |pages=479–506 |doi=10.2747/0020-6814.46.6.479 |issn=0020-6814}}</ref> Its presence in a serpentinite indicates either that serpentinization took place at unusually high pressure and temperature or that the rock experienced higher grade metamorphism after serpentinization was complete.<ref name="Moody1976" />
Infiltration of {{CO2}}-bearing fluids into serpentinite causes distinctive ''[[Talc carbonate|talc-carbonate alteration]]''. <ref>{{Cite web |url=https://academic.oup.com/petrology/article-abstract/7/3/489/1403183?redirectedFrom=fulltext |access-date=2022-11-20 |website=academic.oup.com}}</ref> Brucite rapidly converts to [[magnesite]] and serpentine minerals (other than antigorite) are converted to talc. The presence of [[pseudomorph]]s of the original serpentinite minerals shows that this alteration takes place after serpentinization.<ref name="Moody1976" />
Serpentinite may contain [[chlorite group|chlorite]] (a [[phyllosilicate]] mineral), [[tremolite]] (Ca<sub>2</sub>(Mg<sub>5.0-4.5</sub>Fe<sup>2+</sup><sub>0.0-0.5</sub>)Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub>), and metamorphic olivine and [[diopside]] (calcium-rich pyroxene). This indicates that the serpentinite has been subject to more intense metamorphism, reaching the upper [[greenschist]] or [[amphibolite]] [[metamorphic facies]].<ref name="Moody1976" />
Above about {{convert|450|C||sp=us}}, antigorite begins to break down. Thus serpentinite does not exist at higher metamorphic facies.<ref name=FruhGreenEtal2004/>
===Extraterrestrial production of methane by serpentinization===
The presence of traces of [[Methane on Mars|methane in the atmosphere of Mars]] has been hypothesized to be a possible evidence for [[life on Mars (planet)|life on Mars]] if methane was produced by [[bacteria]]l activity. Serpentinization has been proposed as an alternative non-biological source for the observed methane traces.<ref>{{cite journal|jstor=27858733|title=Life on Mars?|date=March–April 2006|journal=American Scientist|volume=94|issue=2|pages=119–120|last1=Baucom|first1=Martin|doi=10.1511/2006.58.119}}</ref><ref>{{Cite web|url=https://www.esa.int/Our_Activities/Human_and_Robotic_Exploration/Exploration/ExoMars/The_methane_mystery|title=The methane mystery|last=esa|website=European Space Agency|language=en-GB|access-date=2019-04-22}}</ref> In 2022 it was reported that microscopic examination of the [[ALH 84001]] meteorite, which came from Mars, shows that indeed the organic matter it contains was formed by serpentinization, not by life processes.<ref>{{cite journal |display-authors=etal|last1=Andrew Steele |title=Organic synthesis associated with serpentinization and carbonation on early Mars |journal=Science |date=13 January 2022 |volume=375 |issue=6577 |pages=172–177 |doi=10.1126/science.abg7905|pmid=35025630 |bibcode=2022Sci...375..172S |s2cid=245933224 }}</ref><ref>{{cite journal |last1=Leah Crane |title=Mars: Organic compounds were made by water interacting with rocks |journal=New Scientist |date=22 January 2022 |url=https://www.newscientist.com/article/2304270-organic-compounds-on-mars-were-produced-by-water-and-rocks-not-life/}}</ref>
Using data from the [[Cassini–Huygens|Cassini]] probe flybys obtained in 2010–12, scientists were able to confirm that Saturn's moon [[Enceladus]] likely has a liquid water ocean beneath its frozen surface. A model suggests that the ocean on Enceladus has an alkaline [[pH]] of 11–12.<ref name="pH 2015">{{cite journal |title=The pH of Enceladus' ocean |journal=Geochimica et Cosmochimica Acta |date=16 April 2015 |last1=R. Glein |first1=Christopher |last2= Baross |first2= John A. |last3=Waite |first3=Hunter |doi=10.1016/j.gca.2015.04.017 |bibcode=2015GeCoA.162..202G |volume=162 |pages=202–219|arxiv=1502.01946 |s2cid=119262254 }}</ref> The high pH is interpreted to be a key consequence of serpentinization of [[chondrite|chondritic rock]], that leads to the generation of {{chem|H|2}}, a geochemical source of energy that can support both abiotic and biological synthesis of organic molecules.<ref name="pH 2015"/><ref>{{cite news |last=Wall |first=Mike |url=http://www.space.com/29334-enceladus-ocean-energy-source-life.html |title=Ocean on Saturn Moon Enceladus May Have Potential Energy Source to Support Life |work=Space.com |date=7 May 2015 |access-date=2015-05-08 }}</ref>
==Environment of Formation==
[[Image:Gros Morne moho.jpg|thumb|Ophiolite of the [[Gros Morne National Park]], Newfoundland. Ophiolites characteristically have a serpentinite component.]]
Serpentinization occurs at [[mid-ocean ridges]], in the [[forearc]] mantle of [[subduction zone|subduction]] zones, in ophiolite packages, and in ultramafic intrusions. <ref name="GeologyDictionary" /><ref name=":2" />
=== Mid-ocean Ridges ===
Conditions are highly favorable for serpentinization at slow to ultraslow spreading mid-ocean ridges.<ref name=Mevel2003/> Here the rate of [[crustal extension]] is high compared with the volume of magmatism, bringing ultramafic mantle rock very close to the surface where fracturing allows seawater to infiltrate the rock.<ref name=Lowell2002/>
Serpentinization at slow spreading mid-ocean ridges can cause the seismic Moho discontinuity to be placed at the serpentinization front, rather than the base of the crust as defined by normal petrological criteria.<ref>{{cite journal |last1=Minshull |first1=T. A. |last2=Muller |first2=M. R. |last3=Robinson |first3=C. J. |last4=White |first4=R. S. |last5=Bickle |first5=M. J. |title=Is the oceanic Moho a serpentinization front? |journal=Geological Society, London, Special Publications |date=1998 |volume=148 |issue=1 |pages=71–80 |doi=10.1144/GSL.SP.1998.148.01.05|bibcode=1998GSLSP.148...71M |s2cid=128410328 }}</ref><ref name="Mevel2003" /> The Lanzo Massif of the Italian Alps shows a sharp serpentinization front that may be a relict seismic Moho.<ref>{{cite journal |last1=Debret |first1=B. |last2=Nicollet |first2=C. |last3=Andreani |first3=M. |last4=Schwartz |first4=S. |last5=Godard |first5=M. |title=Three steps of serpentinization in an eclogitized oceanic serpentinization front (Lanzo Massif - Western Alps): ECLOGITIZED SERPENTINIZATION FRONT (LANZO) |journal=Journal of Metamorphic Geology |date=February 2013 |volume=31 |issue=2 |pages=165–186 |doi=10.1111/jmg.12008|s2cid=140540631 }}</ref>
=== Subduction Zones ===
==== Forearc mantle ====
Serpentinization is an important phenomenon in subduction zones that has a strong control on the water cycle and geodynamics of a subduction zone. <ref name=":3">{{Cite journal |last=Xia |first=Shaohong |last2=Sun |first2=Jinlong |last3=Huang |first3=Haibo |date=2017-05-31 |title=Degree of serpentinization in the forearc mantle wedge of Kyushu subduction zone |url=http://dx.doi.org/10.1190/igc2017-238 |journal=International Geophysical Conference, Qingdao, China, 17-20 April 2017 |publisher=Society of Exploration Geophysicists and Chinese Petroleum Society |doi=10.1190/igc2017-238}}</ref> Here mantle rock is cooled by the subducting slab to temperatures at which serpentinite is stable, and fluids are released from the subducting slab in great quantities into the ultramafic mantle rock.<ref name=":3" /> Direct evidence that serpentinization is taking place in the [[Mariana Islands]] [[island arc]] is provided by the activity of serpentinite [[mud volcano]]es. [[Xenolith]]s of harzburgite and (less commonly) dunite are occasionally erupted by the mud volcanoes, giving clues to the nature of the protolith.<ref name=HyndmanPeacock2003>{{cite journal |last1=Hyndman |first1=Roy D |last2=Peacock |first2=Simon M |title=Serpentinization of the forearc mantle |journal=Earth and Planetary Science Letters |date=July 2003 |volume=212 |issue=3–4 |pages=417–432 |doi=10.1016/S0012-821X(03)00263-2|bibcode=2003E&PSL.212..417H }}</ref>
Because serpentinization increases the volume and lowers the density of the original rock, serpentinitization may lead to uplift that creates coastal ranges above mantle forearcs.<ref name=HyndmanPeacock2003/> Further uplift can bring serpentinite to the surface when subduction ceases, as has taken place with the serpentinite exposed at the [[Presidio of San Francisco]].<ref name="Presidio">{{cite web |title=Serpentinite |url=https://www.nps.gov/prsf/learn/nature/serpentinite.htm |website=Presidio of San Francisco |publisher=National Park Service |access-date=3 September 2021}}</ref>
Serpentinized ultramafic rock is found in many [[ophiolite]]s. Ophiolites are fragments of oceanic [[lithosphere]] that has been thrust onto continents, a process called ''[[obduction]]''. <ref>{{Cite web |date=2010-04-15 |title=Ophiolites |url=https://volcano.oregonstate.edu/volcanic-minerals/ophiolites |access-date=2022-11-20 |website=Volcano World |language=en}}</ref> They typically consist of a layer of serpentinized harzburgite (sometimes called ''alpine peridotite'' in older writings), a layer of hydrothermally altered [[diabase]]s and [[pillow basalt]]s, and a layer of deep water sediments containing radiolarian ribbon [[chert]].<ref>{{cite book |last1=Philpotts |first1=Anthony R. |last2=Ague |first2=Jay J. |title=Principles of igneous and metamorphic petrology |date=2009 |publisher=Cambridge University Press |location=Cambridge, UK |isbn=9780521880060 |edition=2nd |pages=370–372}}</ref> Because serpentinization increases the volume and lowers the density of the original rock, serpentinitization may lead to uplift that creates coastal ranges above mantle forearcs.<ref name="HyndmanPeacock20032">{{cite journal |last1=Hyndman |first1=Roy D |last2=Peacock |first2=Simon M |date=July 2003 |title=Serpentinization of the forearc mantle |journal=Earth and Planetary Science Letters |volume=212 |issue=3–4 |pages=417–432 |bibcode=2003E&PSL.212..417H |doi=10.1016/S0012-821X(03)00263-2}}</ref>
<ref name="Presidio2">{{cite web |title=Serpentinite |url=https://www.nps.gov/prsf/learn/nature/serpentinite.htm |access-date=3 September 2021 |website=Presidio of San Francisco |publisher=National Park Service}}</ref>
=== Implications ===
==== Limitation on earthquake depth ====
[[Seismic wave]] studies can detect the presence of large bodies of serpentinite in the crust and upper mantle, since serpentinization have a huge impact on [[shear wave]] velocity. Higher degree of serpentinization will lead to lower shear wave velocity and higher [[Poisson's ratio]]<ref name=":1" />. Seismic measurements confirm that serpentinization is pervasive in forearc mantle.<ref name="HyndmanPeacock200322">{{cite journal |last1=Hyndman |first1=Roy D |last2=Peacock |first2=Simon M |date=July 2003 |title=Serpentinization of the forearc mantle |journal=Earth and Planetary Science Letters |volume=212 |issue=3–4 |pages=417–432 |bibcode=2003E&PSL.212..417H |doi=10.1016/S0012-821X(03)00263-2}}</ref> The serpentinization can produce an inverted [[Moho discontinuity]], in which seismic velocity abruptly ''decreases'' across the crust-mantle boundary, which is the opposite of the usual behavior. The serpentinite is highly deformable, creating an aseismic zone in the forearc, at which serpentinites slide at stable plate velocity. The presence of serpentinite may limit the maximum depth of [[Megathrust earthquake|megathrust earthquakes]] as they imped rupture into the forearc mantle.<ref name=":1">{{cite journal |last1=Bostock |first1=M. G. |last2=Hyndman |first2=R. D. |last3=Rondenay |first3=S. |last4=Peacock |first4=S. M. |date=May 2002 |title=An inverted continental Moho and serpentinization of the forearc mantle |journal=Nature |volume=417 |issue=6888 |pages=536–538 |bibcode=2002Natur.417..536B |doi=10.1038/417536a |pmid=12037564 |s2cid=3113794}}</ref>
==See also==
* [[Serpentine subgroup]]
* [[Serpentinite]]
* [[Soapstone]]
* [[Hydrogen cycle]]
* [[Forearc]]
== References ==
{{reflist}}
== External links ==
{{commons category|Serpentinite}}
* [http://www.lostcity.washington.edu/story/Serpentinization] The Lost City hydrothermal field, [[Mid-Atlantic ridge]]: serpentinization, the driving force of the system.
* [http://www.pnas.org/cgi/content/full/101/35/12818 H<sub>2</sub>-rich fluids from serpentinization: Geochemical and biotic implications]: [[Proceedings of the National Academy of Sciences]].
{{Authority control}}' |
Unified diff of changes made by edit (edit_diff ) | '@@ -1,5 +1,130 @@
-#REDIRECT [[Serpentinite]]
-{{Redirect category shell|
-{{R from related word}}
-}}
+{{short description|Rock formed by hydration and metamorphic transformation of olivine}}
+{{Use dmy dates|date=May 2022}}
+[[File:Mineraly.sk - chryzotil.jpg|right|thumb|Serpentinite partially made of [[chrysotile]], from Slovakia]]
+'''Serpentinization''' is a hydration and [[Metamorphic rock|metamorphic]] transformation of ferromagnesian minerals, such as [[olivine]] and [[pyroxene]], in [[mafic]] and [[ultramafic]] rock<ref name=":0">{{Cite journal |last=Holm |first=N.G. |last2=Oze |first2=C. |last3=Mousis |first3=O. |last4=Waite |first4=J.H. |last5=Guilbert-Lepoutre |first5=A. |date=2015-07-01 |title=Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets) |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523005/ |journal=Astrobiology |volume=15 |issue=7 |pages=587–600 |doi=10.1089/ast.2014.1188 |issn=1531-1074 |pmc=4523005 |pmid=26154779}}</ref>. Minerals formed by serpentinization include the [[Serpentine subgroup|serpentine group]] minerals (antigorite, lizardite, chrysotile), [[brucite]], [[talc]], Ni-Fe alloys, and [[magnetite]]<ref name=":0" /><ref name="Moody1976" />. The [[mineral alteration]] is particularly important at the [[sea floor]] at [[plate tectonics|tectonic plate]] boundaries.<ref name="GeologyDictionary">{{cite web |url=https://www.theodora.com/geology/glossarys.html#serpentine |title=Serpentine definition |work=Dictionary of Geology |access-date=2018-10-23}}</ref><ref name=":2">{{Cite journal |last=Holm |first=N.g. |last2=Oze |first2=C. |last3=Mousis |first3=O. |last4=Waite |first4=J.h. |last5=Guilbert-Lepoutre |first5=A. |date=2015-07-01 |title=Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets) |url=https://www.liebertpub.com/doi/10.1089/ast.2014.1188 |journal=Astrobiology |volume=15 |issue=7 |pages=587–600 |doi=10.1089/ast.2014.1188 |issn=1531-1074 |pmc=PMC4523005 |pmid=26154779}}</ref>
+
+== Formation and petrology ==
+Serpentinization is a form of low-temperature (0 to ~600 °C) <ref>{{Cite journal |last=Evans |first=Bernard W. |date=2004-06-01 |title=The Serpentinite Multisystem Revisited: Chrysotile Is Metastable |url=https://doi.org/10.2747/0020-6814.46.6.479 |journal=International Geology Review |volume=46 |issue=6 |pages=479–506 |doi=10.2747/0020-6814.46.6.479 |issn=0020-6814}}</ref> [[metamorphism]] of ferromagnesian minerals in mafic and [[ultramafic]] rocks, such as [[dunite]], [[harzburgite]], or [[lherzolite]]. These are rocks low in [[silica]] and composed mostly of [[olivine]] ({{chem2|(Mg(2+), Fe(2+))2SiO4}}), [[pyroxene]] ({{chem2|XY(Si,Al)2O6}}), and [[chromite]] (approximately {{chem2|FeCr2O4}}). Serpentinization is driven largely by [[Mineral hydration|hydration]] and [[oxidation]] of olivine and pyroxene to [[serpentine subgroup|serpentine group]] minerals (antigorite, lizardite, and chrysotile), [[brucite]] ({{chem2|Mg(OH)2}}), [[talc]] (Mg<sub>3</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>2,</sub> and [[magnetite]] ({{chem2|Fe3O4}}).<ref name=Moody1976>{{cite journal |last1=Moody |first1=Judith B. |title=Serpentinization: a review |journal=Lithos |date=April 1976 |volume=9 |issue=2 |pages=125–138 |doi=10.1016/0024-4937(76)90030-X|bibcode=1976Litho...9..125M }}</ref> Under the unusual chemical conditions accompanying serpentinization, water is the oxidizing agent, and is itself reduced to hydrogen, {{chem|[[hydrogen|H]]|2}}. This leads to further reactions that produce rare [[iron group]] [[native element mineral]]s, such as [[awaruite]] ({{chem|Ni|3|Fe}}) and [[native iron]]; [[methane]] and other [[hydrocarbon]] compounds; and [[hydrogen sulfide]].<ref name=":0" /><ref name=BerndtEtal1996>{{cite journal |last1=Berndt |first1=Michael E. |last2=Allen |first2=Douglas E. |last3=Seyfried |first3=William E. |title=Reduction of {{CO2}} during serpentinization of olivine at 300 °C and 500 bar |journal=Geology |date=1 April 1996 |volume=24 |issue=4 |pages=351–354 |doi=10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2|bibcode=1996Geo....24..351B }}</ref>
+
+During serpentinization, large amounts of water are absorbed into the rock, increasing the volume, reducing the density and destroying the original structure.{{sfn|Moody|1976|p=128-129}} The density changes from {{convert|3.3|to|2.5|g/cm3|abbr=on}} with a concurrent volume increase on the order of 30-40%.<ref name=Mevel2003>{{cite journal |last1=Mével |first1=Catherine |title=Serpentinization of abyssal peridotites at mid-ocean ridges |journal=Comptes Rendus Geoscience |date=September 2003 |volume=335 |issue=10–11 |pages=825–852 |doi=10.1016/j.crte.2003.08.006|bibcode=2003CRGeo.335..825M }}</ref> The reaction is highly [[exothermic]], releasing up to {{convert|40|kJ|kcal|sp=us}} per mole of water reacting with the rock, and rock temperatures can be raised by about {{convert|260|Celsius}},<ref name="LC">[http://www.lostcity.washington.edu/science/chemistry/serpentinization.html Serpentinization: The heat engine at Lost City and sponge of the oceanic crust]</ref><ref name="FruhGreenEtal20042">{{cite journal |last1=Früh-Green |first1=Gretchen L. |last2=Connolly |first2=James A.D. |last3=Plas |first3=Alessio |last4=Kelley |first4=Deborah S. |last5=Grobéty |first5=Bernard |date=2004 |title=Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity |journal=Geophysical Monograph Series |volume=144 |pages=119–136 |bibcode=2004GMS...144..119F |doi=10.1029/144GM08 |isbn=0-87590-409-2}}</ref> providing an energy source for formation of non-volcanic [[hydrothermal vent]]s.<ref name=Lowell2002>{{cite journal |last1=Lowell |first1=R. P. |title=Seafloor hydrothermal systems driven by the serpentinization of peridotite |journal=Geophysical Research Letters |date=2002 |volume=29 |issue=11 |pages=1531 |doi=10.1029/2001GL014411|bibcode=2002GeoRL..29.1531L |doi-access=free }}</ref> The hydrogen, methane, and hydrogen sulfide produced during serpentinization are released at these vents and provide energy sources for deep sea [[chemotroph]] [[microorganism]]s.<ref name=FruhGreenEtal2004>{{cite journal |last1=Früh-Green |first1=Gretchen L. |last2=Connolly |first2=James A.D. |last3=Plas |first3=Alessio |last4=Kelley |first4=Deborah S. |last5=Grobéty |first5=Bernard |title=Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity |journal=Geophysical Monograph Series |date=2004 |volume=144 |pages=119–136 |doi=10.1029/144GM08|bibcode=2004GMS...144..119F |isbn=0-87590-409-2 }}</ref><ref name=LC/>
+
+===Formation of serpentine minerals ===
+Olivine is a [[solid solution]] of [[forsterite]], the [[magnesium]] endmember of {{chem2|(Mg(2+), Fe(2+))2SiO4}}, and [[fayalite]], the [[iron]] endmember, with forsterite typically making up about 90% of the olivine in ultramafic rocks.<ref name=SnowDick1995>{{cite journal |last1=Snow |first1=Jonathan E. |last2=Dick |first2=Henry J.B. |title=Pervasive magnesium loss by marine weathering of peridotite |journal=Geochimica et Cosmochimica Acta |date=October 1995 |volume=59 |issue=20 |pages=4219–4235 |doi=10.1016/0016-7037(95)00239-V|bibcode=1995GeCoA..59.4219S }}</ref> Serpentinite can form from [[olivine]] via several reactions:
+
+{{NumBlk|:
+|{{overset|[[Forsterite]]|3 {{chem|Mg|2|SiO|4}}}} + {{overset|silicon dioxide|{{chem|SiO|2}}}} + 4 {{chem|H|2|O}} → {{overset|serpentine|2 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}}
+|{{EquationRef|Reaction 1a}}}}
+
+{{NumBlk|:
+|{{overset|[[Forsterite]]|2 {{chem|Mg|2|SiO|4}}}} + {{overset|water|3 {{chem|H|2|O}}}} → {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|[[brucite]]|{{chem|Mg|(OH)|2}}}}
+|{{EquationRef|Reaction 1b}}}}
+
+Reaction 1a tightly binds silica, lowering its [[chemical activity]] to the lowest values seen in common rocks of the [[Earth's crust]].<ref name=FrostBeard2007>{{cite journal |last1=Frost |first1=B. R. |last2=Beard |first2=J. S. |title=On Silica Activity and Serpentinization |journal=Journal of Petrology |date=3 April 2007 |volume=48 |issue=7 |pages=1351–1368 |doi=10.1093/petrology/egm021|url=http://petrology.oxfordjournals.org/content/48/7/1351.full.pdf }}</ref> Serpentinization then continues through the hydration of olivine to yield serpentine and brucite (Reaction 1b).<ref name="Coleman77">{{cite book|last=Coleman|first=Robert G.|title=Ophiolites|date=1977|publisher=Springer-Verlag|isbn=978-3540082767|pages=100–101}}</ref> The mixture of brucite and serpentine formed by Reaction 1b has the lowest silica activity in the serpentinite, so that the brucite phase is very important in understanding serpentinization.<ref name=FrostBeard2007/> However, the brucite is often blended in with the serpentine such that it is difficult to identify except with [[X-ray diffraction]], and it is easily altered under surface weathering conditions.{{sfn|Moody|1976|p=127}}
+
+A similar suite of reactions involves [[pyroxene]]-group minerals:
+
+{{NumBlk|:
+|{{overset|[[Enstatite]]|3 {{chem|Mg|SiO|3}}}} + {{overset|silicon dioxide|{{chem|SiO|2}}}} + {{chem|H|2|O}} → {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}}
