Jump to content

Edit filter log

Details for log entry 38971772

08:55, 14 October 2024: 195.195.119.150 (talk) triggered filter 220, performing the action "edit" on Spectrum analyzer. Actions taken: Warn; Filter description: Adding external images/links (examine)

Changes made in edit

{{Short description|Electronic testing device}}
{{Short description|Electronic testing device}}
[[Image:Spektrumanalysator FSL von Rohde & Schwarz.jpg|right|thumb|A spectrum analyzer from 2005]
[[Image:Spektrumanalysator FSL von Rohde & Schwarz.jpg|right|thumb|A spectrum analyzer from 2005]
[[File:A modern real time spectrum analyzer.jpg|thumb|A modern real time spectrum analyzer from 2019]]
[[File:A modern real time spectrum analyzer.jpg|thumb|A modern real time spectrum analyzer from 2019]] https://mediapool.bmwgroup.com/cache/P9/202408/P90564521/P90564521-the-all-new-bmw-m5-touring-08-2024-600px.jpg



BBB '''spectrum analyzer''' measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, [[Frequency spectrum|spectral]] compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate [[transducer]]. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a [[monochromator]] to make measurements.
BBB '''spectrum analyzer''' measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, [[Frequency spectrum|spectral]] compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate [[transducer]]. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a [[monochromator]] to make measurements.