+|{{EquationRef|Reaction 2a}}}}
+
+{{NumBlk|:
+|{{overset|[[Enstatite]]|6 {{chem|Mg|SiO|3}}}} + 3 {{chem|H|2|O}} → {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}}
+|{{EquationRef|Reaction 2b}}}}
+
+Reaction 2a quickly comes to a halt as silica becomes unavailable, and Reaction 2b takes over.{{sfn|Frost|Beard|2007|p=1355}} When olivine is abundant, silica activity drops low enough that talc begins to react with olivine:
+
+{{NumBlk|:
+|{{overset|[[Forsterite]]|6 {{chem|Mg|2|SiO|4}}}} + {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}} + {{overset|water|9 {{chem|H|2|O}}}} → {{overset|serpentine|5 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}}
+|{{EquationRef|Reaction 3}}}}
+
+This reaction requires higher temperatures than those at which brucite forms.{{sfn|Moody|1976|p=127}}
+
+The final mineralogy depends both on rock and fluid compositions, temperature, and pressure. Antigorite forms in reactions at temperatures that can exceed {{convert|600|C|F|abbr=on}} during metamorphism, and it is the serpentine group mineral stable at the highest temperatures. Lizardite and chrysotile can form at low temperatures very near the Earth's surface.{{sfn|Moody|1976|p=125, 127, 131}}
+
+===Breakdown of diopside and formation of rodingites===
+Ultramafic rocks often contain calcium-rich pyroxene ([[diopside]]), which breaks down according to the reaction:
+
+{{NumBlk|:
+|{{overset|[[Diopside]]|3 {{chem|Ca|Mg|Si|2|O|6}}}} + 6 {{chem|H|+}} → {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + 3 {{chem|Ca|2+}} + {{chem|H|2|O}} + {{overset|silicon dioxide|4 {{chem|SiO|2}}}}
+|{{EquationRef|Reaction 4}}}}
+
+This raises both the [[pH]], often to very high values, and the calcium content of the fluids involved in serpentinization. These fluids are highly reactive and may transport [[calcium]] and other elements into surrounding [[mafic]] rocks. Fluid reaction with these rocks may create [[metasomatism|metasomatic]] reaction zones enriched in calcium and depleted in silica, called [[rodingite]]s.{{sfn|Frost|Beard|2007|pp=1360-1362}}
+
+===Formation of magnetite and hydrogen===
+In most crustal rock, the chemical activity of oxygen is prevented from dropping to very low values by the [[Mineral redox buffer#Common redox buffers and mineralogy|fayalite-magnetite-quartz (FMQ) buffer]].{{sfn|Moody|1976|p=129}} The very low chemical activity of silica during serpentinization eliminates this buffer, allowing serpentinization to produce highly [[Reduction (chemistry)|reducing]] conditions.<ref name=FrostBeard2007/> Under these conditions, water is capable of oxidizing ferrous ({{chem|Fe|2+}}) ions in fayalite. The process is of interest because it generates hydrogen gas:<ref name=":0" /><ref>{{cite web| title = Methane and hydrogen formation from rocks – Energy sources for life| url = http://www.lostcity.washington.edu/science/chemistry/methane.html| access-date = 2011-11-06}}</ref><ref>{{Cite journal| last = Sleep| first = N.H.| author2 = A. Meibom, Th. Fridriksson, R.G. Coleman, D.K. Bird| year = 2004| title = H<sub>2</sub>-rich fluids from serpentinization: Geochemical and biotic implications| journal = Proceedings of the National Academy of Sciences of the United States of America| volume = 101| issue = 35| pages = 12818–12823| doi = 10.1073/pnas.0405289101|bibcode = 2004PNAS..10112818S| pmid=15326313| pmc=516479| doi-access = free}}</ref>
+
+{{NumBlk|:
+|{{overset|[[Fayalite]]|3 {{chem|Fe|2|SiO|4}}}} + {{overset|water|2 {{chem|H|2|O}}}} → {{overset|[[magnetite]]|2 {{chem|Fe|3|O|4}}}} + {{overset|silicon dioxide|3 {{chem|SiO|2}}}} + {{overset|hydrogen|2 {{chem|H|2}}}}
+|{{EquationRef|Reaction 5}}}}
+
+However, studies of serpentinites suggest that iron minerals are first converted to [[wikt:ferroan|ferroan]] brucite, that is, brucite containing {{chem2|Fe(OH)2}},<ref>{{cite journal |last1=Bach |first1=Wolfgang |last2=Paulick |first2=Holger |last3=Garrido |first3=Carlos J. |last4=Ildefonse |first4=Benoit |last5=Meurer |first5=William P. |last6=Humphris |first6=Susan E. |title=Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274) |journal=Geophysical Research Letters |date=2006 |volume=33 |issue=13 |pages=L13306 |doi=10.1029/2006GL025681|bibcode=2006GeoRL..3313306B |hdl=1912/3324 |s2cid=55802656 |hdl-access=free }}</ref> which then undergoes the [[Schikorr reaction]] in the anaerobic conditions of serpentinization:<ref name=Esource>{{cite journal |doi=10.1111/j.1472-4669.2010.00249.x|title=Serpentinization as a source of energy at the origin of life|year=2010|last1=Russell|first1=M. J.|last2=Hall|first2=A. J.|last3=Martin|first3=W.|journal=Geobiology|volume=8|issue=5|pages=355–371|pmid=20572872|s2cid=41118603 }}</ref><ref>{{cite journal |doi=10.2138/rmg.2013.75.18|title=Serpentinization, Carbon, and Deep Life|year=2013|last1=Schrenk|first1=M. O.|last2=Brazelton|first2=W. J.|last3=Lang|first3=S. Q.|journal=Reviews in Mineralogy and Geochemistry|volume=75|issue=1|pages=575–606|bibcode=2013RvMG...75..575S}}</ref>
+
+{{NumBlk|:
+|{{underset|ferrous hydroxide|6 {{chem|Fe|(OH)|2}}}} → {{underset|magnetite|2 {{chem|Fe|3|O|4}}}} + {{underset|water|4 {{chem|H|2|O}}}} + {{underset|hydrogen|2 {{chem|H|2}}}}
+|{{EquationRef|Reaction 6}}}}
+
+Maximum reducing conditions, and the maximum rate of production of hydrogen, occur when the temperature of serpentinization is between {{convert|200 and 315|C||sp=us}}<ref>{{cite journal |last1=McCollom |first1=Thomas M. |last2=Bach |first2=Wolfgang |title=Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks |journal=Geochimica et Cosmochimica Acta |date=February 2009 |volume=73 |issue=3 |pages=856–875 |doi=10.1016/j.gca.2008.10.032|bibcode=2009GeCoA..73..856M }}</ref> and when fluids are carbonate undersaturated.<ref name=":0" /> If the original ultramafic rock (the ''[[protolith]]'') is peridotite, which is rich in olivine, considerable magnetite and hydrogen are produced. When the protolith is pyroxenite, which contains more pyroxene than olivine, iron-rich talc is produced with no magnetite and only modest hydrogen production. Infiltration of silica-bearing fluids during serpentinization can suppress both the formation of brucite and the subsequent production of hydrogen.<ref>{{cite journal |last1=Klein |first1=Frieder |last2=Bach |first2=Wolfgang |last3=McCollom |first3=Thomas M. |title=Compositional controls on hydrogen generation during serpentinization of ultramafic rocks |journal=Lithos |date=September 2013 |volume=178 |pages=55–69 |doi=10.1016/j.lithos.2013.03.008|bibcode=2013Litho.178...55K }}</ref>
+
+Chromite present in the protolith will be altered to chromium-rich magnetite at lower serpentinization temperatures. At higher temperatures, it will be altered to iron-rich chromite (ferrit-chromite).{{sfn|Moody|1967|p=128}} During serpentinization, the rock is enriched in [[chlorine]], [[boron]], [[fluorine]], and sulfur. Sulfur will be reduce to hydrogen sulfide and sulfide minerals, though significant quantities are incorporated into serpentine minerals, and some may later be reoxidized to sulfate minerals such as [[anhydrite]].<ref>{{Cite journal |last=Debret |first=Baptiste |last2=Andreani |first2=Muriel |last3=Delacour |first3=Adélie |last4=Rouméjon |first4=Stéphane |last5=Trcera |first5=Nicolas |last6=Williams |first6=Helen |date=2017-05-15 |title=Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy |url=https://www.sciencedirect.com/science/article/pii/S0012821X17300973 |journal=Earth and Planetary Science Letters |language=en |volume=466 |pages=1–11 |doi=10.1016/j.epsl.2017.02.029 |issn=0012-821X}}</ref> The sulfides produced include nickel-rich sulfides, such as [[mackinawite]].<ref>{{cite journal |last1=Delacour |first1=Adélie |last2=Früh-Green |first2=Gretchen L. |last3=Bernasconi |first3=Stefano M. |title=Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309) |journal=Geochimica et Cosmochimica Acta |date=October 2008 |volume=72 |issue=20 |pages=5111–5127 |doi=10.1016/j.gca.2008.07.018|bibcode=2008GeCoA..72.5111D }}</ref>
+
+===Methane and other hydrocarbons===
+Laboratory experiments have confirmed that at a temperature of {{convert|300|C||sp=us}} and pressure of 500 bars, olivine serpentinizes with release of hydrogen gas. In addition, methane and complex hydrocarbons are formed through reduction of carbon dioxide. The process may be catalyzed by magnetite formed during serpentinization.<ref name=BerndtEtal1996/> One reaction pathway is:<ref name=Esource/>
+
+{{NumBlk|:
+|{{overset|forsterite|18 {{chem|Mg|2|SiO|4}}}} + {{overset|fayalite|6 {{chem|Fe|2|SiO|4}}}} + 26 {{chem|H|2|O}} + {{chem|CO|2}} → {{overset|serpentine|12 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|magnetite|4 {{chem|Fe|3|O|4}}}} + {{overset|methane|{{chem|CH|4}}}}
+|{{EquationRef|Reaction 7}}}}
+
+===Metamorphism at higher pressure and temperature===
+Lizardite and chrysotile are stable at low temperatures and pressures, while antigorite is stable at higher temperatures and pressure. <ref>{{Cite journal |last=Evans |first=Bernard W. |date=2004-06-01 |title=The Serpentinite Multisystem Revisited: Chrysotile Is Metastable |url=https://doi.org/10.2747/0020-6814.46.6.479 |journal=International Geology Review |volume=46 |issue=6 |pages=479–506 |doi=10.2747/0020-6814.46.6.479 |issn=0020-6814}}</ref> Its presence in a serpentinite indicates either that serpentinization took place at unusually high pressure and temperature or that the rock experienced higher grade metamorphism after serpentinization was complete.<ref name="Moody1976" />
+
+Infiltration of {{CO2}}-bearing fluids into serpentinite causes distinctive ''[[Talc carbonate|talc-carbonate alteration]]''. <ref>{{Cite web |url=https://academic.oup.com/petrology/article-abstract/7/3/489/1403183?redirectedFrom=fulltext |access-date=2022-11-20 |website=academic.oup.com}}</ref> Brucite rapidly converts to [[magnesite]] and serpentine minerals (other than antigorite) are converted to talc. The presence of [[pseudomorph]]s of the original serpentinite minerals shows that this alteration takes place after serpentinization.<ref name="Moody1976" />
+
+Serpentinite may contain [[chlorite group|chlorite]] (a [[phyllosilicate]] mineral), [[tremolite]] (Ca<sub>2</sub>(Mg<sub>5.0-4.5</sub>Fe<sup>2+</sup><sub>0.0-0.5</sub>)Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub>), and metamorphic olivine and [[diopside]] (calcium-rich pyroxene). This indicates that the serpentinite has been subject to more intense metamorphism, reaching the upper [[greenschist]] or [[amphibolite]] [[metamorphic facies]].<ref name="Moody1976" />
+
+Above about {{convert|450|C||sp=us}}, antigorite begins to break down. Thus serpentinite does not exist at higher metamorphic facies.<ref name=FruhGreenEtal2004/>
+
+===Extraterrestrial production of methane by serpentinization===
+The presence of traces of [[Methane on Mars|methane in the atmosphere of Mars]] has been hypothesized to be a possible evidence for [[life on Mars (planet)|life on Mars]] if methane was produced by [[bacteria]]l activity. Serpentinization has been proposed as an alternative non-biological source for the observed methane traces.<ref>{{cite journal|jstor=27858733|title=Life on Mars?|date=March–April 2006|journal=American Scientist|volume=94|issue=2|pages=119–120|last1=Baucom|first1=Martin|doi=10.1511/2006.58.119}}</ref><ref>{{Cite web|url=https://www.esa.int/Our_Activities/Human_and_Robotic_Exploration/Exploration/ExoMars/The_methane_mystery|title=The methane mystery|last=esa|website=European Space Agency|language=en-GB|access-date=2019-04-22}}</ref> In 2022 it was reported that microscopic examination of the [[ALH 84001]] meteorite, which came from Mars, shows that indeed the organic matter it contains was formed by serpentinization, not by life processes.<ref>{{cite journal |display-authors=etal|last1=Andrew Steele |title=Organic synthesis associated with serpentinization and carbonation on early Mars |journal=Science |date=13 January 2022 |volume=375 |issue=6577 |pages=172–177 |doi=10.1126/science.abg7905|pmid=35025630 |bibcode=2022Sci...375..172S |s2cid=245933224 }}</ref><ref>{{cite journal |last1=Leah Crane |title=Mars: Organic compounds were made by water interacting with rocks |journal=New Scientist |date=22 January 2022 |url=https://www.newscientist.com/article/2304270-organic-compounds-on-mars-were-produced-by-water-and-rocks-not-life/}}</ref>
+
+Using data from the [[Cassini–Huygens|Cassini]] probe flybys obtained in 2010–12, scientists were able to confirm that Saturn's moon [[Enceladus]] likely has a liquid water ocean beneath its frozen surface. A model suggests that the ocean on Enceladus has an alkaline [[pH]] of 11–12.<ref name="pH 2015">{{cite journal |title=The pH of Enceladus' ocean |journal=Geochimica et Cosmochimica Acta |date=16 April 2015 |last1=R. Glein |first1=Christopher |last2= Baross |first2= John A. |last3=Waite |first3=Hunter |doi=10.1016/j.gca.2015.04.017 |bibcode=2015GeCoA.162..202G |volume=162 |pages=202–219|arxiv=1502.01946 |s2cid=119262254 }}</ref> The high pH is interpreted to be a key consequence of serpentinization of [[chondrite|chondritic rock]], that leads to the generation of {{chem|H|2}}, a geochemical source of energy that can support both abiotic and biological synthesis of organic molecules.<ref name="pH 2015"/><ref>{{cite news |last=Wall |first=Mike |url=http://www.space.com/29334-enceladus-ocean-energy-source-life.html |title=Ocean on Saturn Moon Enceladus May Have Potential Energy Source to Support Life |work=Space.com |date=7 May 2015 |access-date=2015-05-08 }}</ref>
+
+==Environment of Formation==
+[[Image:Gros Morne moho.jpg|thumb|Ophiolite of the [[Gros Morne National Park]], Newfoundland. Ophiolites characteristically have a serpentinite component.]]
+Serpentinization occurs at [[mid-ocean ridges]], in the [[forearc]] mantle of [[subduction zone|subduction]] zones, in ophiolite packages, and in ultramafic intrusions. <ref name="GeologyDictionary" /><ref name=":2" />
+
+=== Mid-ocean Ridges ===
+Conditions are highly favorable for serpentinization at slow to ultraslow spreading mid-ocean ridges.<ref name=Mevel2003/> Here the rate of [[crustal extension]] is high compared with the volume of magmatism, bringing ultramafic mantle rock very close to the surface where fracturing allows seawater to infiltrate the rock.<ref name=Lowell2002/>
+
+Serpentinization at slow spreading mid-ocean ridges can cause the seismic Moho discontinuity to be placed at the serpentinization front, rather than the base of the crust as defined by normal petrological criteria.<ref>{{cite journal |last1=Minshull |first1=T. A. |last2=Muller |first2=M. R. |last3=Robinson |first3=C. J. |last4=White |first4=R. S. |last5=Bickle |first5=M. J. |title=Is the oceanic Moho a serpentinization front? |journal=Geological Society, London, Special Publications |date=1998 |volume=148 |issue=1 |pages=71–80 |doi=10.1144/GSL.SP.1998.148.01.05|bibcode=1998GSLSP.148...71M |s2cid=128410328 }}</ref><ref name="Mevel2003" /> The Lanzo Massif of the Italian Alps shows a sharp serpentinization front that may be a relict seismic Moho.<ref>{{cite journal |last1=Debret |first1=B. |last2=Nicollet |first2=C. |last3=Andreani |first3=M. |last4=Schwartz |first4=S. |last5=Godard |first5=M. |title=Three steps of serpentinization in an eclogitized oceanic serpentinization front (Lanzo Massif - Western Alps): ECLOGITIZED SERPENTINIZATION FRONT (LANZO) |journal=Journal of Metamorphic Geology |date=February 2013 |volume=31 |issue=2 |pages=165–186 |doi=10.1111/jmg.12008|s2cid=140540631 }}</ref>
+
+=== Subduction Zones ===
+
+==== Forearc mantle ====
+Serpentinization is an important phenomenon in subduction zones that has a strong control on the water cycle and geodynamics of a subduction zone. <ref name=":3">{{Cite journal |last=Xia |first=Shaohong |last2=Sun |first2=Jinlong |last3=Huang |first3=Haibo |date=2017-05-31 |title=Degree of serpentinization in the forearc mantle wedge of Kyushu subduction zone |url=http://dx.doi.org/10.1190/igc2017-238 |journal=International Geophysical Conference, Qingdao, China, 17-20 April 2017 |publisher=Society of Exploration Geophysicists and Chinese Petroleum Society |doi=10.1190/igc2017-238}}</ref> Here mantle rock is cooled by the subducting slab to temperatures at which serpentinite is stable, and fluids are released from the subducting slab in great quantities into the ultramafic mantle rock.<ref name=":3" /> Direct evidence that serpentinization is taking place in the [[Mariana Islands]] [[island arc]] is provided by the activity of serpentinite [[mud volcano]]es. [[Xenolith]]s of harzburgite and (less commonly) dunite are occasionally erupted by the mud volcanoes, giving clues to the nature of the protolith.<ref name=HyndmanPeacock2003>{{cite journal |last1=Hyndman |first1=Roy D |last2=Peacock |first2=Simon M |title=Serpentinization of the forearc mantle |journal=Earth and Planetary Science Letters |date=July 2003 |volume=212 |issue=3–4 |pages=417–432 |doi=10.1016/S0012-821X(03)00263-2|bibcode=2003E&PSL.212..417H }}</ref>
+
+Because serpentinization increases the volume and lowers the density of the original rock, serpentinitization may lead to uplift that creates coastal ranges above mantle forearcs.<ref name=HyndmanPeacock2003/> Further uplift can bring serpentinite to the surface when subduction ceases, as has taken place with the serpentinite exposed at the [[Presidio of San Francisco]].<ref name="Presidio">{{cite web |title=Serpentinite |url=https://www.nps.gov/prsf/learn/nature/serpentinite.htm |website=Presidio of San Francisco |publisher=National Park Service |access-date=3 September 2021}}</ref>
+
+Serpentinized ultramafic rock is found in many [[ophiolite]]s. Ophiolites are fragments of oceanic [[lithosphere]] that has been thrust onto continents, a process called ''[[obduction]]''. <ref>{{Cite web |date=2010-04-15 |title=Ophiolites |url=https://volcano.oregonstate.edu/volcanic-minerals/ophiolites |access-date=2022-11-20 |website=Volcano World |language=en}}</ref> They typically consist of a layer of serpentinized harzburgite (sometimes called ''alpine peridotite'' in older writings), a layer of hydrothermally altered [[diabase]]s and [[pillow basalt]]s, and a layer of deep water sediments containing radiolarian ribbon [[chert]].<ref>{{cite book |last1=Philpotts |first1=Anthony R. |last2=Ague |first2=Jay J. |title=Principles of igneous and metamorphic petrology |date=2009 |publisher=Cambridge University Press |location=Cambridge, UK |isbn=9780521880060 |edition=2nd |pages=370–372}}</ref> Because serpentinization increases the volume and lowers the density of the original rock, serpentinitization may lead to uplift that creates coastal ranges above mantle forearcs.<ref name="HyndmanPeacock20032">{{cite journal |last1=Hyndman |first1=Roy D |last2=Peacock |first2=Simon M |date=July 2003 |title=Serpentinization of the forearc mantle |journal=Earth and Planetary Science Letters |volume=212 |issue=3–4 |pages=417–432 |bibcode=2003E&PSL.212..417H |doi=10.1016/S0012-821X(03)00263-2}}</ref>
+<ref name="Presidio2">{{cite web |title=Serpentinite |url=https://www.nps.gov/prsf/learn/nature/serpentinite.htm |access-date=3 September 2021 |website=Presidio of San Francisco |publisher=National Park Service}}</ref>
+
+=== Implications ===
+
+==== Limitation on earthquake depth ====
+[[Seismic wave]] studies can detect the presence of large bodies of serpentinite in the crust and upper mantle, since serpentinization have a huge impact on [[shear wave]] velocity. Higher degree of serpentinization will lead to lower shear wave velocity and higher [[Poisson's ratio]]<ref name=":1" />. Seismic measurements confirm that serpentinization is pervasive in forearc mantle.<ref name="HyndmanPeacock200322">{{cite journal |last1=Hyndman |first1=Roy D |last2=Peacock |first2=Simon M |date=July 2003 |title=Serpentinization of the forearc mantle |journal=Earth and Planetary Science Letters |volume=212 |issue=3–4 |pages=417–432 |bibcode=2003E&PSL.212..417H |doi=10.1016/S0012-821X(03)00263-2}}</ref> The serpentinization can produce an inverted [[Moho discontinuity]], in which seismic velocity abruptly ''decreases'' across the crust-mantle boundary, which is the opposite of the usual behavior. The serpentinite is highly deformable, creating an aseismic zone in the forearc, at which serpentinites slide at stable plate velocity. The presence of serpentinite may limit the maximum depth of [[Megathrust earthquake|megathrust earthquakes]] as they imped rupture into the forearc mantle.<ref name=":1">{{cite journal |last1=Bostock |first1=M. G. |last2=Hyndman |first2=R. D. |last3=Rondenay |first3=S. |last4=Peacock |first4=S. M. |date=May 2002 |title=An inverted continental Moho and serpentinization of the forearc mantle |journal=Nature |volume=417 |issue=6888 |pages=536–538 |bibcode=2002Natur.417..536B |doi=10.1038/417536a |pmid=12037564 |s2cid=3113794}}</ref>
+==See also==
+* [[Serpentine subgroup]]
+* [[Serpentinite]]
+* [[Soapstone]]
+* [[Hydrogen cycle]]
+* [[Forearc]]
+
+== References ==
+{{reflist}}
+
+== External links ==
+{{commons category|Serpentinite}}
+* [http://www.lostcity.washington.edu/story/Serpentinization] The Lost City hydrothermal field, [[Mid-Atlantic ridge]]: serpentinization, the driving force of the system.
+* [http://www.pnas.org/cgi/content/full/101/35/12818 H<sub>2</sub>-rich fluids from serpentinization: Geochemical and biotic implications]: [[Proceedings of the National Academy of Sciences]].
+
+{{Authority control}}
' |
New page size (new_size ) | 30892 |
Old page size (old_size ) | 81 |
Size change in edit (edit_delta ) | 30811 |
Lines added in edit (added_lines ) | [
0 => '{{short description|Rock formed by hydration and metamorphic transformation of olivine}}',
1 => '{{Use dmy dates|date=May 2022}}',
2 => '[[File:Mineraly.sk - chryzotil.jpg|right|thumb|Serpentinite partially made of [[chrysotile]], from Slovakia]]',
3 => ''''Serpentinization''' is a hydration and [[Metamorphic rock|metamorphic]] transformation of ferromagnesian minerals, such as [[olivine]] and [[pyroxene]], in [[mafic]] and [[ultramafic]] rock<ref name=":0">{{Cite journal |last=Holm |first=N.G. |last2=Oze |first2=C. |last3=Mousis |first3=O. |last4=Waite |first4=J.H. |last5=Guilbert-Lepoutre |first5=A. |date=2015-07-01 |title=Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets) |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523005/ |journal=Astrobiology |volume=15 |issue=7 |pages=587–600 |doi=10.1089/ast.2014.1188 |issn=1531-1074 |pmc=4523005 |pmid=26154779}}</ref>. Minerals formed by serpentinization include the [[Serpentine subgroup|serpentine group]] minerals (antigorite, lizardite, chrysotile), [[brucite]], [[talc]], Ni-Fe alloys, and [[magnetite]]<ref name=":0" /><ref name="Moody1976" />. The [[mineral alteration]] is particularly important at the [[sea floor]] at [[plate tectonics|tectonic plate]] boundaries.<ref name="GeologyDictionary">{{cite web |url=https://www.theodora.com/geology/glossarys.html#serpentine |title=Serpentine definition |work=Dictionary of Geology |access-date=2018-10-23}}</ref><ref name=":2">{{Cite journal |last=Holm |first=N.g. |last2=Oze |first2=C. |last3=Mousis |first3=O. |last4=Waite |first4=J.h. |last5=Guilbert-Lepoutre |first5=A. |date=2015-07-01 |title=Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets) |url=https://www.liebertpub.com/doi/10.1089/ast.2014.1188 |journal=Astrobiology |volume=15 |issue=7 |pages=587–600 |doi=10.1089/ast.2014.1188 |issn=1531-1074 |pmc=PMC4523005 |pmid=26154779}}</ref>',
4 => '',
5 => '== Formation and petrology ==',
6 => 'Serpentinization is a form of low-temperature (0 to ~600 °C) <ref>{{Cite journal |last=Evans |first=Bernard W. |date=2004-06-01 |title=The Serpentinite Multisystem Revisited: Chrysotile Is Metastable |url=https://doi.org/10.2747/0020-6814.46.6.479 |journal=International Geology Review |volume=46 |issue=6 |pages=479–506 |doi=10.2747/0020-6814.46.6.479 |issn=0020-6814}}</ref> [[metamorphism]] of ferromagnesian minerals in mafic and [[ultramafic]] rocks, such as [[dunite]], [[harzburgite]], or [[lherzolite]]. These are rocks low in [[silica]] and composed mostly of [[olivine]] ({{chem2|(Mg(2+), Fe(2+))2SiO4}}), [[pyroxene]] ({{chem2|XY(Si,Al)2O6}}), and [[chromite]] (approximately {{chem2|FeCr2O4}}). Serpentinization is driven largely by [[Mineral hydration|hydration]] and [[oxidation]] of olivine and pyroxene to [[serpentine subgroup|serpentine group]] minerals (antigorite, lizardite, and chrysotile), [[brucite]] ({{chem2|Mg(OH)2}}), [[talc]] (Mg<sub>3</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>2,</sub> and [[magnetite]] ({{chem2|Fe3O4}}).<ref name=Moody1976>{{cite journal |last1=Moody |first1=Judith B. |title=Serpentinization: a review |journal=Lithos |date=April 1976 |volume=9 |issue=2 |pages=125–138 |doi=10.1016/0024-4937(76)90030-X|bibcode=1976Litho...9..125M }}</ref> Under the unusual chemical conditions accompanying serpentinization, water is the oxidizing agent, and is itself reduced to hydrogen, {{chem|[[hydrogen|H]]|2}}. This leads to further reactions that produce rare [[iron group]] [[native element mineral]]s, such as [[awaruite]] ({{chem|Ni|3|Fe}}) and [[native iron]]; [[methane]] and other [[hydrocarbon]] compounds; and [[hydrogen sulfide]].<ref name=":0" /><ref name=BerndtEtal1996>{{cite journal |last1=Berndt |first1=Michael E. |last2=Allen |first2=Douglas E. |last3=Seyfried |first3=William E. |title=Reduction of {{CO2}} during serpentinization of olivine at 300 °C and 500 bar |journal=Geology |date=1 April 1996 |volume=24 |issue=4 |pages=351–354 |doi=10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2|bibcode=1996Geo....24..351B }}</ref>',
7 => '',
8 => 'During serpentinization, large amounts of water are absorbed into the rock, increasing the volume, reducing the density and destroying the original structure.{{sfn|Moody|1976|p=128-129}} The density changes from {{convert|3.3|to|2.5|g/cm3|abbr=on}} with a concurrent volume increase on the order of 30-40%.<ref name=Mevel2003>{{cite journal |last1=Mével |first1=Catherine |title=Serpentinization of abyssal peridotites at mid-ocean ridges |journal=Comptes Rendus Geoscience |date=September 2003 |volume=335 |issue=10–11 |pages=825–852 |doi=10.1016/j.crte.2003.08.006|bibcode=2003CRGeo.335..825M }}</ref> The reaction is highly [[exothermic]], releasing up to {{convert|40|kJ|kcal|sp=us}} per mole of water reacting with the rock, and rock temperatures can be raised by about {{convert|260|Celsius}},<ref name="LC">[http://www.lostcity.washington.edu/science/chemistry/serpentinization.html Serpentinization: The heat engine at Lost City and sponge of the oceanic crust]</ref><ref name="FruhGreenEtal20042">{{cite journal |last1=Früh-Green |first1=Gretchen L. |last2=Connolly |first2=James A.D. |last3=Plas |first3=Alessio |last4=Kelley |first4=Deborah S. |last5=Grobéty |first5=Bernard |date=2004 |title=Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity |journal=Geophysical Monograph Series |volume=144 |pages=119–136 |bibcode=2004GMS...144..119F |doi=10.1029/144GM08 |isbn=0-87590-409-2}}</ref> providing an energy source for formation of non-volcanic [[hydrothermal vent]]s.<ref name=Lowell2002>{{cite journal |last1=Lowell |first1=R. P. |title=Seafloor hydrothermal systems driven by the serpentinization of peridotite |journal=Geophysical Research Letters |date=2002 |volume=29 |issue=11 |pages=1531 |doi=10.1029/2001GL014411|bibcode=2002GeoRL..29.1531L |doi-access=free }}</ref> The hydrogen, methane, and hydrogen sulfide produced during serpentinization are released at these vents and provide energy sources for deep sea [[chemotroph]] [[microorganism]]s.<ref name=FruhGreenEtal2004>{{cite journal |last1=Früh-Green |first1=Gretchen L. |last2=Connolly |first2=James A.D. |last3=Plas |first3=Alessio |last4=Kelley |first4=Deborah S. |last5=Grobéty |first5=Bernard |title=Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity |journal=Geophysical Monograph Series |date=2004 |volume=144 |pages=119–136 |doi=10.1029/144GM08|bibcode=2004GMS...144..119F |isbn=0-87590-409-2 }}</ref><ref name=LC/>',
9 => '',
10 => '===Formation of serpentine minerals ===',
11 => 'Olivine is a [[solid solution]] of [[forsterite]], the [[magnesium]] endmember of {{chem2|(Mg(2+), Fe(2+))2SiO4}}, and [[fayalite]], the [[iron]] endmember, with forsterite typically making up about 90% of the olivine in ultramafic rocks.<ref name=SnowDick1995>{{cite journal |last1=Snow |first1=Jonathan E. |last2=Dick |first2=Henry J.B. |title=Pervasive magnesium loss by marine weathering of peridotite |journal=Geochimica et Cosmochimica Acta |date=October 1995 |volume=59 |issue=20 |pages=4219–4235 |doi=10.1016/0016-7037(95)00239-V|bibcode=1995GeCoA..59.4219S }}</ref> Serpentinite can form from [[olivine]] via several reactions:',
12 => '',
13 => '{{NumBlk|:',
14 => '|{{overset|[[Forsterite]]|3 {{chem|Mg|2|SiO|4}}}} + {{overset|silicon dioxide|{{chem|SiO|2}}}} + 4 {{chem|H|2|O}} → {{overset|serpentine|2 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}}',
15 => '|{{EquationRef|Reaction 1a}}}}',
16 => '',
17 => '{{NumBlk|:',
18 => '|{{overset|[[Forsterite]]|2 {{chem|Mg|2|SiO|4}}}} + {{overset|water|3 {{chem|H|2|O}}}} → {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|[[brucite]]|{{chem|Mg|(OH)|2}}}}',
19 => '|{{EquationRef|Reaction 1b}}}}',
20 => '',
21 => 'Reaction 1a tightly binds silica, lowering its [[chemical activity]] to the lowest values seen in common rocks of the [[Earth's crust]].<ref name=FrostBeard2007>{{cite journal |last1=Frost |first1=B. R. |last2=Beard |first2=J. S. |title=On Silica Activity and Serpentinization |journal=Journal of Petrology |date=3 April 2007 |volume=48 |issue=7 |pages=1351–1368 |doi=10.1093/petrology/egm021|url=http://petrology.oxfordjournals.org/content/48/7/1351.full.pdf }}</ref> Serpentinization then continues through the hydration of olivine to yield serpentine and brucite (Reaction 1b).<ref name="Coleman77">{{cite book|last=Coleman|first=Robert G.|title=Ophiolites|date=1977|publisher=Springer-Verlag|isbn=978-3540082767|pages=100–101}}</ref> The mixture of brucite and serpentine formed by Reaction 1b has the lowest silica activity in the serpentinite, so that the brucite phase is very important in understanding serpentinization.<ref name=FrostBeard2007/> However, the brucite is often blended in with the serpentine such that it is difficult to identify except with [[X-ray diffraction]], and it is easily altered under surface weathering conditions.{{sfn|Moody|1976|p=127}}',
22 => '',
23 => 'A similar suite of reactions involves [[pyroxene]]-group minerals:',
24 => '',
25 => '{{NumBlk|:',
26 => '|{{overset|[[Enstatite]]|3 {{chem|Mg|SiO|3}}}} + {{overset|silicon dioxide|{{chem|SiO|2}}}} + {{chem|H|2|O}} → {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}}',
27 => '|{{EquationRef|Reaction 2a}}}}',
28 => '',
29 => '{{NumBlk|:',
30 => '|{{overset|[[Enstatite]]|6 {{chem|Mg|SiO|3}}}} + 3 {{chem|H|2|O}} → {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}}',
31 => '|{{EquationRef|Reaction 2b}}}}',
32 => '',
33 => 'Reaction 2a quickly comes to a halt as silica becomes unavailable, and Reaction 2b takes over.{{sfn|Frost|Beard|2007|p=1355}} When olivine is abundant, silica activity drops low enough that talc begins to react with olivine:',
34 => '',
35 => '{{NumBlk|:',
36 => '|{{overset|[[Forsterite]]|6 {{chem|Mg|2|SiO|4}}}} + {{overset|[[talc]]|{{chem|Mg|3|Si|4|O|10|(OH)|2}}}} + {{overset|water|9 {{chem|H|2|O}}}} → {{overset|serpentine|5 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}}',
37 => '|{{EquationRef|Reaction 3}}}}',
38 => '',
39 => 'This reaction requires higher temperatures than those at which brucite forms.{{sfn|Moody|1976|p=127}}',
40 => '',
41 => 'The final mineralogy depends both on rock and fluid compositions, temperature, and pressure. Antigorite forms in reactions at temperatures that can exceed {{convert|600|C|F|abbr=on}} during metamorphism, and it is the serpentine group mineral stable at the highest temperatures. Lizardite and chrysotile can form at low temperatures very near the Earth's surface.{{sfn|Moody|1976|p=125, 127, 131}}',
42 => '',
43 => '===Breakdown of diopside and formation of rodingites===',
44 => 'Ultramafic rocks often contain calcium-rich pyroxene ([[diopside]]), which breaks down according to the reaction:',
45 => '',
46 => '{{NumBlk|:',
47 => '|{{overset|[[Diopside]]|3 {{chem|Ca|Mg|Si|2|O|6}}}} + 6 {{chem|H|+}} → {{overset|serpentine|{{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + 3 {{chem|Ca|2+}} + {{chem|H|2|O}} + {{overset|silicon dioxide|4 {{chem|SiO|2}}}}',
48 => '|{{EquationRef|Reaction 4}}}}',
49 => '',
50 => 'This raises both the [[pH]], often to very high values, and the calcium content of the fluids involved in serpentinization. These fluids are highly reactive and may transport [[calcium]] and other elements into surrounding [[mafic]] rocks. Fluid reaction with these rocks may create [[metasomatism|metasomatic]] reaction zones enriched in calcium and depleted in silica, called [[rodingite]]s.{{sfn|Frost|Beard|2007|pp=1360-1362}}',
51 => '',
52 => '===Formation of magnetite and hydrogen===',
53 => 'In most crustal rock, the chemical activity of oxygen is prevented from dropping to very low values by the [[Mineral redox buffer#Common redox buffers and mineralogy|fayalite-magnetite-quartz (FMQ) buffer]].{{sfn|Moody|1976|p=129}} The very low chemical activity of silica during serpentinization eliminates this buffer, allowing serpentinization to produce highly [[Reduction (chemistry)|reducing]] conditions.<ref name=FrostBeard2007/> Under these conditions, water is capable of oxidizing ferrous ({{chem|Fe|2+}}) ions in fayalite. The process is of interest because it generates hydrogen gas:<ref name=":0" /><ref>{{cite web| title = Methane and hydrogen formation from rocks – Energy sources for life| url = http://www.lostcity.washington.edu/science/chemistry/methane.html| access-date = 2011-11-06}}</ref><ref>{{Cite journal| last = Sleep| first = N.H.| author2 = A. Meibom, Th. Fridriksson, R.G. Coleman, D.K. Bird| year = 2004| title = H<sub>2</sub>-rich fluids from serpentinization: Geochemical and biotic implications| journal = Proceedings of the National Academy of Sciences of the United States of America| volume = 101| issue = 35| pages = 12818–12823| doi = 10.1073/pnas.0405289101|bibcode = 2004PNAS..10112818S| pmid=15326313| pmc=516479| doi-access = free}}</ref>',
54 => '',
55 => '{{NumBlk|:',
56 => '|{{overset|[[Fayalite]]|3 {{chem|Fe|2|SiO|4}}}} + {{overset|water|2 {{chem|H|2|O}}}} → {{overset|[[magnetite]]|2 {{chem|Fe|3|O|4}}}} + {{overset|silicon dioxide|3 {{chem|SiO|2}}}} + {{overset|hydrogen|2 {{chem|H|2}}}}',
57 => '|{{EquationRef|Reaction 5}}}}',
58 => '',
59 => 'However, studies of serpentinites suggest that iron minerals are first converted to [[wikt:ferroan|ferroan]] brucite, that is, brucite containing {{chem2|Fe(OH)2}},<ref>{{cite journal |last1=Bach |first1=Wolfgang |last2=Paulick |first2=Holger |last3=Garrido |first3=Carlos J. |last4=Ildefonse |first4=Benoit |last5=Meurer |first5=William P. |last6=Humphris |first6=Susan E. |title=Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274) |journal=Geophysical Research Letters |date=2006 |volume=33 |issue=13 |pages=L13306 |doi=10.1029/2006GL025681|bibcode=2006GeoRL..3313306B |hdl=1912/3324 |s2cid=55802656 |hdl-access=free }}</ref> which then undergoes the [[Schikorr reaction]] in the anaerobic conditions of serpentinization:<ref name=Esource>{{cite journal |doi=10.1111/j.1472-4669.2010.00249.x|title=Serpentinization as a source of energy at the origin of life|year=2010|last1=Russell|first1=M. J.|last2=Hall|first2=A. J.|last3=Martin|first3=W.|journal=Geobiology|volume=8|issue=5|pages=355–371|pmid=20572872|s2cid=41118603 }}</ref><ref>{{cite journal |doi=10.2138/rmg.2013.75.18|title=Serpentinization, Carbon, and Deep Life|year=2013|last1=Schrenk|first1=M. O.|last2=Brazelton|first2=W. J.|last3=Lang|first3=S. Q.|journal=Reviews in Mineralogy and Geochemistry|volume=75|issue=1|pages=575–606|bibcode=2013RvMG...75..575S}}</ref>',
60 => '',
61 => '{{NumBlk|:',
62 => '|{{underset|ferrous hydroxide|6 {{chem|Fe|(OH)|2}}}} → {{underset|magnetite|2 {{chem|Fe|3|O|4}}}} + {{underset|water|4 {{chem|H|2|O}}}} + {{underset|hydrogen|2 {{chem|H|2}}}}',
63 => '|{{EquationRef|Reaction 6}}}}',
64 => '',
65 => 'Maximum reducing conditions, and the maximum rate of production of hydrogen, occur when the temperature of serpentinization is between {{convert|200 and 315|C||sp=us}}<ref>{{cite journal |last1=McCollom |first1=Thomas M. |last2=Bach |first2=Wolfgang |title=Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks |journal=Geochimica et Cosmochimica Acta |date=February 2009 |volume=73 |issue=3 |pages=856–875 |doi=10.1016/j.gca.2008.10.032|bibcode=2009GeCoA..73..856M }}</ref> and when fluids are carbonate undersaturated.<ref name=":0" /> If the original ultramafic rock (the ''[[protolith]]'') is peridotite, which is rich in olivine, considerable magnetite and hydrogen are produced. When the protolith is pyroxenite, which contains more pyroxene than olivine, iron-rich talc is produced with no magnetite and only modest hydrogen production. Infiltration of silica-bearing fluids during serpentinization can suppress both the formation of brucite and the subsequent production of hydrogen.<ref>{{cite journal |last1=Klein |first1=Frieder |last2=Bach |first2=Wolfgang |last3=McCollom |first3=Thomas M. |title=Compositional controls on hydrogen generation during serpentinization of ultramafic rocks |journal=Lithos |date=September 2013 |volume=178 |pages=55–69 |doi=10.1016/j.lithos.2013.03.008|bibcode=2013Litho.178...55K }}</ref>',
66 => '',
67 => 'Chromite present in the protolith will be altered to chromium-rich magnetite at lower serpentinization temperatures. At higher temperatures, it will be altered to iron-rich chromite (ferrit-chromite).{{sfn|Moody|1967|p=128}} During serpentinization, the rock is enriched in [[chlorine]], [[boron]], [[fluorine]], and sulfur. Sulfur will be reduce to hydrogen sulfide and sulfide minerals, though significant quantities are incorporated into serpentine minerals, and some may later be reoxidized to sulfate minerals such as [[anhydrite]].<ref>{{Cite journal |last=Debret |first=Baptiste |last2=Andreani |first2=Muriel |last3=Delacour |first3=Adélie |last4=Rouméjon |first4=Stéphane |last5=Trcera |first5=Nicolas |last6=Williams |first6=Helen |date=2017-05-15 |title=Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy |url=https://www.sciencedirect.com/science/article/pii/S0012821X17300973 |journal=Earth and Planetary Science Letters |language=en |volume=466 |pages=1–11 |doi=10.1016/j.epsl.2017.02.029 |issn=0012-821X}}</ref> The sulfides produced include nickel-rich sulfides, such as [[mackinawite]].<ref>{{cite journal |last1=Delacour |first1=Adélie |last2=Früh-Green |first2=Gretchen L. |last3=Bernasconi |first3=Stefano M. |title=Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309) |journal=Geochimica et Cosmochimica Acta |date=October 2008 |volume=72 |issue=20 |pages=5111–5127 |doi=10.1016/j.gca.2008.07.018|bibcode=2008GeCoA..72.5111D }}</ref>',
68 => '',
69 => '===Methane and other hydrocarbons===',
70 => 'Laboratory experiments have confirmed that at a temperature of {{convert|300|C||sp=us}} and pressure of 500 bars, olivine serpentinizes with release of hydrogen gas. In addition, methane and complex hydrocarbons are formed through reduction of carbon dioxide. The process may be catalyzed by magnetite formed during serpentinization.<ref name=BerndtEtal1996/> One reaction pathway is:<ref name=Esource/>',
71 => '',
72 => '{{NumBlk|:',
73 => '|{{overset|forsterite|18 {{chem|Mg|2|SiO|4}}}} + {{overset|fayalite|6 {{chem|Fe|2|SiO|4}}}} + 26 {{chem|H|2|O}} + {{chem|CO|2}} → {{overset|serpentine|12 {{chem|Mg|3|Si|2|O|5|(OH)|4}}}} + {{overset|magnetite|4 {{chem|Fe|3|O|4}}}} + {{overset|methane|{{chem|CH|4}}}}',
74 => '|{{EquationRef|Reaction 7}}}}',
75 => '',
76 => '===Metamorphism at higher pressure and temperature===',
77 => 'Lizardite and chrysotile are stable at low temperatures and pressures, while antigorite is stable at higher temperatures and pressure. <ref>{{Cite journal |last=Evans |first=Bernard W. |date=2004-06-01 |title=The Serpentinite Multisystem Revisited: Chrysotile Is Metastable |url=https://doi.org/10.2747/0020-6814.46.6.479 |journal=International Geology Review |volume=46 |issue=6 |pages=479–506 |doi=10.2747/0020-6814.46.6.479 |issn=0020-6814}}</ref> Its presence in a serpentinite indicates either that serpentinization took place at unusually high pressure and temperature or that the rock experienced higher grade metamorphism after serpentinization was complete.<ref name="Moody1976" />',
78 => '',
79 => 'Infiltration of {{CO2}}-bearing fluids into serpentinite causes distinctive ''[[Talc carbonate|talc-carbonate alteration]]''. <ref>{{Cite web |url=https://academic.oup.com/petrology/article-abstract/7/3/489/1403183?redirectedFrom=fulltext |access-date=2022-11-20 |website=academic.oup.com}}</ref> Brucite rapidly converts to [[magnesite]] and serpentine minerals (other than antigorite) are converted to talc. The presence of [[pseudomorph]]s of the original serpentinite minerals shows that this alteration takes place after serpentinization.<ref name="Moody1976" />',
80 => '',
81 => 'Serpentinite may contain [[chlorite group|chlorite]] (a [[phyllosilicate]] mineral), [[tremolite]] (Ca<sub>2</sub>(Mg<sub>5.0-4.5</sub>Fe<sup>2+</sup><sub>0.0-0.5</sub>)Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub>), and metamorphic olivine and [[diopside]] (calcium-rich pyroxene). This indicates that the serpentinite has been subject to more intense metamorphism, reaching the upper [[greenschist]] or [[amphibolite]] [[metamorphic facies]].<ref name="Moody1976" />',
82 => '',
83 => 'Above about {{convert|450|C||sp=us}}, antigorite begins to break down. Thus serpentinite does not exist at higher metamorphic facies.<ref name=FruhGreenEtal2004/>',
84 => '',
85 => '===Extraterrestrial production of methane by serpentinization===',
86 => 'The presence of traces of [[Methane on Mars|methane in the atmosphere of Mars]] has been hypothesized to be a possible evidence for [[life on Mars (planet)|life on Mars]] if methane was produced by [[bacteria]]l activity. Serpentinization has been proposed as an alternative non-biological source for the observed methane traces.<ref>{{cite journal|jstor=27858733|title=Life on Mars?|date=March–April 2006|journal=American Scientist|volume=94|issue=2|pages=119–120|last1=Baucom|first1=Martin|doi=10.1511/2006.58.119}}</ref><ref>{{Cite web|url=https://www.esa.int/Our_Activities/Human_and_Robotic_Exploration/Exploration/ExoMars/The_methane_mystery|title=The methane mystery|last=esa|website=European Space Agency|language=en-GB|access-date=2019-04-22}}</ref> In 2022 it was reported that microscopic examination of the [[ALH 84001]] meteorite, which came from Mars, shows that indeed the organic matter it contains was formed by serpentinization, not by life processes.<ref>{{cite journal |display-authors=etal|last1=Andrew Steele |title=Organic synthesis associated with serpentinization and carbonation on early Mars |journal=Science |date=13 January 2022 |volume=375 |issue=6577 |pages=172–177 |doi=10.1126/science.abg7905|pmid=35025630 |bibcode=2022Sci...375..172S |s2cid=245933224 }}</ref><ref>{{cite journal |last1=Leah Crane |title=Mars: Organic compounds were made by water interacting with rocks |journal=New Scientist |date=22 January 2022 |url=https://www.newscientist.com/article/2304270-organic-compounds-on-mars-were-produced-by-water-and-rocks-not-life/}}</ref>',
87 => '',