Action parameters

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'195.195.119.150'
Type of the user account (user_type)
'ip'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Whether or not a user is editing through the mobile interface (user_mobile)
false
Whether the user is editing from mobile app (user_app)
false
Page ID (page_id)
313416
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Spectrum analyzer'
Full page title (page_prefixedtitle)
'Spectrum analyzer'
Edit protection level of the page (page_restrictions_edit)
[]
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => '195.195.119.150', 1 => 'DMacks', 2 => 'Soniaakter.mbstu', 3 => 'Cewbot', 4 => 'GreenC bot', 5 => 'BD2412', 6 => 'Fgnievinski', 7 => 'Peter Buijs', 8 => '61.218.53.138', 9 => 'Murtaza.aliakbar' ]
Page age in seconds (page_age)
665975112
Action (action)
'edit'
Edit summary/reason (summary)
''
Time since last page edit in seconds (page_last_edit_age)
86
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{Short description|Electronic testing device}} [[Image:Spektrumanalysator FSL von Rohde & Schwarz.jpg|right|thumb|A spectrum analyzer from 2005] [[File:A modern real time spectrum analyzer.jpg|thumb|A modern real time spectrum analyzer from 2019]] BBB '''spectrum analyzer''' measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, [[Frequency spectrum|spectral]] compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate [[transducer]]. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a [[monochromator]] to make measurements. By analyzing the [[Frequency spectrum|spectra]] of electrical signals, dominant frequency, [[electric power|power]], [[distortion]], [[harmonics]], [[Bandwidth (signal processing)|bandwidth]], and other spectral components of a signal can be observed that are not easily detectable in [[time domain]] [[waveform]]s. These parameters are useful in the characterization of electronic devices, such as wireless transmitters. The display of a spectrum analyzer has ''frequency'' displayed on the horizontal axis and the ''amplitude'' on the vertical axis. To the casual observer, a spectrum analyzer looks like an [[oscilloscope]], which plots ''amplitude'' on the vertical axis but ''time'' on the horizontal axis. In fact, some lab instruments can function either as an oscilloscope or a spectrum analyzer. == History == {{expand section|date=December 2012}} [[Image:sonagraphe.jpg|thumb|right|A spectrum analyzer circa 1970]] The first spectrum analyzers, in the 1960s, were swept-tuned instruments.<ref name="Hiebert">''[http://electronicdesign.com/displays/take-peek-inside-todays-spectrum-analyzers Take A Peek Inside Today's Spectrum Analyzers] {{webarchive|url=https://web.archive.org/web/20170506192902/http://www.electronicdesign.com/displays/take-peek-inside-todays-spectrum-analyzers |date=2017-05-06 }}''; Bob Hiebert, 2005, accessed 10 April 2013.</ref> Following the discovery of the [[fast Fourier transform]] (FFT) in 1965, the first FFT-based analyzers were introduced in 1967.<ref name="Deery">''[http://www.sandv.com/downloads/0701deer.pdf The 'Real' History of Real-Time Spectrum Analyzers] {{webarchive|url=https://web.archive.org/web/20150621073829/http://www.sandv.com/downloads/0701deer.pdf |date=2015-06-21 }}''; Joe Deery, 2007, accessed 10 April 2013.</ref> Today, there are three basic types of analyzer: the swept-tuned spectrum analyzer, the vector signal analyzer, and the real-time spectrum analyzer.<ref name="Hiebert" /> == Types == [[Image:Spectrum Analyser PCB.jpg|thumb|right|The main PCB from a {{nowrap|20 GHz}} spectrum analyser. Showing the [[Distributed element filter|stripline PCB filters]], and modular block construction.]] Spectrum analyzer types are distinguished by the methods used to obtain the spectrum of a signal. There are swept-tuned and fast Fourier transform (FFT) based spectrum analyzers: *A ''swept-tuned'' analyzer uses a [[superheterodyne receiver]] to [[Superheterodyne receiver#Local oscillator and mixer|down-convert]] a portion of the input signal spectrum to the center frequency of a narrow [[band-pass filter]], whose instantaneous output power is recorded or displayed as a function of time. By sweeping the receiver's center-frequency (using a [[voltage-controlled oscillator]]) through a range of frequencies, the output is also a function of frequency. But while the sweep centers on any particular frequency, it may be missing short-duration events at other frequencies. *An FFT analyzer computes a time-sequence of [[periodogram]]s. ''FFT'' refers to a particular mathematical algorithm used in the process. This is commonly used in conjunction with a [[superheterodyne receiver|receiver]] and [[analog-to-digital converter]]. As above, the receiver reduces the center-frequency of a portion of the input signal spectrum, but the portion is not swept. The purpose of the receiver is to reduce the [[sampling rate]] that the analyzer must contend with. With a sufficiently low sample-rate, FFT analyzers can process all the samples (100% [[duty-cycle]]), and are therefore able to avoid missing short-duration events. == Form factor == Spectrum analyzers tend to fall into four form factors: benchtop, portable, handheld and networked. ===Benchtop=== This form factor is useful for applications where the spectrum analyzer can be plugged into AC power, which generally means in a lab environment or production/manufacturing area. Bench top spectrum analyzers have historically offered better performance and specifications than the portable or handheld form factor. Bench