88 => 'Using data from the [[Cassini–Huygens|Cassini]] probe flybys obtained in 2010–12, scientists were able to confirm that Saturn's moon [[Enceladus]] likely has a liquid water ocean beneath its frozen surface. A model suggests that the ocean on Enceladus has an alkaline [[pH]] of 11–12.<ref name="pH 2015">{{cite journal |title=The pH of Enceladus' ocean |journal=Geochimica et Cosmochimica Acta |date=16 April 2015 |last1=R. Glein |first1=Christopher |last2= Baross |first2= John A. |last3=Waite |first3=Hunter |doi=10.1016/j.gca.2015.04.017 |bibcode=2015GeCoA.162..202G |volume=162 |pages=202–219|arxiv=1502.01946 |s2cid=119262254 }}</ref> The high pH is interpreted to be a key consequence of serpentinization of [[chondrite|chondritic rock]], that leads to the generation of {{chem|H|2}}, a geochemical source of energy that can support both abiotic and biological synthesis of organic molecules.<ref name="pH 2015"/><ref>{{cite news |last=Wall |first=Mike |url=http://www.space.com/29334-enceladus-ocean-energy-source-life.html |title=Ocean on Saturn Moon Enceladus May Have Potential Energy Source to Support Life |work=Space.com |date=7 May 2015 |access-date=2015-05-08 }}</ref>',
89 => '',
90 => '==Environment of Formation==',
91 => '[[Image:Gros Morne moho.jpg|thumb|Ophiolite of the [[Gros Morne National Park]], Newfoundland. Ophiolites characteristically have a serpentinite component.]]',
92 => 'Serpentinization occurs at [[mid-ocean ridges]], in the [[forearc]] mantle of [[subduction zone|subduction]] zones, in ophiolite packages, and in ultramafic intrusions. <ref name="GeologyDictionary" /><ref name=":2" />',
93 => '',
94 => '=== Mid-ocean Ridges ===',
95 => 'Conditions are highly favorable for serpentinization at slow to ultraslow spreading mid-ocean ridges.<ref name=Mevel2003/> Here the rate of [[crustal extension]] is high compared with the volume of magmatism, bringing ultramafic mantle rock very close to the surface where fracturing allows seawater to infiltrate the rock.<ref name=Lowell2002/>',
96 => '',
97 => 'Serpentinization at slow spreading mid-ocean ridges can cause the seismic Moho discontinuity to be placed at the serpentinization front, rather than the base of the crust as defined by normal petrological criteria.<ref>{{cite journal |last1=Minshull |first1=T. A. |last2=Muller |first2=M. R. |last3=Robinson |first3=C. J. |last4=White |first4=R. S. |last5=Bickle |first5=M. J. |title=Is the oceanic Moho a serpentinization front? |journal=Geological Society, London, Special Publications |date=1998 |volume=148 |issue=1 |pages=71–80 |doi=10.1144/GSL.SP.1998.148.01.05|bibcode=1998GSLSP.148...71M |s2cid=128410328 }}</ref><ref name="Mevel2003" /> The Lanzo Massif of the Italian Alps shows a sharp serpentinization front that may be a relict seismic Moho.<ref>{{cite journal |last1=Debret |first1=B. |last2=Nicollet |first2=C. |last3=Andreani |first3=M. |last4=Schwartz |first4=S. |last5=Godard |first5=M. |title=Three steps of serpentinization in an eclogitized oceanic serpentinization front (Lanzo Massif - Western Alps): ECLOGITIZED SERPENTINIZATION FRONT (LANZO) |journal=Journal of Metamorphic Geology |date=February 2013 |volume=31 |issue=2 |pages=165–186 |doi=10.1111/jmg.12008|s2cid=140540631 }}</ref>',
98 => '',
99 => '=== Subduction Zones ===',
100 => '',
101 => '==== Forearc mantle ====',
102 => 'Serpentinization is an important phenomenon in subduction zones that has a strong control on the water cycle and geodynamics of a subduction zone. <ref name=":3">{{Cite journal |last=Xia |first=Shaohong |last2=Sun |first2=Jinlong |last3=Huang |first3=Haibo |date=2017-05-31 |title=Degree of serpentinization in the forearc mantle wedge of Kyushu subduction zone |url=http://dx.doi.org/10.1190/igc2017-238 |journal=International Geophysical Conference, Qingdao, China, 17-20 April 2017 |publisher=Society of Exploration Geophysicists and Chinese Petroleum Society |doi=10.1190/igc2017-238}}</ref> Here mantle rock is cooled by the subducting slab to temperatures at which serpentinite is stable, and fluids are released from the subducting slab in great quantities into the ultramafic mantle rock.<ref name=":3" /> Direct evidence that serpentinization is taking place in the [[Mariana Islands]] [[island arc]] is provided by the activity of serpentinite [[mud volcano]]es. [[Xenolith]]s of harzburgite and (less commonly) dunite are occasionally erupted by the mud volcanoes, giving clues to the nature of the protolith.<ref name=HyndmanPeacock2003>{{cite journal |last1=Hyndman |first1=Roy D |last2=Peacock |first2=Simon M |title=Serpentinization of the forearc mantle |journal=Earth and Planetary Science Letters |date=July 2003 |volume=212 |issue=3–4 |pages=417–432 |doi=10.1016/S0012-821X(03)00263-2|bibcode=2003E&PSL.212..417H }}</ref>',
103 => '',
104 => 'Because serpentinization increases the volume and lowers the density of the original rock, serpentinitization may lead to uplift that creates coastal ranges above mantle forearcs.<ref name=HyndmanPeacock2003/> Further uplift can bring serpentinite to the surface when subduction ceases, as has taken place with the serpentinite exposed at the [[Presidio of San Francisco]].<ref name="Presidio">{{cite web |title=Serpentinite |url=https://www.nps.gov/prsf/learn/nature/serpentinite.htm |website=Presidio of San Francisco |publisher=National Park Service |access-date=3 September 2021}}</ref>',
105 => ' ',
106 => 'Serpentinized ultramafic rock is found in many [[ophiolite]]s. Ophiolites are fragments of oceanic [[lithosphere]] that has been thrust onto continents, a process called ''[[obduction]]''. <ref>{{Cite web |date=2010-04-15 |title=Ophiolites |url=https://volcano.oregonstate.edu/volcanic-minerals/ophiolites |access-date=2022-11-20 |website=Volcano World |language=en}}</ref> They typically consist of a layer of serpentinized harzburgite (sometimes called ''alpine peridotite'' in older writings), a layer of hydrothermally altered [[diabase]]s and [[pillow basalt]]s, and a layer of deep water sediments containing radiolarian ribbon [[chert]].<ref>{{cite book |last1=Philpotts |first1=Anthony R. |last2=Ague |first2=Jay J. |title=Principles of igneous and metamorphic petrology |date=2009 |publisher=Cambridge University Press |location=Cambridge, UK |isbn=9780521880060 |edition=2nd |pages=370–372}}</ref> Because serpentinization increases the volume and lowers the density of the original rock, serpentinitization may lead to uplift that creates coastal ranges above mantle forearcs.<ref name="HyndmanPeacock20032">{{cite journal |last1=Hyndman |first1=Roy D |last2=Peacock |first2=Simon M |date=July 2003 |title=Serpentinization of the forearc mantle |journal=Earth and Planetary Science Letters |volume=212 |issue=3–4 |pages=417–432 |bibcode=2003E&PSL.212..417H |doi=10.1016/S0012-821X(03)00263-2}}</ref>',
107 => '<ref name="Presidio2">{{cite web |title=Serpentinite |url=https://www.nps.gov/prsf/learn/nature/serpentinite.htm |access-date=3 September 2021 |website=Presidio of San Francisco |publisher=National Park Service}}</ref>',
108 => '',
109 => '=== Implications ===',
110 => '',
111 => '==== Limitation on earthquake depth ====',
112 => '[[Seismic wave]] studies can detect the presence of large bodies of serpentinite in the crust and upper mantle, since serpentinization have a huge impact on [[shear wave]] velocity. Higher degree of serpentinization will lead to lower shear wave velocity and higher [[Poisson's ratio]]<ref name=":1" />. Seismic measurements confirm that serpentinization is pervasive in forearc mantle.<ref name="HyndmanPeacock200322">{{cite journal |last1=Hyndman |first1=Roy D |last2=Peacock |first2=Simon M |date=July 2003 |title=Serpentinization of the forearc mantle |journal=Earth and Planetary Science Letters |volume=212 |issue=3–4 |pages=417–432 |bibcode=2003E&PSL.212..417H |doi=10.1016/S0012-821X(03)00263-2}}</ref> The serpentinization can produce an inverted [[Moho discontinuity]], in which seismic velocity abruptly ''decreases'' across the crust-mantle boundary, which is the opposite of the usual behavior. The serpentinite is highly deformable, creating an aseismic zone in the forearc, at which serpentinites slide at stable plate velocity. The presence of serpentinite may limit the maximum depth of [[Megathrust earthquake|megathrust earthquakes]] as they imped rupture into the forearc mantle.<ref name=":1">{{cite journal |last1=Bostock |first1=M. G. |last2=Hyndman |first2=R. D. |last3=Rondenay |first3=S. |last4=Peacock |first4=S. M. |date=May 2002 |title=An inverted continental Moho and serpentinization of the forearc mantle |journal=Nature |volume=417 |issue=6888 |pages=536–538 |bibcode=2002Natur.417..536B |doi=10.1038/417536a |pmid=12037564 |s2cid=3113794}}</ref>',
113 => '==See also==',
114 => '* [[Serpentine subgroup]]',
115 => '* [[Serpentinite]]',
116 => '* [[Soapstone]]',
117 => '* [[Hydrogen cycle]]',
118 => '* [[Forearc]]',
119 => '',
120 => '== References ==',
121 => '{{reflist}}',
122 => '',
123 => '== External links ==',
124 => '{{commons category|Serpentinite}}',
125 => '* [http://www.lostcity.washington.edu/story/Serpentinization] The Lost City hydrothermal field, [[Mid-Atlantic ridge]]: serpentinization, the driving force of the system.',
126 => '* [http://www.pnas.org/cgi/content/full/101/35/12818 H<sub>2</sub>-rich fluids from serpentinization: Geochemical and biotic implications]: [[Proceedings of the National Academy of Sciences]].',
127 => '',
128 => '{{Authority control}}'
] |
Lines removed in edit (removed_lines ) | [
0 => '#REDIRECT [[Serpentinite]]',
1 => '{{Redirect category shell|',
2 => '{{R from related word}}',
3 => '}}'
] |
Parsed HTML source of the new revision (new_html ) | '<div class="mw-parser-output"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Rock formed by hydration and metamorphic transformation of olivine</div>
<p class="mw-empty-elt">
</p>
<div class="thumb tright"><div class="thumbinner" style="width:222px;"><a href="/enwiki/wiki/File:Mineraly.sk_-_chryzotil.jpg" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/5/54/Mineraly.sk_-_chryzotil.jpg/220px-Mineraly.sk_-_chryzotil.jpg" decoding="async" width="220" height="129" class="thumbimage" srcset="/upwiki/wikipedia/commons/thumb/5/54/Mineraly.sk_-_chryzotil.jpg/330px-Mineraly.sk_-_chryzotil.jpg 1.5x, /upwiki/wikipedia/commons/5/54/Mineraly.sk_-_chryzotil.jpg 2x" data-file-width="340" data-file-height="200" /></a> <div class="thumbcaption"><div class="magnify"><a href="/enwiki/wiki/File:Mineraly.sk_-_chryzotil.jpg" class="internal" title="Enlarge"></a></div>Serpentinite partially made of <a href="/enwiki/wiki/Chrysotile" title="Chrysotile">chrysotile</a>, from Slovakia</div></div></div>
<p><b>Serpentinization</b> is a hydration and <a href="/enwiki/wiki/Metamorphic_rock" title="Metamorphic rock">metamorphic</a> transformation of ferromagnesian minerals, such as <a href="/enwiki/wiki/Olivine" title="Olivine">olivine</a> and <a href="/enwiki/wiki/Pyroxene" title="Pyroxene">pyroxene</a>, in <a href="/enwiki/wiki/Mafic" title="Mafic">mafic</a> and <a href="/enwiki/wiki/Ultramafic" class="mw-redirect" title="Ultramafic">ultramafic</a> rock<sup id="cite_ref-:0_1-0" class="reference"><a href="#cite_note-:0-1">[1]</a></sup>. Minerals formed by serpentinization include the <a href="/enwiki/wiki/Serpentine_subgroup" title="Serpentine subgroup">serpentine group</a> minerals (antigorite, lizardite, chrysotile), <a href="/enwiki/wiki/Brucite" title="Brucite">brucite</a>, <a href="/enwiki/wiki/Talc" title="Talc">talc</a>, Ni-Fe alloys, and <a href="/enwiki/wiki/Magnetite" title="Magnetite">magnetite</a><sup id="cite_ref-:0_1-1" class="reference"><a href="#cite_note-:0-1">[1]</a></sup><sup id="cite_ref-Moody1976_2-0" class="reference"><a href="#cite_note-Moody1976-2">[2]</a></sup>. The <a href="/enwiki/wiki/Mineral_alteration" title="Mineral alteration">mineral alteration</a> is particularly important at the <a href="/enwiki/wiki/Sea_floor" class="mw-redirect" title="Sea floor">sea floor</a> at <a href="/enwiki/wiki/Plate_tectonics" title="Plate tectonics">tectonic plate</a> boundaries.<sup id="cite_ref-GeologyDictionary_3-0" class="reference"><a href="#cite_note-GeologyDictionary-3">[3]</a></sup><sup id="cite_ref-:2_4-0" class="reference"><a href="#cite_note-:2-4">[4]</a></sup>
</p>
<div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div>
<ul>
<li class="toclevel-1 tocsection-1"><a href="#Formation_and_petrology"><span class="tocnumber">1</span> <span class="toctext">Formation and petrology</span></a>
<ul>
<li class="toclevel-2 tocsection-2"><a href="#Formation_of_serpentine_minerals"><span class="tocnumber">1.1</span> <span class="toctext">Formation of serpentine minerals</span></a></li>
<li class="toclevel-2 tocsection-3"><a href="#Breakdown_of_diopside_and_formation_of_rodingites"><span class="tocnumber">1.2</span> <span class="toctext">Breakdown of diopside and formation of rodingites</span></a></li>
<li class="toclevel-2 tocsection-4"><a href="#Formation_of_magnetite_and_hydrogen"><span class="tocnumber">1.3</span> <span class="toctext">Formation of magnetite and hydrogen</span></a></li>
<li class="toclevel-2 tocsection-5"><a href="#Methane_and_other_hydrocarbons"><span class="tocnumber">1.4</span> <span class="toctext">Methane and other hydrocarbons</span></a></li>
<li class="toclevel-2 tocsection-6"><a href="#Metamorphism_at_higher_pressure_and_temperature"><span class="tocnumber">1.5</span> <span class="toctext">Metamorphism at higher pressure and temperature</span></a></li>
<li class="toclevel-2 tocsection-7"><a href="#Extraterrestrial_production_of_methane_by_serpentinization"><span class="tocnumber">1.6</span> <span class="toctext">Extraterrestrial production of methane by serpentinization</span></a></li>
</ul>
</li>
<li class="toclevel-1 tocsection-8"><a href="#Environment_of_Formation"><span class="tocnumber">2</span> <span class="toctext">Environment of Formation</span></a>
<ul>
<li class="toclevel-2 tocsection-9"><a href="#Mid-ocean_Ridges"><span class="tocnumber">2.1</span> <span class="toctext">Mid-ocean Ridges</span></a></li>
<li class="toclevel-2 tocsection-10"><a href="#Subduction_Zones"><span class="tocnumber">2.2</span> <span class="toctext">Subduction Zones</span></a>
<ul>
<li class="toclevel-3 tocsection-11"><a href="#Forearc_mantle"><span class="tocnumber">2.2.1</span> <span class="toctext">Forearc mantle</span></a></li>
</ul>
</li>
<li class="toclevel-2 tocsection-12"><a href="#Implications"><span class="tocnumber">2.3</span> <span class="toctext">Implications</span></a>
<ul>
<li class="toclevel-3 tocsection-13"><a href="#Limitation_on_earthquake_depth"><span class="tocnumber">2.3.1</span> <span class="toctext">Limitation on earthquake depth</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toclevel-1 tocsection-14"><a href="#See_also"><span class="tocnumber">3</span> <span class="toctext">See also</span></a></li>
<li class="toclevel-1 tocsection-15"><a href="#References"><span class="tocnumber">4</span> <span class="toctext">References</span></a></li>
<li class="toclevel-1 tocsection-16"><a href="#External_links"><span class="tocnumber">5</span> <span class="toctext">External links</span></a></li>
</ul>
</div>
<h2><span class="mw-headline" id="Formation_and_petrology">Formation and petrology</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=1" class="mw-redirect" title="Edit section: Formation and petrology">edit source</a><span class="mw-editsection-bracket">]</span></span></h2>
<p>Serpentinization is a form of low-temperature (0 to ~600 °C) <sup id="cite_ref-5" class="reference"><a href="#cite_note-5">[5]</a></sup> <a href="/enwiki/wiki/Metamorphism" title="Metamorphism">metamorphism</a> of ferromagnesian minerals in mafic and <a href="/enwiki/wiki/Ultramafic" class="mw-redirect" title="Ultramafic">ultramafic</a> rocks, such as <a href="/enwiki/wiki/Dunite" title="Dunite">dunite</a>, <a href="/enwiki/wiki/Harzburgite" title="Harzburgite">harzburgite</a>, or <a href="/enwiki/wiki/Lherzolite" title="Lherzolite">lherzolite</a>. These are rocks low in <a href="/enwiki/wiki/Silica" class="mw-redirect" title="Silica">silica</a> and composed mostly of <a href="/enwiki/wiki/Olivine" title="Olivine">olivine</a> (<style data-mw-deduplicate="TemplateStyles:r1060974363">.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}</style><span class="chemf nowrap">(Mg<sup>2+</sup>, Fe<sup>2+</sup>)<sub class="template-chem2-sub">2</sub>SiO<sub class="template-chem2-sub">4</sub></span>), <a href="/enwiki/wiki/Pyroxene" title="Pyroxene">pyroxene</a> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1060974363"/><span class="chemf nowrap">XY(Si,Al)<sub class="template-chem2-sub">2</sub>O<sub class="template-chem2-sub">6</sub></span>), and <a href="/enwiki/wiki/Chromite" title="Chromite">chromite</a> (approximately <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1060974363"/><span class="chemf nowrap">FeCr<sub class="template-chem2-sub">2</sub>O<sub class="template-chem2-sub">4</sub></span>). Serpentinization is driven largely by <a href="/enwiki/wiki/Mineral_hydration" title="Mineral hydration">hydration</a> and <a href="/enwiki/wiki/Oxidation" class="mw-redirect" title="Oxidation">oxidation</a> of olivine and pyroxene to <a href="/enwiki/wiki/Serpentine_subgroup" title="Serpentine subgroup">serpentine group</a> minerals (antigorite, lizardite, and chrysotile), <a href="/enwiki/wiki/Brucite" title="Brucite">brucite</a> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1060974363"/><span class="chemf nowrap">Mg(OH)<sub class="template-chem2-sub">2</sub></span>), <a href="/enwiki/wiki/Talc" title="Talc">talc</a> (Mg<sub>3</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>2,</sub> and <a href="/enwiki/wiki/Magnetite" title="Magnetite">magnetite</a> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1060974363"/><span class="chemf nowrap">Fe<sub class="template-chem2-sub">3</sub>O<sub class="template-chem2-sub">4</sub></span>).<sup id="cite_ref-Moody1976_2-1" class="reference"><a href="#cite_note-Moody1976-2">[2]</a></sup> Under the unusual chemical conditions accompanying serpentinization, water is the oxidizing agent, and is itself reduced to hydrogen, <span class="chemf nowrap"><a href="/enwiki/wiki/Hydrogen" title="Hydrogen">H</a><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>. This leads to further reactions that produce rare <a href="/enwiki/wiki/Iron_group" title="Iron group">iron group</a> <a href="/enwiki/wiki/Native_element_mineral" title="Native element mineral">native element minerals</a>, such as <a href="/enwiki/wiki/Awaruite" title="Awaruite">awaruite</a> (<span class="chemf nowrap">Ni<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>Fe</span>) and <a href="/enwiki/wiki/Native_iron" class="mw-redirect" title="Native iron">native iron</a>; <a href="/enwiki/wiki/Methane" title="Methane">methane</a> and other <a href="/enwiki/wiki/Hydrocarbon" title="Hydrocarbon">hydrocarbon</a> compounds; and <a href="/enwiki/wiki/Hydrogen_sulfide" title="Hydrogen sulfide">hydrogen sulfide</a>.<sup id="cite_ref-:0_1-2" class="reference"><a href="#cite_note-:0-1">[1]</a></sup><sup id="cite_ref-BerndtEtal1996_6-0" class="reference"><a href="#cite_note-BerndtEtal1996-6">[6]</a></sup>
</p><p>During serpentinization, large amounts of water are absorbed into the rock, increasing the volume, reducing the density and destroying the original structure.<sup id="cite_ref-FOOTNOTEMoody1976128-129_7-0" class="reference"><a href="#cite_note-FOOTNOTEMoody1976128-129-7">[7]</a></sup> The density changes from 3.3 to 2.5 g/cm<sup>3</sup> (0.119 to 0.090 lb/cu in) with a concurrent volume increase on the order of 30-40%.<sup id="cite_ref-Mevel2003_8-0" class="reference"><a href="#cite_note-Mevel2003-8">[8]</a></sup> The reaction is highly <a href="/enwiki/wiki/Exothermic" class="mw-redirect" title="Exothermic">exothermic</a>, releasing up to 40 kilojoules (9.6 kcal) per mole of water reacting with the rock, and rock temperatures can be raised by about 260 °C (500 °F),<sup id="cite_ref-LC_9-0" class="reference"><a href="#cite_note-LC-9">[9]</a></sup><sup id="cite_ref-FruhGreenEtal20042_10-0" class="reference"><a href="#cite_note-FruhGreenEtal20042-10">[10]</a></sup> providing an energy source for formation of non-volcanic <a href="/enwiki/wiki/Hydrothermal_vent" title="Hydrothermal vent">hydrothermal vents</a>.<sup id="cite_ref-Lowell2002_11-0" class="reference"><a href="#cite_note-Lowell2002-11">[11]</a></sup> The hydrogen, methane, and hydrogen sulfide produced during serpentinization are released at these vents and provide energy sources for deep sea <a href="/enwiki/wiki/Chemotroph" title="Chemotroph">chemotroph</a> <a href="/enwiki/wiki/Microorganism" title="Microorganism">microorganisms</a>.<sup id="cite_ref-FruhGreenEtal2004_12-0" class="reference"><a href="#cite_note-FruhGreenEtal2004-12">[12]</a></sup><sup id="cite_ref-LC_9-1" class="reference"><a href="#cite_note-LC-9">[9]</a></sup>
</p>
<h3><span class="mw-headline" id="Formation_of_serpentine_minerals">Formation of serpentine minerals</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=2" class="mw-redirect" title="Edit section: Formation of serpentine minerals">edit source</a><span class="mw-editsection-bracket">]</span></span></h3>
<p>Olivine is a <a href="/enwiki/wiki/Solid_solution" title="Solid solution">solid solution</a> of <a href="/enwiki/wiki/Forsterite" title="Forsterite">forsterite</a>, the <a href="/enwiki/wiki/Magnesium" title="Magnesium">magnesium</a> endmember of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1060974363"/><span class="chemf nowrap">(Mg<sup>2+</sup>, Fe<sup>2+</sup>)<sub class="template-chem2-sub">2</sub>SiO<sub class="template-chem2-sub">4</sub></span>, and <a href="/enwiki/wiki/Fayalite" title="Fayalite">fayalite</a>, the <a href="/enwiki/wiki/Iron" title="Iron">iron</a> endmember, with forsterite typically making up about 90% of the olivine in ultramafic rocks.<sup id="cite_ref-SnowDick1995_13-0" class="reference"><a href="#cite_note-SnowDick1995-13">[13]</a></sup> Serpentinite can form from <a href="/enwiki/wiki/Olivine" title="Olivine">olivine</a> via several reactions:
</p>
<dl><dd>
<table style="border-collapse:collapse; background:none; margin:0; border:none;">
<tbody><tr>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><div style="margin:0;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Forsterite" title="Forsterite">Forsterite</a></span><span style="display:block; line-height:1em; padding:0 0.1em;">3 <span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>SiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">silicon dioxide</span><span style="display:block; line-height:1em; padding:0 0.1em;"><span class="chemf nowrap">SiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></span></span> + 4 <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O</span> → <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">serpentine</span><span style="display:block; line-height:1em; padding:0 0.1em;">2 <span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>Si<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">5</sub></span>(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span>
</div>
</td>
<td style="vertical-align:middle; width:99%; border:none; padding:0.08em;">
<div style="margin:0;">
<table style="border-collapse:collapse; background:none; margin:0; border:none; width:99%;">
<tbody><tr>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td>
<td style="width:100%; border:none; padding:0.08em;"><p style="margin:0; font-size:1pt;"> </p>
</td>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td></tr>
<tr>
<td style="border-left:none; border-top:0px none #e5e5e5; border-right:none; border-bottom:none; padding:0.08em;">
<p style="margin:0; font-size:1pt;"> </p>
</td></tr></tbody></table>
</div>
</td>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><p style="margin:0pt;"><b>(<span id="math_Reaction_1a" class="reference nourlexpansion" style="font-weight:bold;">Reaction 1a</span>)</b></p>
</td></tr></tbody></table></dd></dl>
<dl><dd>
<table style="border-collapse:collapse; background:none; margin:0; border:none;">
<tbody><tr>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><div style="margin:0;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Forsterite" title="Forsterite">Forsterite</a></span><span style="display:block; line-height:1em; padding:0 0.1em;">2 <span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>SiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">water</span><span style="display:block; line-height:1em; padding:0 0.1em;">3 <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O</span></span></span></span> → <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">serpentine</span><span style="display:block; line-height:1em; padding:0 0.1em;"><span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>Si<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">5</sub></span>(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Brucite" title="Brucite">brucite</a></span><span style="display:block; line-height:1em; padding:0 0.1em;"><span class="chemf nowrap">Mg(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></span></span>
</div>
</td>
<td style="vertical-align:middle; width:99%; border:none; padding:0.08em;">
<div style="margin:0;">
<table style="border-collapse:collapse; background:none; margin:0; border:none; width:99%;">
<tbody><tr>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td>
<td style="width:100%; border:none; padding:0.08em;"><p style="margin:0; font-size:1pt;"> </p>
</td>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td></tr>
<tr>
<td style="border-left:none; border-top:0px none #e5e5e5; border-right:none; border-bottom:none; padding:0.08em;">
<p style="margin:0; font-size:1pt;"> </p>
</td></tr></tbody></table>
</div>
</td>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><p style="margin:0pt;"><b>(<span id="math_Reaction_1b" class="reference nourlexpansion" style="font-weight:bold;">Reaction 1b</span>)</b></p>
</td></tr></tbody></table></dd></dl>
<p>Reaction 1a tightly binds silica, lowering its <a href="/enwiki/wiki/Chemical_activity" class="mw-redirect" title="Chemical activity">chemical activity</a> to the lowest values seen in common rocks of the <a href="/enwiki/wiki/Earth%27s_crust" title="Earth's crust">Earth's crust</a>.<sup id="cite_ref-FrostBeard2007_14-0" class="reference"><a href="#cite_note-FrostBeard2007-14">[14]</a></sup> Serpentinization then continues through the hydration of olivine to yield serpentine and brucite (Reaction 1b).<sup id="cite_ref-Coleman77_15-0" class="reference"><a href="#cite_note-Coleman77-15">[15]</a></sup> The mixture of brucite and serpentine formed by Reaction 1b has the lowest silica activity in the serpentinite, so that the brucite phase is very important in understanding serpentinization.<sup id="cite_ref-FrostBeard2007_14-1" class="reference"><a href="#cite_note-FrostBeard2007-14">[14]</a></sup> However, the brucite is often blended in with the serpentine such that it is difficult to identify except with <a href="/enwiki/wiki/X-ray_diffraction" class="mw-redirect" title="X-ray diffraction">X-ray diffraction</a>, and it is easily altered under surface weathering conditions.<sup id="cite_ref-FOOTNOTEMoody1976127_16-0" class="reference"><a href="#cite_note-FOOTNOTEMoody1976127-16">[16]</a></sup>
</p><p>A similar suite of reactions involves <a href="/enwiki/wiki/Pyroxene" title="Pyroxene">pyroxene</a>-group minerals:
</p>
<dl><dd>
<table style="border-collapse:collapse; background:none; margin:0; border:none;">
<tbody><tr>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><div style="margin:0;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Enstatite" title="Enstatite">Enstatite</a></span><span style="display:block; line-height:1em; padding:0 0.1em;">3 <span class="chemf nowrap">MgSiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">silicon dioxide</span><span style="display:block; line-height:1em; padding:0 0.1em;"><span class="chemf nowrap">SiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></span></span> + <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O</span> → <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Talc" title="Talc">talc</a></span><span style="display:block; line-height:1em; padding:0 0.1em;"><span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>Si<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">10</sub></span>(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></span></span>
</div>
</td>
<td style="vertical-align:middle; width:99%; border:none; padding:0.08em;">
<div style="margin:0;">
<table style="border-collapse:collapse; background:none; margin:0; border:none; width:99%;">
<tbody><tr>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td>
<td style="width:100%; border:none; padding:0.08em;"><p style="margin:0; font-size:1pt;"> </p>
</td>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td></tr>
<tr>
<td style="border-left:none; border-top:0px none #e5e5e5; border-right:none; border-bottom:none; padding:0.08em;">
<p style="margin:0; font-size:1pt;"> </p>
</td></tr></tbody></table>
</div>
</td>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><p style="margin:0pt;"><b>(<span id="math_Reaction_2a" class="reference nourlexpansion" style="font-weight:bold;">Reaction 2a</span>)</b></p>
</td></tr></tbody></table></dd></dl>
<dl><dd>
<table style="border-collapse:collapse; background:none; margin:0; border:none;">
<tbody><tr>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><div style="margin:0;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Enstatite" title="Enstatite">Enstatite</a></span><span style="display:block; line-height:1em; padding:0 0.1em;">6 <span class="chemf nowrap">MgSiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></span></span></span> + 3 <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O</span> → <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">serpentine</span><span style="display:block; line-height:1em; padding:0 0.1em;"><span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>Si<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">5</sub></span>(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Talc" title="Talc">talc</a></span><span style="display:block; line-height:1em; padding:0 0.1em;"><span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>Si<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">10</sub></span>(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></span></span>
</div>
</td>
<td style="vertical-align:middle; width:99%; border:none; padding:0.08em;">
<div style="margin:0;">
<table style="border-collapse:collapse; background:none; margin:0; border:none; width:99%;">
<tbody><tr>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td>
<td style="width:100%; border:none; padding:0.08em;"><p style="margin:0; font-size:1pt;"> </p>
</td>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td></tr>
<tr>
<td style="border-left:none; border-top:0px none #e5e5e5; border-right:none; border-bottom:none; padding:0.08em;">
<p style="margin:0; font-size:1pt;"> </p>
</td></tr></tbody></table>
</div>
</td>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><p style="margin:0pt;"><b>(<span id="math_Reaction_2b" class="reference nourlexpansion" style="font-weight:bold;">Reaction 2b</span>)</b></p>
</td></tr></tbody></table></dd></dl>
<p>Reaction 2a quickly comes to a halt as silica becomes unavailable, and Reaction 2b takes over.<sup id="cite_ref-FOOTNOTEFrostBeard20071355_17-0" class="reference"><a href="#cite_note-FOOTNOTEFrostBeard20071355-17">[17]</a></sup> When olivine is abundant, silica activity drops low enough that talc begins to react with olivine:
</p>
<dl><dd>
<table style="border-collapse:collapse; background:none; margin:0; border:none;">
<tbody><tr>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><div style="margin:0;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Forsterite" title="Forsterite">Forsterite</a></span><span style="display:block; line-height:1em; padding:0 0.1em;">6 <span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>SiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Talc" title="Talc">talc</a></span><span style="display:block; line-height:1em; padding:0 0.1em;"><span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>Si<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">10</sub></span>(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">water</span><span style="display:block; line-height:1em; padding:0 0.1em;">9 <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O</span></span></span></span> → <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">serpentine</span><span style="display:block; line-height:1em; padding:0 0.1em;">5 <span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>Si<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">5</sub></span>(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span>
</div>
</td>
<td style="vertical-align:middle; width:99%; border:none; padding:0.08em;">
<div style="margin:0;">
<table style="border-collapse:collapse; background:none; margin:0; border:none; width:99%;">
<tbody><tr>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td>
<td style="width:100%; border:none; padding:0.08em;"><p style="margin:0; font-size:1pt;"> </p>
</td>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td></tr>
<tr>
<td style="border-left:none; border-top:0px none #e5e5e5; border-right:none; border-bottom:none; padding:0.08em;">
<p style="margin:0; font-size:1pt;"> </p>
</td></tr></tbody></table>
</div>
</td>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><p style="margin:0pt;"><b>(<span id="math_Reaction_3" class="reference nourlexpansion" style="font-weight:bold;">Reaction 3</span>)</b></p>
</td></tr></tbody></table></dd></dl>
<p>This reaction requires higher temperatures than those at which brucite forms.<sup id="cite_ref-FOOTNOTEMoody1976127_16-1" class="reference"><a href="#cite_note-FOOTNOTEMoody1976127-16">[16]</a></sup>
</p><p>The final mineralogy depends both on rock and fluid compositions, temperature, and pressure. Antigorite forms in reactions at temperatures that can exceed 600 °C (1,112 °F) during metamorphism, and it is the serpentine group mineral stable at the highest temperatures. Lizardite and chrysotile can form at low temperatures very near the Earth's surface.<sup id="cite_ref-FOOTNOTEMoody1976125,_127,_131_18-0" class="reference"><a href="#cite_note-FOOTNOTEMoody1976125,_127,_131-18">[18]</a></sup>
</p>
<h3><span class="mw-headline" id="Breakdown_of_diopside_and_formation_of_rodingites">Breakdown of diopside and formation of rodingites</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=3" class="mw-redirect" title="Edit section: Breakdown of diopside and formation of rodingites">edit source</a><span class="mw-editsection-bracket">]</span></span></h3>
<p>Ultramafic rocks often contain calcium-rich pyroxene (<a href="/enwiki/wiki/Diopside" title="Diopside">diopside</a>), which breaks down according to the reaction:
</p>
<dl><dd>
<table style="border-collapse:collapse; background:none; margin:0; border:none;">
<tbody><tr>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><div style="margin:0;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Diopside" title="Diopside">Diopside</a></span><span style="display:block; line-height:1em; padding:0 0.1em;">3 <span class="chemf nowrap">CaMgSi<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">6</sub></span></span></span></span></span> + 6 <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span> → <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">serpentine</span><span style="display:block; line-height:1em; padding:0 0.1em;"><span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>Si<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">5</sub></span>(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + 3 <span class="chemf nowrap">Ca<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span> + <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O</span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">silicon dioxide</span><span style="display:block; line-height:1em; padding:0 0.1em;">4 <span class="chemf nowrap">SiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></span></span>
</div>
</td>
<td style="vertical-align:middle; width:99%; border:none; padding:0.08em;">
<div style="margin:0;">
<table style="border-collapse:collapse; background:none; margin:0; border:none; width:99%;">
<tbody><tr>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td>
<td style="width:100%; border:none; padding:0.08em;"><p style="margin:0; font-size:1pt;"> </p>
</td>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td></tr>
<tr>
<td style="border-left:none; border-top:0px none #e5e5e5; border-right:none; border-bottom:none; padding:0.08em;">
<p style="margin:0; font-size:1pt;"> </p>
</td></tr></tbody></table>
</div>
</td>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><p style="margin:0pt;"><b>(<span id="math_Reaction_4" class="reference nourlexpansion" style="font-weight:bold;">Reaction 4</span>)</b></p>
</td></tr></tbody></table></dd></dl>
<p>This raises both the <a href="/enwiki/wiki/PH" title="PH">pH</a>, often to very high values, and the calcium content of the fluids involved in serpentinization. These fluids are highly reactive and may transport <a href="/enwiki/wiki/Calcium" title="Calcium">calcium</a> and other elements into surrounding <a href="/enwiki/wiki/Mafic" title="Mafic">mafic</a> rocks. Fluid reaction with these rocks may create <a href="/enwiki/wiki/Metasomatism" title="Metasomatism">metasomatic</a> reaction zones enriched in calcium and depleted in silica, called <a href="/enwiki/wiki/Rodingite" title="Rodingite">rodingites</a>.<sup id="cite_ref-FOOTNOTEFrostBeard20071360–1362_19-0" class="reference"><a href="#cite_note-FOOTNOTEFrostBeard20071360–1362-19">[19]</a></sup>
</p>
<h3><span class="mw-headline" id="Formation_of_magnetite_and_hydrogen">Formation of magnetite and hydrogen</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=4" class="mw-redirect" title="Edit section: Formation of magnetite and hydrogen">edit source</a><span class="mw-editsection-bracket">]</span></span></h3>
<p>In most crustal rock, the chemical activity of oxygen is prevented from dropping to very low values by the <a href="/enwiki/wiki/Mineral_redox_buffer#Common_redox_buffers_and_mineralogy" title="Mineral redox buffer">fayalite-magnetite-quartz (FMQ) buffer</a>.<sup id="cite_ref-FOOTNOTEMoody1976129_20-0" class="reference"><a href="#cite_note-FOOTNOTEMoody1976129-20">[20]</a></sup> The very low chemical activity of silica during serpentinization eliminates this buffer, allowing serpentinization to produce highly <a href="/enwiki/wiki/Reduction_(chemistry)" class="mw-redirect" title="Reduction (chemistry)">reducing</a> conditions.<sup id="cite_ref-FrostBeard2007_14-2" class="reference"><a href="#cite_note-FrostBeard2007-14">[14]</a></sup> Under these conditions, water is capable of oxidizing ferrous (<span class="chemf nowrap">Fe<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>) ions in fayalite. The process is of interest because it generates hydrogen gas:<sup id="cite_ref-:0_1-3" class="reference"><a href="#cite_note-:0-1">[1]</a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21">[21]</a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22">[22]</a></sup>
</p>
<dl><dd>
<table style="border-collapse:collapse; background:none; margin:0; border:none;">
<tbody><tr>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><div style="margin:0;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Fayalite" title="Fayalite">Fayalite</a></span><span style="display:block; line-height:1em; padding:0 0.1em;">3 <span class="chemf nowrap">Fe<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>SiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">water</span><span style="display:block; line-height:1em; padding:0 0.1em;">2 <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O</span></span></span></span> → <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;"><a href="/enwiki/wiki/Magnetite" title="Magnetite">magnetite</a></span><span style="display:block; line-height:1em; padding:0 0.1em;">2 <span class="chemf nowrap">Fe<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">silicon dioxide</span><span style="display:block; line-height:1em; padding:0 0.1em;">3 <span class="chemf nowrap">SiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">hydrogen</span><span style="display:block; line-height:1em; padding:0 0.1em;">2 <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></span></span>
</div>
</td>
<td style="vertical-align:middle; width:99%; border:none; padding:0.08em;">
<div style="margin:0;">
<table style="border-collapse:collapse; background:none; margin:0; border:none; width:99%;">
<tbody><tr>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td>
<td style="width:100%; border:none; padding:0.08em;"><p style="margin:0; font-size:1pt;"> </p>
</td>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td></tr>
<tr>
<td style="border-left:none; border-top:0px none #e5e5e5; border-right:none; border-bottom:none; padding:0.08em;">
<p style="margin:0; font-size:1pt;"> </p>
</td></tr></tbody></table>
</div>
</td>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><p style="margin:0pt;"><b>(<span id="math_Reaction_5" class="reference nourlexpansion" style="font-weight:bold;">Reaction 5</span>)</b></p>
</td></tr></tbody></table></dd></dl>
<p>However, studies of serpentinites suggest that iron minerals are first converted to <a href="https://en.wiktionary.org/wiki/ferroan" class="extiw" title="wikt:ferroan">ferroan</a> brucite, that is, brucite containing <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1060974363"/><span class="chemf nowrap">Fe(OH)<sub class="template-chem2-sub">2</sub></span>,<sup id="cite_ref-23" class="reference"><a href="#cite_note-23">[23]</a></sup> which then undergoes the <a href="/enwiki/wiki/Schikorr_reaction" title="Schikorr reaction">Schikorr reaction</a> in the anaerobic conditions of serpentinization:<sup id="cite_ref-Esource_24-0" class="reference"><a href="#cite_note-Esource-24">[24]</a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25">[25]</a></sup>
</p>
<dl><dd>
<table style="border-collapse:collapse; background:none; margin:0; border:none;">
<tbody><tr>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><div style="margin:0;"><span class="sfrac nowrap"><span style="display:none;display:inline-block; vertical-align:top; text-align:center;"><span style="display:block;padding:0 0.1em;">6 <span class="chemf nowrap">Fe(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span><span style="display:block; font-size:70%; line-height:1em;padding:0 0.1em;"><span style="position:relative; line-height:1em; margin-top:-0.5em; top:-0.5em;">ferrous hydroxide</span></span></span></span> → <span class="sfrac nowrap"><span style="display:none;display:inline-block; vertical-align:top; text-align:center;"><span style="display:block;padding:0 0.1em;">2 <span class="chemf nowrap">Fe<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span><span style="display:block; font-size:70%; line-height:1em;padding:0 0.1em;"><span style="position:relative; line-height:1em; margin-top:-0.5em; top:-0.5em;">magnetite</span></span></span></span> + <span class="sfrac nowrap"><span style="display:none;display:inline-block; vertical-align:top; text-align:center;"><span style="display:block;padding:0 0.1em;">4 <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O</span></span><span style="display:block; font-size:70%; line-height:1em;padding:0 0.1em;"><span style="position:relative; line-height:1em; margin-top:-0.5em; top:-0.5em;">water</span></span></span></span> + <span class="sfrac nowrap"><span style="display:none;display:inline-block; vertical-align:top; text-align:center;"><span style="display:block;padding:0 0.1em;">2 <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span><span style="display:block; font-size:70%; line-height:1em;padding:0 0.1em;"><span style="position:relative; line-height:1em; margin-top:-0.5em; top:-0.5em;">hydrogen</span></span></span></span>
</div>
</td>
<td style="vertical-align:middle; width:99%; border:none; padding:0.08em;">
<div style="margin:0;">
<table style="border-collapse:collapse; background:none; margin:0; border:none; width:99%;">
<tbody><tr>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td>
<td style="width:100%; border:none; padding:0.08em;"><p style="margin:0; font-size:1pt;"> </p>
</td>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td></tr>
<tr>
<td style="border-left:none; border-top:0px none #e5e5e5; border-right:none; border-bottom:none; padding:0.08em;">
<p style="margin:0; font-size:1pt;"> </p>
</td></tr></tbody></table>
</div>