top spectrum analyzers normally have multiple fans (with associated vents) to dissipate heat produced by the [[Central processing unit|processor]]. Due to their architecture, bench top spectrum analyzers typically weigh more than {{convert|30|lbs|kg}}. Some bench top spectrum analyzers offer optional [[battery pack]]s, allowing them to be used away from [[AC power]]. This type of analyzer is often referred to as a "portable" spectrum analyzer. === Portable === This form factor is useful for any applications where the spectrum analyzer needs to be taken outside to make measurements or simply carried while in use. Attributes that contribute to a useful portable spectrum analyzer include: *Optional battery-powered operation to allow the user to move freely outside. *Clearly viewable display to allow the screen to be read in bright sunlight, darkness or dusty conditions. *Light weight (usually less than {{convert|15|lbs|kg}}). === Handheld === [[File:Space Aggressors test Red Flag Airmen (2743147).jpeg|thumb|Handheld spectrum analyzer.]] This form factor is useful for any application where the spectrum analyzer needs to be very light and small. Handheld analyzers usually offer a limited capability relative to larger systems. Attributes that contribute to a useful handheld spectrum analyzer include: *Very low power consumption. *Battery-powered operation while in the field to allow the user to move freely outside. *Very small size *Light weight (usually less than {{convert|2|lbs|kg|1}}). === Networked === This form factor does not include a display and these devices are designed to enable a new class of geographically-distributed spectrum monitoring and analysis applications. The key attribute is the ability to connect the analyzer to a network and monitor such devices across a network. While many spectrum analyzers have an Ethernet port for control, they typically lack efficient data transfer mechanisms and are too bulky or expensive to be deployed in such a distributed manner. Key applications for such devices include RF intrusion detection systems for secure facilities where wireless signaling is prohibited. As well cellular operators are using such analyzers to remotely monitor interference in licensed spectral bands. The distributed nature of such devices enable geo-location of transmitters, spectrum monitoring for dynamic spectrum access and many other such applications. Key attributes of such devices include: * Network-efficient data transfer * Low power consumption * The ability to synchronize data captures across a network of analyzers * Low cost to enable mass deployment. == Theory of operation == [[Image:BPFAnimationV2.gif|right|This animation shows how the resolution bandwidth of a swept-tuned spectrum analyzer is affected by the IF bandpass filter. Notice that wider bandwidth filters are unable to resolve the two closely space frequencies and the LO feedthrough causes the appearance of a baseband signal.]] === Swept-tuned === As discussed above in '''types''', a swept-tuned spectrum analyzer [[Superheterodyne receiver#High-side and low-side injection|down-converts]]{{Broken anchor|date=2024-09-03|bot=User:Cewbot/log/20201008/configuration|target_link=Superheterodyne receiver#High-side and low-side injection|reason= The anchor (High-side and low-side injection) [[Special:Diff/418818267|has been deleted]].}} a portion of the input signal spectrum to the center frequency of a [[band-pass filter]] by sweeping the [[voltage-controlled oscillator]] through a range of frequencies, enabling the consideration of the full frequency range of the instrument. The bandwidth of the band-pass filter dictates the resolution bandwidth, which is related to the minimum bandwidth detectable by the instrument. As demonstrated by the animation to the right, the smaller the bandwidth, the more spectral resolution. However, there is a trade-off between how quickly the display can update the full frequency span under consideration and the frequency resolution, which is relevant for distinguishing frequency components that are close together. For a swept-tuned architecture, this relation for sweep time is useful: : <math>\ ST=\frac{k(\mathrm{Span})}{RBW^2}</math> Where ST is sweep time in seconds, k is proportionality constant, Span is the frequency range under consideration in hertz, and RBW is the resolution bandwidth in Hertz.<ref>''[https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf Keysight Spectrum Analyzer Basics] {{webarchive|url=https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf|date=2018-03-23}}'', p. 23, August 2, 2006, accessed July 7, 2011.</ref> Sweeping too fast, however, causes a drop in displayed amplitude and a shift in the displayed frequency.<ref>''[https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf Keysight Spectrum Analyzer Basics] {{webarchive|url=https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf|date=2018-03-23}}'', p. 22, Figure 2–14, August 2, 2006, accessed July 7, 2011.</ref> Also, the animation contains both up- and down-converted spectra, which is due to a [[frequency mixer]] producing both sum and difference frequencies. The [[local oscillator]] feedthrough is due to the imperfect isolation from the [[intermediate frequency|IF]] signal path in the [[Frequency mixer|mixer]]. For very weak signals, a [[pre-amplifier]] is used, although [[total harmonic distortion|harmonic]] and [[intermodulation]] distortion may lead to the creation of new frequency components that were not present in the original signal. [[File:3D battery charger RF spectrum over time.jpg|thumb|right|350px|3D plot: 600 seconds RF spectrum over time from a battery charger]] === FFT-based === With an FFT based spectrum analyzer, the frequency resolution is <math>\Delta\nu=1/T</math>, the inverse of the time ''T'' over which the waveform is measured and Fourier transformed. With Fourier transform analysis in a digital spectrum analyzer, it is necessary to sample the input signal with a sampling frequency <math>\nu_s</math> that is at least twice the bandwidth of the signal, due to the [[Nyquist rate|Nyquist limit]].