</td>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><p style="margin:0pt;"><b>(<span id="math_Reaction_6" class="reference nourlexpansion" style="font-weight:bold;">Reaction 6</span>)</b></p>
</td></tr></tbody></table></dd></dl>
<p>Maximum reducing conditions, and the maximum rate of production of hydrogen, occur when the temperature of serpentinization is between 200 and 315 °C (392 and 599 °F)<sup id="cite_ref-26" class="reference"><a href="#cite_note-26">[26]</a></sup> and when fluids are carbonate undersaturated.<sup id="cite_ref-:0_1-4" class="reference"><a href="#cite_note-:0-1">[1]</a></sup> If the original ultramafic rock (the <i><a href="/enwiki/wiki/Protolith" title="Protolith">protolith</a></i>) is peridotite, which is rich in olivine, considerable magnetite and hydrogen are produced. When the protolith is pyroxenite, which contains more pyroxene than olivine, iron-rich talc is produced with no magnetite and only modest hydrogen production. Infiltration of silica-bearing fluids during serpentinization can suppress both the formation of brucite and the subsequent production of hydrogen.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27">[27]</a></sup>
</p><p>Chromite present in the protolith will be altered to chromium-rich magnetite at lower serpentinization temperatures. At higher temperatures, it will be altered to iron-rich chromite (ferrit-chromite).<sup id="cite_ref-FOOTNOTEMoody1967128_28-0" class="reference"><a href="#cite_note-FOOTNOTEMoody1967128-28">[28]</a></sup> During serpentinization, the rock is enriched in <a href="/enwiki/wiki/Chlorine" title="Chlorine">chlorine</a>, <a href="/enwiki/wiki/Boron" title="Boron">boron</a>, <a href="/enwiki/wiki/Fluorine" title="Fluorine">fluorine</a>, and sulfur. Sulfur will be reduce to hydrogen sulfide and sulfide minerals, though significant quantities are incorporated into serpentine minerals, and some may later be reoxidized to sulfate minerals such as <a href="/enwiki/wiki/Anhydrite" title="Anhydrite">anhydrite</a>.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29">[29]</a></sup> The sulfides produced include nickel-rich sulfides, such as <a href="/enwiki/wiki/Mackinawite" title="Mackinawite">mackinawite</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30">[30]</a></sup>
</p>
<h3><span class="mw-headline" id="Methane_and_other_hydrocarbons">Methane and other hydrocarbons</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=5" class="mw-redirect" title="Edit section: Methane and other hydrocarbons">edit source</a><span class="mw-editsection-bracket">]</span></span></h3>
<p>Laboratory experiments have confirmed that at a temperature of 300 °C (572 °F) and pressure of 500 bars, olivine serpentinizes with release of hydrogen gas. In addition, methane and complex hydrocarbons are formed through reduction of carbon dioxide. The process may be catalyzed by magnetite formed during serpentinization.<sup id="cite_ref-BerndtEtal1996_6-1" class="reference"><a href="#cite_note-BerndtEtal1996-6">[6]</a></sup> One reaction pathway is:<sup id="cite_ref-Esource_24-1" class="reference"><a href="#cite_note-Esource-24">[24]</a></sup>
</p>
<dl><dd>
<table style="border-collapse:collapse; background:none; margin:0; border:none;">
<tbody><tr>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><div style="margin:0;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">forsterite</span><span style="display:block; line-height:1em; padding:0 0.1em;">18 <span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>SiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">fayalite</span><span style="display:block; line-height:1em; padding:0 0.1em;">6 <span class="chemf nowrap">Fe<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>SiO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + 26 <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O</span> + <span class="chemf nowrap">CO<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span> → <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">serpentine</span><span style="display:block; line-height:1em; padding:0 0.1em;">12 <span class="chemf nowrap">Mg<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>Si<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">5</sub></span>(OH)<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">magnetite</span><span style="display:block; line-height:1em; padding:0 0.1em;">4 <span class="chemf nowrap">Fe<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span>O<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span> + <span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%; padding:0 0.1em;">methane</span><span style="display:block; line-height:1em; padding:0 0.1em;"><span class="chemf nowrap">CH<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></span></span>
</div>
</td>
<td style="vertical-align:middle; width:99%; border:none; padding:0.08em;">
<div style="margin:0;">
<table style="border-collapse:collapse; background:none; margin:0; border:none; width:99%;">
<tbody><tr>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td>
<td style="width:100%; border:none; padding:0.08em;"><p style="margin:0; font-size:1pt;"> </p>
</td>
<td style="border:none; padding:0.08em;" rowspan="2"><p style="margin:0; font-size:4pt;"> </p>
</td></tr>
<tr>
<td style="border-left:none; border-top:0px none #e5e5e5; border-right:none; border-bottom:none; padding:0.08em;">
<p style="margin:0; font-size:1pt;"> </p>
</td></tr></tbody></table>
</div>
</td>
<td style="vertical-align:middle; border:none; padding:0.08em;" class="nowrap"><p style="margin:0pt;"><b>(<span id="math_Reaction_7" class="reference nourlexpansion" style="font-weight:bold;">Reaction 7</span>)</b></p>
</td></tr></tbody></table></dd></dl>
<h3><span class="mw-headline" id="Metamorphism_at_higher_pressure_and_temperature">Metamorphism at higher pressure and temperature</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=6" class="mw-redirect" title="Edit section: Metamorphism at higher pressure and temperature">edit source</a><span class="mw-editsection-bracket">]</span></span></h3>
<p>Lizardite and chrysotile are stable at low temperatures and pressures, while antigorite is stable at higher temperatures and pressure. <sup id="cite_ref-31" class="reference"><a href="#cite_note-31">[31]</a></sup> Its presence in a serpentinite indicates either that serpentinization took place at unusually high pressure and temperature or that the rock experienced higher grade metamorphism after serpentinization was complete.<sup id="cite_ref-Moody1976_2-2" class="reference"><a href="#cite_note-Moody1976-2">[2]</a></sup>
</p><p>Infiltration of CO<sub style="font-size: 80%;vertical-align: -0.35em">2</sub>-bearing fluids into serpentinite causes distinctive <i><a href="/enwiki/wiki/Talc_carbonate" title="Talc carbonate">talc-carbonate alteration</a></i>. <sup id="cite_ref-32" class="reference"><a href="#cite_note-32">[32]</a></sup> Brucite rapidly converts to <a href="/enwiki/wiki/Magnesite" title="Magnesite">magnesite</a> and serpentine minerals (other than antigorite) are converted to talc. The presence of <a href="/enwiki/wiki/Pseudomorph" title="Pseudomorph">pseudomorphs</a> of the original serpentinite minerals shows that this alteration takes place after serpentinization.<sup id="cite_ref-Moody1976_2-3" class="reference"><a href="#cite_note-Moody1976-2">[2]</a></sup>
</p><p>Serpentinite may contain <a href="/enwiki/wiki/Chlorite_group" title="Chlorite group">chlorite</a> (a <a href="/enwiki/wiki/Phyllosilicate" class="mw-redirect" title="Phyllosilicate">phyllosilicate</a> mineral), <a href="/enwiki/wiki/Tremolite" title="Tremolite">tremolite</a> (Ca<sub>2</sub>(Mg<sub>5.0-4.5</sub>Fe<sup>2+</sup><sub>0.0-0.5</sub>)Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub>), and metamorphic olivine and <a href="/enwiki/wiki/Diopside" title="Diopside">diopside</a> (calcium-rich pyroxene). This indicates that the serpentinite has been subject to more intense metamorphism, reaching the upper <a href="/enwiki/wiki/Greenschist" title="Greenschist">greenschist</a> or <a href="/enwiki/wiki/Amphibolite" title="Amphibolite">amphibolite</a> <a href="/enwiki/wiki/Metamorphic_facies" title="Metamorphic facies">metamorphic facies</a>.<sup id="cite_ref-Moody1976_2-4" class="reference"><a href="#cite_note-Moody1976-2">[2]</a></sup>
</p><p>Above about 450 °C (842 °F), antigorite begins to break down. Thus serpentinite does not exist at higher metamorphic facies.<sup id="cite_ref-FruhGreenEtal2004_12-1" class="reference"><a href="#cite_note-FruhGreenEtal2004-12">[12]</a></sup>
</p>
<h3><span class="mw-headline" id="Extraterrestrial_production_of_methane_by_serpentinization">Extraterrestrial production of methane by serpentinization</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=7" class="mw-redirect" title="Edit section: Extraterrestrial production of methane by serpentinization">edit source</a><span class="mw-editsection-bracket">]</span></span></h3>
<p>The presence of traces of <a href="/enwiki/wiki/Methane_on_Mars" class="mw-redirect" title="Methane on Mars">methane in the atmosphere of Mars</a> has been hypothesized to be a possible evidence for <a href="/enwiki/wiki/Life_on_Mars_(planet)" class="mw-redirect" title="Life on Mars (planet)">life on Mars</a> if methane was produced by <a href="/enwiki/wiki/Bacteria" title="Bacteria">bacterial</a> activity. Serpentinization has been proposed as an alternative non-biological source for the observed methane traces.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33">[33]</a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34">[34]</a></sup> In 2022 it was reported that microscopic examination of the <a href="/enwiki/wiki/ALH_84001" class="mw-redirect" title="ALH 84001">ALH 84001</a> meteorite, which came from Mars, shows that indeed the organic matter it contains was formed by serpentinization, not by life processes.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35">[35]</a></sup><sup id="cite_ref-36" class="reference"><a href="#cite_note-36">[36]</a></sup>
</p><p>Using data from the <a href="/enwiki/wiki/Cassini%E2%80%93Huygens" title="Cassini–Huygens">Cassini</a> probe flybys obtained in 2010–12, scientists were able to confirm that Saturn's moon <a href="/enwiki/wiki/Enceladus" title="Enceladus">Enceladus</a> likely has a liquid water ocean beneath its frozen surface. A model suggests that the ocean on Enceladus has an alkaline <a href="/enwiki/wiki/PH" title="PH">pH</a> of 11–12.<sup id="cite_ref-pH_2015_37-0" class="reference"><a href="#cite_note-pH_2015-37">[37]</a></sup> The high pH is interpreted to be a key consequence of serpentinization of <a href="/enwiki/wiki/Chondrite" title="Chondrite">chondritic rock</a>, that leads to the generation of <span class="chemf nowrap">H<span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>, a geochemical source of energy that can support both abiotic and biological synthesis of organic molecules.<sup id="cite_ref-pH_2015_37-1" class="reference"><a href="#cite_note-pH_2015-37">[37]</a></sup><sup id="cite_ref-38" class="reference"><a href="#cite_note-38">[38]</a></sup>
</p>
<h2><span class="mw-headline" id="Environment_of_Formation">Environment of Formation</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=8" class="mw-redirect" title="Edit section: Environment of Formation">edit source</a><span class="mw-editsection-bracket">]</span></span></h2>
<div class="thumb tright"><div class="thumbinner" style="width:222px;"><a href="/enwiki/wiki/File:Gros_Morne_moho.jpg" class="image"><img alt="" src="/upwiki/wikipedia/commons/thumb/9/9a/Gros_Morne_moho.jpg/220px-Gros_Morne_moho.jpg" decoding="async" width="220" height="165" class="thumbimage" srcset="/upwiki/wikipedia/commons/thumb/9/9a/Gros_Morne_moho.jpg/330px-Gros_Morne_moho.jpg 1.5x, /upwiki/wikipedia/commons/thumb/9/9a/Gros_Morne_moho.jpg/440px-Gros_Morne_moho.jpg 2x" data-file-width="1080" data-file-height="810" /></a> <div class="thumbcaption"><div class="magnify"><a href="/enwiki/wiki/File:Gros_Morne_moho.jpg" class="internal" title="Enlarge"></a></div>Ophiolite of the <a href="/enwiki/wiki/Gros_Morne_National_Park" title="Gros Morne National Park">Gros Morne National Park</a>, Newfoundland. Ophiolites characteristically have a serpentinite component.</div></div></div>
<p>Serpentinization occurs at <a href="/enwiki/wiki/Mid-ocean_ridges" class="mw-redirect" title="Mid-ocean ridges">mid-ocean ridges</a>, in the <a href="/enwiki/wiki/Forearc" title="Forearc">forearc</a> mantle of <a href="/enwiki/wiki/Subduction_zone" class="mw-redirect" title="Subduction zone">subduction</a> zones, in ophiolite packages, and in ultramafic intrusions. <sup id="cite_ref-GeologyDictionary_3-1" class="reference"><a href="#cite_note-GeologyDictionary-3">[3]</a></sup><sup id="cite_ref-:2_4-1" class="reference"><a href="#cite_note-:2-4">[4]</a></sup>
</p>
<h3><span class="mw-headline" id="Mid-ocean_Ridges">Mid-ocean Ridges</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=9" class="mw-redirect" title="Edit section: Mid-ocean Ridges">edit source</a><span class="mw-editsection-bracket">]</span></span></h3>
<p>Conditions are highly favorable for serpentinization at slow to ultraslow spreading mid-ocean ridges.<sup id="cite_ref-Mevel2003_8-1" class="reference"><a href="#cite_note-Mevel2003-8">[8]</a></sup> Here the rate of <a href="/enwiki/wiki/Crustal_extension" class="mw-redirect" title="Crustal extension">crustal extension</a> is high compared with the volume of magmatism, bringing ultramafic mantle rock very close to the surface where fracturing allows seawater to infiltrate the rock.<sup id="cite_ref-Lowell2002_11-1" class="reference"><a href="#cite_note-Lowell2002-11">[11]</a></sup>
</p><p>Serpentinization at slow spreading mid-ocean ridges can cause the seismic Moho discontinuity to be placed at the serpentinization front, rather than the base of the crust as defined by normal petrological criteria.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39">[39]</a></sup><sup id="cite_ref-Mevel2003_8-2" class="reference"><a href="#cite_note-Mevel2003-8">[8]</a></sup> The Lanzo Massif of the Italian Alps shows a sharp serpentinization front that may be a relict seismic Moho.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40">[40]</a></sup>
</p>
<h3><span class="mw-headline" id="Subduction_Zones">Subduction Zones</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=10" class="mw-redirect" title="Edit section: Subduction Zones">edit source</a><span class="mw-editsection-bracket">]</span></span></h3>
<h4><span class="mw-headline" id="Forearc_mantle">Forearc mantle</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=11" class="mw-redirect" title="Edit section: Forearc mantle">edit source</a><span class="mw-editsection-bracket">]</span></span></h4>
<p>Serpentinization is an important phenomenon in subduction zones that has a strong control on the water cycle and geodynamics of a subduction zone. <sup id="cite_ref-:3_41-0" class="reference"><a href="#cite_note-:3-41">[41]</a></sup> Here mantle rock is cooled by the subducting slab to temperatures at which serpentinite is stable, and fluids are released from the subducting slab in great quantities into the ultramafic mantle rock.<sup id="cite_ref-:3_41-1" class="reference"><a href="#cite_note-:3-41">[41]</a></sup> Direct evidence that serpentinization is taking place in the <a href="/enwiki/wiki/Mariana_Islands" title="Mariana Islands">Mariana Islands</a> <a href="/enwiki/wiki/Island_arc" title="Island arc">island arc</a> is provided by the activity of serpentinite <a href="/enwiki/wiki/Mud_volcano" title="Mud volcano">mud volcanoes</a>. <a href="/enwiki/wiki/Xenolith" title="Xenolith">Xenoliths</a> of harzburgite and (less commonly) dunite are occasionally erupted by the mud volcanoes, giving clues to the nature of the protolith.<sup id="cite_ref-HyndmanPeacock2003_42-0" class="reference"><a href="#cite_note-HyndmanPeacock2003-42">[42]</a></sup>
</p><p>Because serpentinization increases the volume and lowers the density of the original rock, serpentinitization may lead to uplift that creates coastal ranges above mantle forearcs.<sup id="cite_ref-HyndmanPeacock2003_42-1" class="reference"><a href="#cite_note-HyndmanPeacock2003-42">[42]</a></sup> Further uplift can bring serpentinite to the surface when subduction ceases, as has taken place with the serpentinite exposed at the <a href="/enwiki/wiki/Presidio_of_San_Francisco" title="Presidio of San Francisco">Presidio of San Francisco</a>.<sup id="cite_ref-Presidio_43-0" class="reference"><a href="#cite_note-Presidio-43">[43]</a></sup>
</p><p>Serpentinized ultramafic rock is found in many <a href="/enwiki/wiki/Ophiolite" title="Ophiolite">ophiolites</a>. Ophiolites are fragments of oceanic <a href="/enwiki/wiki/Lithosphere" title="Lithosphere">lithosphere</a> that has been thrust onto continents, a process called <i><a href="/enwiki/wiki/Obduction" title="Obduction">obduction</a></i>. <sup id="cite_ref-44" class="reference"><a href="#cite_note-44">[44]</a></sup> They typically consist of a layer of serpentinized harzburgite (sometimes called <i>alpine peridotite</i> in older writings), a layer of hydrothermally altered <a href="/enwiki/wiki/Diabase" title="Diabase">diabases</a> and <a href="/enwiki/wiki/Pillow_basalt" class="mw-redirect" title="Pillow basalt">pillow basalts</a>, and a layer of deep water sediments containing radiolarian ribbon <a href="/enwiki/wiki/Chert" title="Chert">chert</a>.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45">[45]</a></sup> Because serpentinization increases the volume and lowers the density of the original rock, serpentinitization may lead to uplift that creates coastal ranges above mantle forearcs.<sup id="cite_ref-HyndmanPeacock20032_46-0" class="reference"><a href="#cite_note-HyndmanPeacock20032-46">[46]</a></sup>
<sup id="cite_ref-Presidio2_47-0" class="reference"><a href="#cite_note-Presidio2-47">[47]</a></sup>
</p>
<h3><span class="mw-headline" id="Implications">Implications</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=12" class="mw-redirect" title="Edit section: Implications">edit source</a><span class="mw-editsection-bracket">]</span></span></h3>
<h4><span class="mw-headline" id="Limitation_on_earthquake_depth">Limitation on earthquake depth</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=13" class="mw-redirect" title="Edit section: Limitation on earthquake depth">edit source</a><span class="mw-editsection-bracket">]</span></span></h4>
<p><a href="/enwiki/wiki/Seismic_wave" title="Seismic wave">Seismic wave</a> studies can detect the presence of large bodies of serpentinite in the crust and upper mantle, since serpentinization have a huge impact on <a href="/enwiki/wiki/Shear_wave" class="mw-redirect" title="Shear wave">shear wave</a> velocity. Higher degree of serpentinization will lead to lower shear wave velocity and higher <a href="/enwiki/wiki/Poisson%27s_ratio" title="Poisson's ratio">Poisson's ratio</a><sup id="cite_ref-:1_48-0" class="reference"><a href="#cite_note-:1-48">[48]</a></sup>. Seismic measurements confirm that serpentinization is pervasive in forearc mantle.<sup id="cite_ref-HyndmanPeacock200322_49-0" class="reference"><a href="#cite_note-HyndmanPeacock200322-49">[49]</a></sup> The serpentinization can produce an inverted <a href="/enwiki/wiki/Moho_discontinuity" class="mw-redirect" title="Moho discontinuity">Moho discontinuity</a>, in which seismic velocity abruptly <i>decreases</i> across the crust-mantle boundary, which is the opposite of the usual behavior. The serpentinite is highly deformable, creating an aseismic zone in the forearc, at which serpentinites slide at stable plate velocity. The presence of serpentinite may limit the maximum depth of <a href="/enwiki/wiki/Megathrust_earthquake" title="Megathrust earthquake">megathrust earthquakes</a> as they imped rupture into the forearc mantle.<sup id="cite_ref-:1_48-1" class="reference"><a href="#cite_note-:1-48">[48]</a></sup>
</p>
<h2><span class="mw-headline" id="See_also">See also</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=14" class="mw-redirect" title="Edit section: See also">edit source</a><span class="mw-editsection-bracket">]</span></span></h2>
<ul><li><a href="/enwiki/wiki/Serpentine_subgroup" title="Serpentine subgroup">Serpentine subgroup</a></li>
<li><a href="/enwiki/wiki/Serpentinite" title="Serpentinite">Serpentinite</a></li>
<li><a href="/enwiki/wiki/Soapstone" title="Soapstone">Soapstone</a></li>
<li><a href="/enwiki/wiki/Hydrogen_cycle" title="Hydrogen cycle">Hydrogen cycle</a></li>
<li><a href="/enwiki/wiki/Forearc" title="Forearc">Forearc</a></li></ul>
<h2><span class="mw-headline" id="References">References</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=15" class="mw-redirect" title="Edit section: References">edit source</a><span class="mw-editsection-bracket">]</span></span></h2>
<style data-mw-deduplicate="TemplateStyles:r1011085734">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist">
<div class="mw-references-wrap mw-references-columns"><ol class="references">
<li id="cite_note-:0-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:0_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:0_1-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1067248974">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:linear-gradient(transparent,transparent),url("/upwiki/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:linear-gradient(transparent,transparent),url("/upwiki/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:linear-gradient(transparent,transparent),url("/upwiki/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:linear-gradient(transparent,transparent),url("/upwiki/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><cite id="CITEREFHolmOzeMousisWaite2015" class="citation journal cs1">Holm, N.G.; Oze, C.; Mousis, O.; Waite, J.H.; Guilbert-Lepoutre, A. (1 July 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523005/">"Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets)"</a>. <i>Astrobiology</i>. <b>15</b> (7): 587–600. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1089%2Fast.2014.1188">10.1089/ast.2014.1188</a>. <a href="/enwiki/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="/enwiki//www.worldcat.org/issn/1531-1074">1531-1074</a>. <a href="/enwiki/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//www.ncbi.nlm.nih.gov/pmc/articles/PMC4523005">4523005</a></span>. <a href="/enwiki/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="/enwiki//pubmed.ncbi.nlm.nih.gov/26154779">26154779</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrobiology&rft.atitle=Serpentinization+and+the+Formation+of+H2+and+CH4+on+Celestial+Bodies+%28Planets%2C+Moons%2C+Comets%29&rft.volume=15&rft.issue=7&rft.pages=587-600&rft.date=2015-07-01&rft_id=%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4523005%23id-name%3DPMC&rft.issn=1531-1074&rft_id=info%3Apmid%2F26154779&rft_id=info%3Adoi%2F10.1089%2Fast.2014.1188&rft.aulast=Holm&rft.aufirst=N.G.&rft.au=Oze%2C+C.&rft.au=Mousis%2C+O.&rft.au=Waite%2C+J.H.&rft.au=Guilbert-Lepoutre%2C+A.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4523005%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-Moody1976-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Moody1976_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Moody1976_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Moody1976_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Moody1976_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Moody1976_2-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFMoody1976" class="citation journal cs1">Moody, Judith B. (April 1976). "Serpentinization: a review". <i>Lithos</i>. <b>9</b> (2): 125–138. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976Litho...9..125M">1976Litho...9..125M</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0024-4937%2876%2990030-X">10.1016/0024-4937(76)90030-X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Lithos&rft.atitle=Serpentinization%3A+a+review&rft.volume=9&rft.issue=2&rft.pages=125-138&rft.date=1976-04&rft_id=info%3Adoi%2F10.1016%2F0024-4937%2876%2990030-X&rft_id=info%3Abibcode%2F1976Litho...9..125M&rft.aulast=Moody&rft.aufirst=Judith+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-GeologyDictionary-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-GeologyDictionary_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GeologyDictionary_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.theodora.com/geology/glossarys.html#serpentine">"Serpentine definition"</a>. <i>Dictionary of Geology</i><span class="reference-accessdate">. Retrieved <span class="nowrap">23 October</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Dictionary+of+Geology&rft.atitle=Serpentine+definition&rft_id=https%3A%2F%2Fwww.theodora.com%2Fgeology%2Fglossarys.html%23serpentine&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-:2-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFHolmOzeMousisWaite2015" class="citation journal cs1">Holm, N.g.; Oze, C.; Mousis, O.; Waite, J.h.; Guilbert-Lepoutre, A. (1 July 2015). <a rel="nofollow" class="external text" href="https://www.liebertpub.com/doi/10.1089/ast.2014.1188">"Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets)"</a>. <i>Astrobiology</i>. <b>15</b> (7): 587–600. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1089%2Fast.2014.1188">10.1089/ast.2014.1188</a>. <a href="/enwiki/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="/enwiki//www.worldcat.org/issn/1531-1074">1531-1074</a>. <a href="/enwiki/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//www.ncbi.nlm.nih.gov/pmc/articles/PMC4523005">4523005</a></span>. <a href="/enwiki/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="/enwiki//pubmed.ncbi.nlm.nih.gov/26154779">26154779</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astrobiology&rft.atitle=Serpentinization+and+the+Formation+of+H2+and+CH4+on+Celestial+Bodies+%28Planets%2C+Moons%2C+Comets%29&rft.volume=15&rft.issue=7&rft.pages=587-600&rft.date=2015-07-01&rft_id=%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMCPMC4523005%23id-name%3DPMC&rft.issn=1531-1074&rft_id=info%3Apmid%2F26154779&rft_id=info%3Adoi%2F10.1089%2Fast.2014.1188&rft.aulast=Holm&rft.aufirst=N.g.&rft.au=Oze%2C+C.&rft.au=Mousis%2C+O.&rft.au=Waite%2C+J.h.&rft.au=Guilbert-Lepoutre%2C+A.&rft_id=https%3A%2F%2Fwww.liebertpub.com%2Fdoi%2F10.1089%2Fast.2014.1188&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/enwiki/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: PMC format (<a href="/enwiki/wiki/Category:CS1_maint:_PMC_format" title="Category:CS1 maint: PMC format">link</a>)</span></span>
</li>
<li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFEvans2004" class="citation journal cs1">Evans, Bernard W. (1 June 2004). <a rel="nofollow" class="external text" href="https://doi.org/10.2747/0020-6814.46.6.479">"The Serpentinite Multisystem Revisited: Chrysotile Is Metastable"</a>. <i>International Geology Review</i>. <b>46</b> (6): 479–506. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2747%2F0020-6814.46.6.479">10.2747/0020-6814.46.6.479</a>. <a href="/enwiki/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="/enwiki//www.worldcat.org/issn/0020-6814">0020-6814</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Geology+Review&rft.atitle=The+Serpentinite+Multisystem+Revisited%3A+Chrysotile+Is+Metastable&rft.volume=46&rft.issue=6&rft.pages=479-506&rft.date=2004-06-01&rft_id=info%3Adoi%2F10.2747%2F0020-6814.46.6.479&rft.issn=0020-6814&rft.aulast=Evans&rft.aufirst=Bernard+W.&rft_id=https%3A%2F%2Fdoi.org%2F10.2747%2F0020-6814.46.6.479&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-BerndtEtal1996-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-BerndtEtal1996_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BerndtEtal1996_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFBerndtAllenSeyfried1996" class="citation journal cs1">Berndt, Michael E.; Allen, Douglas E.; Seyfried, William E. (1 April 1996). "Reduction of CO<sub style="font-size: 80%;vertical-align: -0.35em">2</sub> during serpentinization of olivine at 300 °C and 500 bar". <i>Geology</i>. <b>24</b> (4): 351–354. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996Geo....24..351B">1996Geo....24..351B</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1130%2F0091-7613%281996%29024%3C0351%3AROCDSO%3E2.3.CO%3B2">10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geology&rft.atitle=Reduction+of+CO%3Csub+style%3D%22font-size%3A+80%25%3Bvertical-align%3A+-0.35em%22%3E2%3C%2Fsub%3E+during+serpentinization+of+olivine+at+300+%C2%B0C+and+500+bar&rft.volume=24&rft.issue=4&rft.pages=351-354&rft.date=1996-04-01&rft_id=info%3Adoi%2F10.1130%2F0091-7613%281996%29024%3C0351%3AROCDSO%3E2.3.CO%3B2&rft_id=info%3Abibcode%2F1996Geo....24..351B&rft.aulast=Berndt&rft.aufirst=Michael+E.&rft.au=Allen%2C+Douglas+E.&rft.au=Seyfried%2C+William+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-FOOTNOTEMoody1976128-129-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMoody1976128-129_7-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMoody1976">Moody 1976</a>, p. 128-129.</span>
</li>
<li id="cite_note-Mevel2003-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Mevel2003_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Mevel2003_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Mevel2003_8-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFMével2003" class="citation journal cs1">Mével, Catherine (September 2003). "Serpentinization of abyssal peridotites at mid-ocean ridges". <i>Comptes Rendus Geoscience</i>. <b>335</b> (10–11): 825–852. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003CRGeo.335..825M">2003CRGeo.335..825M</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.crte.2003.08.006">10.1016/j.crte.2003.08.006</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Comptes+Rendus+Geoscience&rft.atitle=Serpentinization+of+abyssal+peridotites+at+mid-ocean+ridges&rft.volume=335&rft.issue=10%E2%80%9311&rft.pages=825-852&rft.date=2003-09&rft_id=info%3Adoi%2F10.1016%2Fj.crte.2003.08.006&rft_id=info%3Abibcode%2F2003CRGeo.335..825M&rft.aulast=M%C3%A9vel&rft.aufirst=Catherine&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-LC-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-LC_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LC_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.lostcity.washington.edu/science/chemistry/serpentinization.html">Serpentinization: The heat engine at Lost City and sponge of the oceanic crust</a></span>
</li>
<li id="cite_note-FruhGreenEtal20042-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-FruhGreenEtal20042_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFFrüh-GreenConnollyPlasKelley2004" class="citation journal cs1">Früh-Green, Gretchen L.; Connolly, James A.D.; Plas, Alessio; Kelley, Deborah S.; Grobéty, Bernard (2004). "Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity". <i>Geophysical Monograph Series</i>. <b>144</b>: 119–136. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004GMS...144..119F">2004GMS...144..119F</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F144GM08">10.1029/144GM08</a>. <a href="/enwiki/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/enwiki/wiki/Special:BookSources/0-87590-409-2" title="Special:BookSources/0-87590-409-2"><bdi>0-87590-409-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geophysical+Monograph+Series&rft.atitle=Serpentinization+of+oceanic+peridotites%3A+Implications+for+geochemical+cycles+and+biological+activity&rft.volume=144&rft.pages=119-136&rft.date=2004&rft_id=info%3Adoi%2F10.1029%2F144GM08&rft_id=info%3Abibcode%2F2004GMS...144..119F&rft.isbn=0-87590-409-2&rft.aulast=Fr%C3%BCh-Green&rft.aufirst=Gretchen+L.&rft.au=Connolly%2C+James+A.D.&rft.au=Plas%2C+Alessio&rft.au=Kelley%2C+Deborah+S.&rft.au=Grob%C3%A9ty%2C+Bernard&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-Lowell2002-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lowell2002_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lowell2002_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFLowell2002" class="citation journal cs1">Lowell, R. P. (2002). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2001GL014411">"Seafloor hydrothermal systems driven by the serpentinization of peridotite"</a>. <i>Geophysical Research Letters</i>. <b>29</b> (11): 1531. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002GeoRL..29.1531L">2002GeoRL..29.1531L</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2001GL014411">10.1029/2001GL014411</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geophysical+Research+Letters&rft.atitle=Seafloor+hydrothermal+systems+driven+by+the+serpentinization+of+peridotite&rft.volume=29&rft.issue=11&rft.pages=1531&rft.date=2002&rft_id=info%3Adoi%2F10.1029%2F2001GL014411&rft_id=info%3Abibcode%2F2002GeoRL..29.1531L&rft.aulast=Lowell&rft.aufirst=R.+P.&rft_id=%2F%2Fdoi.org%2F10.1029%252F2001GL014411&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-FruhGreenEtal2004-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-FruhGreenEtal2004_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FruhGreenEtal2004_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFFrüh-GreenConnollyPlasKelley2004" class="citation journal cs1">Früh-Green, Gretchen L.; Connolly, James A.D.; Plas, Alessio; Kelley, Deborah S.; Grobéty, Bernard (2004). "Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity". <i>Geophysical Monograph Series</i>. <b>144</b>: 119–136. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004GMS...144..119F">2004GMS...144..119F</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F144GM08">10.1029/144GM08</a>. <a href="/enwiki/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/enwiki/wiki/Special:BookSources/0-87590-409-2" title="Special:BookSources/0-87590-409-2"><bdi>0-87590-409-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geophysical+Monograph+Series&rft.atitle=Serpentinization+of+oceanic+peridotites%3A+Implications+for+geochemical+cycles+and+biological+activity&rft.volume=144&rft.pages=119-136&rft.date=2004&rft_id=info%3Adoi%2F10.1029%2F144GM08&rft_id=info%3Abibcode%2F2004GMS...144..119F&rft.isbn=0-87590-409-2&rft.aulast=Fr%C3%BCh-Green&rft.aufirst=Gretchen+L.&rft.au=Connolly%2C+James+A.D.&rft.au=Plas%2C+Alessio&rft.au=Kelley%2C+Deborah+S.&rft.au=Grob%C3%A9ty%2C+Bernard&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-SnowDick1995-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-SnowDick1995_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFSnowDick1995" class="citation journal cs1">Snow, Jonathan E.; Dick, Henry J.B. (October 1995). "Pervasive magnesium loss by marine weathering of peridotite". <i>Geochimica et Cosmochimica Acta</i>. <b>59</b> (20): 4219–4235. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995GeCoA..59.4219S">1995GeCoA..59.4219S</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0016-7037%2895%2900239-V">10.1016/0016-7037(95)00239-V</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geochimica+et+Cosmochimica+Acta&rft.atitle=Pervasive+magnesium+loss+by+marine+weathering+of+peridotite&rft.volume=59&rft.issue=20&rft.pages=4219-4235&rft.date=1995-10&rft_id=info%3Adoi%2F10.1016%2F0016-7037%2895%2900239-V&rft_id=info%3Abibcode%2F1995GeCoA..59.4219S&rft.aulast=Snow&rft.aufirst=Jonathan+E.&rft.au=Dick%2C+Henry+J.B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-FrostBeard2007-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-FrostBeard2007_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FrostBeard2007_14-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FrostBeard2007_14-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFFrostBeard2007" class="citation journal cs1">Frost, B. R.; Beard, J. S. (3 April 2007). <a rel="nofollow" class="external text" href="http://petrology.oxfordjournals.org/content/48/7/1351.full.pdf">"On Silica Activity and Serpentinization"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Petrology</i>. <b>48</b> (7): 1351–1368. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fpetrology%2Fegm021">10.1093/petrology/egm021</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Petrology&rft.atitle=On+Silica+Activity+and+Serpentinization&rft.volume=48&rft.issue=7&rft.pages=1351-1368&rft.date=2007-04-03&rft_id=info%3Adoi%2F10.1093%2Fpetrology%2Fegm021&rft.aulast=Frost&rft.aufirst=B.+R.&rft.au=Beard%2C+J.+S.&rft_id=http%3A%2F%2Fpetrology.oxfordjournals.org%2Fcontent%2F48%2F7%2F1351.full.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-Coleman77-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Coleman77_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFColeman1977" class="citation book cs1">Coleman, Robert G. (1977). <i>Ophiolites</i>. Springer-Verlag. pp. 100–101. <a href="/enwiki/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/enwiki/wiki/Special:BookSources/978-3540082767" title="Special:BookSources/978-3540082767"><bdi>978-3540082767</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ophiolites&rft.pages=100-101&rft.pub=Springer-Verlag&rft.date=1977&rft.isbn=978-3540082767&rft.aulast=Coleman&rft.aufirst=Robert+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-FOOTNOTEMoody1976127-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEMoody1976127_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEMoody1976127_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFMoody1976">Moody 1976</a>, p. 127.</span>
</li>
<li id="cite_note-FOOTNOTEFrostBeard20071355-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFrostBeard20071355_17-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFrostBeard2007">Frost & Beard 2007</a>, p. 1355.</span>
</li>
<li id="cite_note-FOOTNOTEMoody1976125,_127,_131-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMoody1976125,_127,_131_18-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMoody1976">Moody 1976</a>, p. 125, 127, 131.</span>
</li>
<li id="cite_note-FOOTNOTEFrostBeard20071360–1362-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFrostBeard20071360–1362_19-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFrostBeard2007">Frost & Beard 2007</a>, pp. 1360–1362.</span>
</li>
<li id="cite_note-FOOTNOTEMoody1976129-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMoody1976129_20-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMoody1976">Moody 1976</a>, p. 129.</span>
</li>
<li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.lostcity.washington.edu/science/chemistry/methane.html">"Methane and hydrogen formation from rocks – Energy sources for life"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">6 November</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Methane+and+hydrogen+formation+from+rocks+%E2%80%93+Energy+sources+for+life&rft_id=http%3A%2F%2Fwww.lostcity.washington.edu%2Fscience%2Fchemistry%2Fmethane.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFSleepA._Meibom,_Th._Fridriksson,_R.G._Coleman,_D.K._Bird2004" class="citation journal cs1">Sleep, N.H.; A. Meibom, Th. Fridriksson, R.G. Coleman, D.K. Bird (2004). <a rel="nofollow" class="external text" href="/enwiki//www.ncbi.nlm.nih.gov/pmc/articles/PMC516479">"H<sub>2</sub>-rich fluids from serpentinization: Geochemical and biotic implications"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>101</b> (35): 12818–12823. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004PNAS..10112818S">2004PNAS..10112818S</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.0405289101">10.1073/pnas.0405289101</a></span>. <a href="/enwiki/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//www.ncbi.nlm.nih.gov/pmc/articles/PMC516479">516479</a></span>. <a href="/enwiki/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="/enwiki//pubmed.ncbi.nlm.nih.gov/15326313">15326313</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&rft.atitle=H%3Csub%3E2%3C%2Fsub%3E-rich+fluids+from+serpentinization%3A+Geochemical+and+biotic+implications&rft.volume=101&rft.issue=35&rft.pages=12818-12823&rft.date=2004&rft_id=%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC516479%23id-name%3DPMC&rft_id=info%3Apmid%2F15326313&rft_id=info%3Adoi%2F10.1073%2Fpnas.0405289101&rft_id=info%3Abibcode%2F2004PNAS..10112818S&rft.aulast=Sleep&rft.aufirst=N.H.&rft.au=A.+Meibom%2C+Th.+Fridriksson%2C+R.G.+Coleman%2C+D.K.+Bird&rft_id=%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC516479&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/enwiki/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/enwiki/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span>
</li>
<li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFBachPaulickGarridoIldefonse2006" class="citation journal cs1">Bach, Wolfgang; Paulick, Holger; Garrido, Carlos J.; Ildefonse, Benoit; Meurer, William P.; Humphris, Susan E. (2006). "Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274)". <i>Geophysical Research Letters</i>. <b>33</b> (13): L13306. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006GeoRL..3313306B">2006GeoRL..3313306B</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2006GL025681">10.1029/2006GL025681</a>. <a href="/enwiki/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//hdl.handle.net/1912%2F3324">1912/3324</a></span>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55802656">55802656</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geophysical+Research+Letters&rft.atitle=Unraveling+the+sequence+of+serpentinization+reactions%3A+petrography%2C+mineral+chemistry%2C+and+petrophysics+of+serpentinites+from+MAR+15%C2%B0N+%28ODP+Leg+209%2C+Site+1274%29&rft.volume=33&rft.issue=13&rft.pages=L13306&rft.date=2006&rft_id=info%3Ahdl%2F1912%2F3324&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55802656%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1029%2F2006GL025681&rft_id=info%3Abibcode%2F2006GeoRL..3313306B&rft.aulast=Bach&rft.aufirst=Wolfgang&rft.au=Paulick%2C+Holger&rft.au=Garrido%2C+Carlos+J.&rft.au=Ildefonse%2C+Benoit&rft.au=Meurer%2C+William+P.&rft.au=Humphris%2C+Susan+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-Esource-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-Esource_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Esource_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFRussellHallMartin2010" class="citation journal cs1">Russell, M. J.; Hall, A. J.; Martin, W. (2010). "Serpentinization as a source of energy at the origin of life". <i>Geobiology</i>. <b>8</b> (5): 355–371. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1472-4669.2010.00249.x">10.1111/j.1472-4669.2010.00249.x</a>. <a href="/enwiki/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="/enwiki//pubmed.ncbi.nlm.nih.gov/20572872">20572872</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:41118603">41118603</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geobiology&rft.atitle=Serpentinization+as+a+source+of+energy+at+the+origin+of+life&rft.volume=8&rft.issue=5&rft.pages=355-371&rft.date=2010&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A41118603%23id-name%3DS2CID&rft_id=info%3Apmid%2F20572872&rft_id=info%3Adoi%2F10.1111%2Fj.1472-4669.2010.00249.x&rft.aulast=Russell&rft.aufirst=M.+J.&rft.au=Hall%2C+A.+J.&rft.au=Martin%2C+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFSchrenkBrazeltonLang2013" class="citation journal cs1">Schrenk, M. O.; Brazelton, W. J.; Lang, S. Q. (2013). "Serpentinization, Carbon, and Deep Life". <i>Reviews in Mineralogy and Geochemistry</i>. <b>75</b> (1): 575–606. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013RvMG...75..575S">2013RvMG...75..575S</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2138%2Frmg.2013.75.18">10.2138/rmg.2013.75.18</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reviews+in+Mineralogy+and+Geochemistry&rft.atitle=Serpentinization%2C+Carbon%2C+and+Deep+Life&rft.volume=75&rft.issue=1&rft.pages=575-606&rft.date=2013&rft_id=info%3Adoi%2F10.2138%2Frmg.2013.75.18&rft_id=info%3Abibcode%2F2013RvMG...75..575S&rft.aulast=Schrenk&rft.aufirst=M.+O.&rft.au=Brazelton%2C+W.+J.&rft.au=Lang%2C+S.+Q.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFMcCollomBach2009" class="citation journal cs1">McCollom, Thomas M.; Bach, Wolfgang (February 2009). "Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks". <i>Geochimica et Cosmochimica Acta</i>. <b>73</b> (3): 856–875. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009GeCoA..73..856M">2009GeCoA..73..856M</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.gca.2008.10.032">10.1016/j.gca.2008.10.032</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geochimica+et+Cosmochimica+Acta&rft.atitle=Thermodynamic+constraints+on+hydrogen+generation+during+serpentinization+of+ultramafic+rocks&rft.volume=73&rft.issue=3&rft.pages=856-875&rft.date=2009-02&rft_id=info%3Adoi%2F10.1016%2Fj.gca.2008.10.032&rft_id=info%3Abibcode%2F2009GeCoA..73..856M&rft.aulast=McCollom&rft.aufirst=Thomas+M.&rft.au=Bach%2C+Wolfgang&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFKleinBachMcCollom2013" class="citation journal cs1">Klein, Frieder; Bach, Wolfgang; McCollom, Thomas M. (September 2013). "Compositional controls on hydrogen generation during serpentinization of ultramafic rocks". <i>Lithos</i>. <b>178</b>: 55–69. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013Litho.178...55K">2013Litho.178...55K</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.lithos.2013.03.008">10.1016/j.lithos.2013.03.008</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Lithos&rft.atitle=Compositional+controls+on+hydrogen+generation+during+serpentinization+of+ultramafic+rocks&rft.volume=178&rft.pages=55-69&rft.date=2013-09&rft_id=info%3Adoi%2F10.1016%2Fj.lithos.2013.03.008&rft_id=info%3Abibcode%2F2013Litho.178...55K&rft.aulast=Klein&rft.aufirst=Frieder&rft.au=Bach%2C+Wolfgang&rft.au=McCollom%2C+Thomas+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-FOOTNOTEMoody1967128-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMoody1967128_28-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMoody1967">Moody 1967</a>, p. 128.<span class="error harv-error" style="display: none; font-size:100%"> sfn error: no target: CITEREFMoody1967 (<a href="/enwiki/wiki/Category:Harv_and_Sfn_template_errors" title="Category:Harv and Sfn template errors">help</a>)</span></span>
</li>
<li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFDebretAndreaniDelacourRouméjon2017" class="citation journal cs1">Debret, Baptiste; Andreani, Muriel; Delacour, Adélie; Rouméjon, Stéphane; Trcera, Nicolas; Williams, Helen (15 May 2017). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0012821X17300973">"Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy"</a>. <i>Earth and Planetary Science Letters</i>. <b>466</b>: 1–11. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.epsl.2017.02.029">10.1016/j.epsl.2017.02.029</a>. <a href="/enwiki/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="/enwiki//www.worldcat.org/issn/0012-821X">0012-821X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Earth+and+Planetary+Science+Letters&rft.atitle=Assessing+sulfur+redox+state+and+distribution+in+abyssal+serpentinites+using+XANES+spectroscopy&rft.volume=466&rft.pages=1-11&rft.date=2017-05-15&rft_id=info%3Adoi%2F10.1016%2Fj.epsl.2017.02.029&rft.issn=0012-821X&rft.aulast=Debret&rft.aufirst=Baptiste&rft.au=Andreani%2C+Muriel&rft.au=Delacour%2C+Ad%C3%A9lie&rft.au=Roum%C3%A9jon%2C+St%C3%A9phane&rft.au=Trcera%2C+Nicolas&rft.au=Williams%2C+Helen&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0012821X17300973&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFDelacourFrüh-GreenBernasconi2008" class="citation journal cs1">Delacour, Adélie; Früh-Green, Gretchen L.; Bernasconi, Stefano M. (October 2008). "Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309)". <i>Geochimica et Cosmochimica Acta</i>. <b>72</b> (20): 5111–5127. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008GeCoA..72.5111D">2008GeCoA..72.5111D</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.gca.2008.07.018">10.1016/j.gca.2008.07.018</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geochimica+et+Cosmochimica+Acta&rft.atitle=Sulfur+mineralogy+and+geochemistry+of+serpentinites+and+gabbros+of+the+Atlantis+Massif+%28IODP+Site+U1309%29&rft.volume=72&rft.issue=20&rft.pages=5111-5127&rft.date=2008-10&rft_id=info%3Adoi%2F10.1016%2Fj.gca.2008.07.018&rft_id=info%3Abibcode%2F2008GeCoA..72.5111D&rft.aulast=Delacour&rft.aufirst=Ad%C3%A9lie&rft.au=Fr%C3%BCh-Green%2C+Gretchen+L.&rft.au=Bernasconi%2C+Stefano+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFEvans2004" class="citation journal cs1">Evans, Bernard W. (1 June 2004). <a rel="nofollow" class="external text" href="https://doi.org/10.2747/0020-6814.46.6.479">"The Serpentinite Multisystem Revisited: Chrysotile Is Metastable"</a>. <i>International Geology Review</i>. <b>46</b> (6): 479–506. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2747%2F0020-6814.46.6.479">10.2747/0020-6814.46.6.479</a>. <a href="/enwiki/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="/enwiki//www.worldcat.org/issn/0020-6814">0020-6814</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Geology+Review&rft.atitle=The+Serpentinite+Multisystem+Revisited%3A+Chrysotile+Is+Metastable&rft.volume=46&rft.issue=6&rft.pages=479-506&rft.date=2004-06-01&rft_id=info%3Adoi%2F10.2747%2F0020-6814.46.6.479&rft.issn=0020-6814&rft.aulast=Evans&rft.aufirst=Bernard+W.&rft_id=https%3A%2F%2Fdoi.org%2F10.2747%2F0020-6814.46.6.479&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation web cs1"><i>academic.oup.com</i> <a rel="nofollow" class="external text" href="https://academic.oup.com/petrology/article-abstract/7/3/489/1403183?redirectedFrom=fulltext">https://academic.oup.com/petrology/article-abstract/7/3/489/1403183?redirectedFrom=fulltext</a><span class="reference-accessdate">. Retrieved <span class="nowrap">20 November</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=academic.oup.com&rft_id=https%3A%2F%2Facademic.oup.com%2Fpetrology%2Farticle-abstract%2F7%2F3%2F489%2F1403183%3FredirectedFrom%3Dfulltext&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/enwiki/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: </span><span class="cs1-visible-error citation-comment">Missing or empty <code class="cs1-code">|title=</code> (<a href="/enwiki/wiki/Help:CS1_errors#citation_missing_title" title="Help:CS1 errors">help</a>)</span></span>
</li>
<li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFBaucom2006" class="citation journal cs1">Baucom, Martin (March–April 2006). "Life on Mars?". <i>American Scientist</i>. <b>94</b> (2): 119–120. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1511%2F2006.58.119">10.1511/2006.58.119</a>. <a href="/enwiki/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="/enwiki//www.jstor.org/stable/27858733">27858733</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Scientist&rft.atitle=Life+on+Mars%3F&rft.volume=94&rft.issue=2&rft.pages=119-120&rft.date=2006-03%2F2006-04&rft_id=info%3Adoi%2F10.1511%2F2006.58.119&rft_id=%2F%2Fwww.jstor.org%2Fstable%2F27858733%23id-name%3DJSTOR&rft.aulast=Baucom&rft.aufirst=Martin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFesa" class="citation web cs1">esa. <a rel="nofollow" class="external text" href="https://www.esa.int/Our_Activities/Human_and_Robotic_Exploration/Exploration/ExoMars/The_methane_mystery">"The methane mystery"</a>. <i>European Space Agency</i><span class="reference-accessdate">. Retrieved <span class="nowrap">22 April</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=European+Space+Agency&rft.atitle=The+methane+mystery&rft.au=esa&rft_id=https%3A%2F%2Fwww.esa.int%2FOur_Activities%2FHuman_and_Robotic_Exploration%2FExploration%2FExoMars%2FThe_methane_mystery&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFAndrew_Steele2022" class="citation journal cs1">Andrew Steele; et al. (13 January 2022). "Organic synthesis associated with serpentinization and carbonation on early Mars". <i>Science</i>. <b>375</b> (6577): 172–177. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022Sci...375..172S">2022Sci...375..172S</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.abg7905">10.1126/science.abg7905</a>. <a href="/enwiki/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="/enwiki//pubmed.ncbi.nlm.nih.gov/35025630">35025630</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245933224">245933224</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Organic+synthesis+associated+with+serpentinization+and+carbonation+on+early+Mars&rft.volume=375&rft.issue=6577&rft.pages=172-177&rft.date=2022-01-13&rft_id=info%3Adoi%2F10.1126%2Fscience.abg7905&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A245933224%23id-name%3DS2CID&rft_id=info%3Apmid%2F35025630&rft_id=info%3Abibcode%2F2022Sci...375..172S&rft.au=Andrew+Steele&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFLeah_Crane2022" class="citation journal cs1">Leah Crane (22 January 2022). <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/2304270-organic-compounds-on-mars-were-produced-by-water-and-rocks-not-life/">"Mars: Organic compounds were made by water interacting with rocks"</a>. <i>New Scientist</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Mars%3A+Organic+compounds+were+made+by+water+interacting+with+rocks&rft.date=2022-01-22&rft.au=Leah+Crane&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2F2304270-organic-compounds-on-mars-were-produced-by-water-and-rocks-not-life%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-pH_2015-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-pH_2015_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pH_2015_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFR._GleinBarossWaite2015" class="citation journal cs1">R. Glein, Christopher; Baross, John A.; Waite, Hunter (16 April 2015). "The pH of Enceladus' ocean". <i>Geochimica et Cosmochimica Acta</i>. <b>162</b>: 202–219. <a href="/enwiki/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="/enwiki//arxiv.org/abs/1502.01946">1502.01946</a></span>. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015GeCoA.162..202G">2015GeCoA.162..202G</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.gca.2015.04.017">10.1016/j.gca.2015.04.017</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119262254">119262254</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geochimica+et+Cosmochimica+Acta&rft.atitle=The+pH+of+Enceladus%27+ocean&rft.volume=162&rft.pages=202-219&rft.date=2015-04-16&rft_id=info%3Aarxiv%2F1502.01946&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119262254%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.gca.2015.04.017&rft_id=info%3Abibcode%2F2015GeCoA.162..202G&rft.aulast=R.+Glein&rft.aufirst=Christopher&rft.au=Baross%2C+John+A.&rft.au=Waite%2C+Hunter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFWall2015" class="citation news cs1">Wall, Mike (7 May 2015). <a rel="nofollow" class="external text" href="http://www.space.com/29334-enceladus-ocean-energy-source-life.html">"Ocean on Saturn Moon Enceladus May Have Potential Energy Source to Support Life"</a>. <i>Space.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">8 May</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Space.com&rft.atitle=Ocean+on+Saturn+Moon+Enceladus+May+Have+Potential+Energy+Source+to+Support+Life&rft.date=2015-05-07&rft.aulast=Wall&rft.aufirst=Mike&rft_id=http%3A%2F%2Fwww.space.com%2F29334-enceladus-ocean-energy-source-life.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFMinshullMullerRobinsonWhite1998" class="citation journal cs1">Minshull, T. A.; Muller, M. R.; Robinson, C. J.; White, R. S.; Bickle, M. J. (1998). "Is the oceanic Moho a serpentinization front?". <i>Geological Society, London, Special Publications</i>. <b>148</b> (1): 71–80. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998GSLSP.148...71M">1998GSLSP.148...71M</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1144%2FGSL.SP.1998.148.01.05">10.1144/GSL.SP.1998.148.01.05</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:128410328">128410328</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geological+Society%2C+London%2C+Special+Publications&rft.atitle=Is+the+oceanic+Moho+a+serpentinization+front%3F&rft.volume=148&rft.issue=1&rft.pages=71-80&rft.date=1998&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A128410328%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1144%2FGSL.SP.1998.148.01.05&rft_id=info%3Abibcode%2F1998GSLSP.148...71M&rft.aulast=Minshull&rft.aufirst=T.+A.&rft.au=Muller%2C+M.+R.&rft.au=Robinson%2C+C.+J.&rft.au=White%2C+R.+S.&rft.au=Bickle%2C+M.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFDebretNicolletAndreaniSchwartz2013" class="citation journal cs1">Debret, B.; Nicollet, C.; Andreani, M.; Schwartz, S.; Godard, M. (February 2013). "Three steps of serpentinization in an eclogitized oceanic serpentinization front (Lanzo Massif - Western Alps): ECLOGITIZED SERPENTINIZATION FRONT (LANZO)". <i>Journal of Metamorphic Geology</i>. <b>31</b> (2): 165–186. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fjmg.12008">10.1111/jmg.12008</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:140540631">140540631</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Metamorphic+Geology&rft.atitle=Three+steps+of+serpentinization+in+an+eclogitized+oceanic+serpentinization+front+%28Lanzo+Massif+-+Western+Alps%29%3A+ECLOGITIZED+SERPENTINIZATION+FRONT+%28LANZO%29&rft.volume=31&rft.issue=2&rft.pages=165-186&rft.date=2013-02&rft_id=info%3Adoi%2F10.1111%2Fjmg.12008&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A140540631%23id-name%3DS2CID&rft.aulast=Debret&rft.aufirst=B.&rft.au=Nicollet%2C+C.&rft.au=Andreani%2C+M.&rft.au=Schwartz%2C+S.&rft.au=Godard%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-:3-41"><span class="mw-cite-backlink">^ <a href="#cite_ref-:3_41-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:3_41-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFXiaSunHuang2017" class="citation journal cs1">Xia, Shaohong; Sun, Jinlong; Huang, Haibo (31 May 2017). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1190/igc2017-238">"Degree of serpentinization in the forearc mantle wedge of Kyushu subduction zone"</a>. <i>International Geophysical Conference, Qingdao, China, 17-20 April 2017</i>. Society of Exploration Geophysicists and Chinese Petroleum Society. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1190%2Figc2017-238">10.1190/igc2017-238</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Geophysical+Conference%2C+Qingdao%2C+China%2C+17-20+April+2017&rft.atitle=Degree+of+serpentinization+in+the+forearc+mantle+wedge+of+Kyushu+subduction+zone&rft.date=2017-05-31&rft_id=info%3Adoi%2F10.1190%2Figc2017-238&rft.aulast=Xia&rft.aufirst=Shaohong&rft.au=Sun%2C+Jinlong&rft.au=Huang%2C+Haibo&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1190%2Figc2017-238&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-HyndmanPeacock2003-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-HyndmanPeacock2003_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HyndmanPeacock2003_42-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFHyndmanPeacock2003" class="citation journal cs1">Hyndman, Roy D; Peacock, Simon M (July 2003). "Serpentinization of the forearc mantle". <i>Earth and Planetary Science Letters</i>. <b>212</b> (3–4): 417–432. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003E&PSL.212..417H">2003E&PSL.212..417H</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0012-821X%2803%2900263-2">10.1016/S0012-821X(03)00263-2</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Earth+and+Planetary+Science+Letters&rft.atitle=Serpentinization+of+the+forearc+mantle&rft.volume=212&rft.issue=3%E2%80%934&rft.pages=417-432&rft.date=2003-07&rft_id=info%3Adoi%2F10.1016%2FS0012-821X%2803%2900263-2&rft_id=info%3Abibcode%2F2003E%26PSL.212..417H&rft.aulast=Hyndman&rft.aufirst=Roy+D&rft.au=Peacock%2C+Simon+M&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-Presidio-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-Presidio_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nps.gov/prsf/learn/nature/serpentinite.htm">"Serpentinite"</a>. <i>Presidio of San Francisco</i>. National Park Service<span class="reference-accessdate">. Retrieved <span class="nowrap">3 September</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Presidio+of+San+Francisco&rft.atitle=Serpentinite&rft_id=https%3A%2F%2Fwww.nps.gov%2Fprsf%2Flearn%2Fnature%2Fserpentinite.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://volcano.oregonstate.edu/volcanic-minerals/ophiolites">"Ophiolites"</a>. <i>Volcano World</i>. 15 April 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">20 November</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Volcano+World&rft.atitle=Ophiolites&rft.date=2010-04-15&rft_id=https%3A%2F%2Fvolcano.oregonstate.edu%2Fvolcanic-minerals%2Fophiolites&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFPhilpottsAgue2009" class="citation book cs1">Philpotts, Anthony R.; Ague, Jay J. (2009). <i>Principles of igneous and metamorphic petrology</i> (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 370–372. <a href="/enwiki/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/enwiki/wiki/Special:BookSources/9780521880060" title="Special:BookSources/9780521880060"><bdi>9780521880060</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+igneous+and+metamorphic+petrology&rft.place=Cambridge%2C+UK&rft.pages=370-372&rft.edition=2nd&rft.pub=Cambridge+University+Press&rft.date=2009&rft.isbn=9780521880060&rft.aulast=Philpotts&rft.aufirst=Anthony+R.&rft.au=Ague%2C+Jay+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-HyndmanPeacock20032-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-HyndmanPeacock20032_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFHyndmanPeacock2003" class="citation journal cs1">Hyndman, Roy D; Peacock, Simon M (July 2003). "Serpentinization of the forearc mantle". <i>Earth and Planetary Science Letters</i>. <b>212</b> (3–4): 417–432. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003E&PSL.212..417H">2003E&PSL.212..417H</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0012-821X%2803%2900263-2">10.1016/S0012-821X(03)00263-2</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Earth+and+Planetary+Science+Letters&rft.atitle=Serpentinization+of+the+forearc+mantle&rft.volume=212&rft.issue=3%E2%80%934&rft.pages=417-432&rft.date=2003-07&rft_id=info%3Adoi%2F10.1016%2FS0012-821X%2803%2900263-2&rft_id=info%3Abibcode%2F2003E%26PSL.212..417H&rft.aulast=Hyndman&rft.aufirst=Roy+D&rft.au=Peacock%2C+Simon+M&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-Presidio2-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-Presidio2_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nps.gov/prsf/learn/nature/serpentinite.htm">"Serpentinite"</a>. <i>Presidio of San Francisco</i>. National Park Service<span class="reference-accessdate">. Retrieved <span class="nowrap">3 September</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Presidio+of+San+Francisco&rft.atitle=Serpentinite&rft_id=https%3A%2F%2Fwww.nps.gov%2Fprsf%2Flearn%2Fnature%2Fserpentinite.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-:1-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_48-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFBostockHyndmanRondenayPeacock2002" class="citation journal cs1">Bostock, M. G.; Hyndman, R. D.; Rondenay, S.; Peacock, S. M. (May 2002). "An inverted continental Moho and serpentinization of the forearc mantle". <i>Nature</i>. <b>417</b> (6888): 536–538. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002Natur.417..536B">2002Natur.417..536B</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F417536a">10.1038/417536a</a>. <a href="/enwiki/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="/enwiki//pubmed.ncbi.nlm.nih.gov/12037564">12037564</a>. <a href="/enwiki/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3113794">3113794</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=An+inverted+continental+Moho+and+serpentinization+of+the+forearc+mantle&rft.volume=417&rft.issue=6888&rft.pages=536-538&rft.date=2002-05&rft_id=info%3Adoi%2F10.1038%2F417536a&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3113794%23id-name%3DS2CID&rft_id=info%3Apmid%2F12037564&rft_id=info%3Abibcode%2F2002Natur.417..536B&rft.aulast=Bostock&rft.aufirst=M.+G.&rft.au=Hyndman%2C+R.+D.&rft.au=Rondenay%2C+S.&rft.au=Peacock%2C+S.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
<li id="cite_note-HyndmanPeacock200322-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-HyndmanPeacock200322_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFHyndmanPeacock2003" class="citation journal cs1">Hyndman, Roy D; Peacock, Simon M (July 2003). "Serpentinization of the forearc mantle". <i>Earth and Planetary Science Letters</i>. <b>212</b> (3–4): 417–432. <a href="/enwiki/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003E&PSL.212..417H">2003E&PSL.212..417H</a>. <a href="/enwiki/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0012-821X%2803%2900263-2">10.1016/S0012-821X(03)00263-2</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Earth+and+Planetary+Science+Letters&rft.atitle=Serpentinization+of+the+forearc+mantle&rft.volume=212&rft.issue=3%E2%80%934&rft.pages=417-432&rft.date=2003-07&rft_id=info%3Adoi%2F10.1016%2FS0012-821X%2803%2900263-2&rft_id=info%3Abibcode%2F2003E%26PSL.212..417H&rft.aulast=Hyndman&rft.aufirst=Roy+D&rft.au=Peacock%2C+Simon+M&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASerpentinization" class="Z3988"></span></span>
</li>
</ol></div></div>
<h2><span class="mw-headline" id="External_links">External links</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Serpentinization&action=edit&section=16" class="mw-redirect" title="Edit section: External links">edit source</a><span class="mw-editsection-bracket">]</span></span></h2>
<style data-mw-deduplicate="TemplateStyles:r1097025294">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox">
<div class="side-box-flex">
<div class="side-box-image"><img alt="" src="/upwiki/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="noviewer" srcset="/upwiki/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, /upwiki/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></div>
<div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Serpentinite" class="extiw" title="commons:Category:Serpentinite">Serpentinite</a></span>.</div></div>
</div>
<ul><li><a rel="nofollow" class="external autonumber" href="http://www.lostcity.washington.edu/story/Serpentinization">[1]</a> The Lost City hydrothermal field, <a href="/enwiki/wiki/Mid-Atlantic_ridge" class="mw-redirect" title="Mid-Atlantic ridge">Mid-Atlantic ridge</a>: serpentinization, the driving force of the system.</li>
<li><a rel="nofollow" class="external text" href="http://www.pnas.org/cgi/content/full/101/35/12818">H<sub>2</sub>-rich fluids from serpentinization: Geochemical and biotic implications</a>: <a href="/enwiki/wiki/Proceedings_of_the_National_Academy_of_Sciences" class="mw-redirect" title="Proceedings of the National Academy of Sciences">Proceedings of the National Academy of Sciences</a>.</li></ul></div>' |
Whether or not the change was made through a Tor exit node (tor_exit_node ) | false |
Unix timestamp of change (timestamp ) | '1669141808' |