<ref>{{cite web|url=https://www.keysight.com/main/editorial.jspx?cc=US&lc=eng&ckey=1775376&nid=-536900125.0.00&id=1775376&pselect=SR.GENERAL|title=How do I know what is the best sampling rate to use for my measurement? - Keysight (formerly Agilent's Electronic Measurement)|website=www.keysight.com|access-date=7 May 2018|url-status=live|archive-url=https://web.archive.org/web/20180323154748/https://www.keysight.com/main/editorial.jspx?cc=US&lc=eng&ckey=1775376&nid=-536900125.0.00&id=1775376&pselect=SR.GENERAL|archive-date=23 March 2018}}</ref> A Fourier transform will then produce a spectrum containing all frequencies from zero to <math>\nu_s/2</math>. This can place considerable demands on the required [[analog-to-digital converter]] and processing power for the Fourier transform, making FFT based spectrum analyzers limited in frequency range. [[Image:Aaronia Spectrum Analyzer Software.jpg|thumb|right|350px|Frequency spectrum of the heating up period of a switching power supply (spread spectrum) incl. [[spectrogram]] over a few minutes]] === Hybrid superheterodyne-FFT === Since FFT based analyzers are only capable of considering narrow bands, one technique is to combine swept and FFT analysis for consideration of wide and narrow spans. This technique allows for faster sweep time. This method is made possible by first down converting the signal, then digitizing the [[intermediate frequency]] and using superheterodyne or FFT techniques to acquire the spectrum. One benefit of digitizing the intermediate frequency is the ability to use [[digital filter]]s, which have a range of [[Digital filter#Comparison of analog and digital filters|advantages]] over analog filters such as near perfect shape factors and improved filter settling time. Also, for consideration of narrow spans, the FFT can be used to increase sweep time without distorting the displayed spectrum. [[Image:Spectrum Analyser Time Domain Sampling and Blind Time.png|thumb|left|400px|Illustration showing Spectrum Analyzer Blind Time]] === Realtime FFT === A realtime spectrum analyser does not have any blind time—up to some maximum span, often called the "realtime bandwidth". The analyser is able to sample the incoming RF spectrum in the time domain and convert the information to the frequency domain using the FFT process. FFT's are processed in parallel, gapless and overlapped so there are no gaps in the calculated RF spectrum and no information is missed. ==== Online realtime and offline realtime ==== In a sense, any spectrum analyzer that has [[vector signal analyzer]] capability is a realtime analyzer. It samples data fast enough to satisfy Nyquist Sampling theorem and stores the data in memory for later processing. This kind of analyser is only realtime for the amount of data / capture time it can store in memory and still produces gaps in the spectrum and results during processing time. ==== FFT overlapping ==== Minimizing distortion of information is important in all spectrum analyzers. The FFT process applies windowing techniques to improve the output spectrum due to producing less side lobes. The effect of windowing may also reduce the level of a signal where it is captured on the boundary between one FFT and the next. For this reason FFT's in a Realtime spectrum analyzer are overlapped. Overlapping rate is approximately 80%. An analyzer that utilises a 1024-point FFT process will re-use approximately 819 samples from the previous FFT process.<ref>''[https://www.rohde-schwarz.com/us/applications/implementation-of-real-time-spectrum-analysis-white-paper_230854-15815.html Dr. Florian Ramian – Implementation of Real-Time Spectrum Analysis] {{webarchive|url=https://web.archive.org/web/20180209182434/https://www.rohde-schwarz.com/us/applications/implementation-of-real-time-spectrum-analysis-white-paper_230854-15815.html |date=2018-02-09 }}'', p. 6, March, 2015, accessed February 9, 2018.</ref> ==== Minimum signal detection time ==== This is related to the sampling rate of the analyser and the [[Fast Fourier transform|FFT]] rate. It is also important for the realtime spectrum analyzer to give good level accuracy. Example: for an analyser with {{nowrap|40 MHz}} of realtime [[Bandwidth (signal processing)|bandwidth]] (the maximum RF span that can be processed in realtime) approximately {{nowrap|50 Msample/second}} (complex) are needed. If the spectrum analyzer produces {{nowrap|250 000 FFT/s}} an FFT calculation is produced every {{nowrap|4 μs.}} For a {{nowrap|1024 point}} FFT a full spectrum is produced {{nowrap|1024 x (1/50 x 10<sup>6</sup>),}} approximately every {{nowrap|20 μs.}} This also gives us our overlap rate of 80% (20 μs − 4 μs) / 20 μs = 80%. [[Image:Comparison of Max Hold Spectrum Analyzer trace and Persistence Trace.png|thumb|left|400px|Comparison between Swept Max Hold and Realtime Persistence displays]] ===== Persistence ===== Realtime spectrum analyzers are able to produce much more information for users to examine the frequency spectrum in more detail. A normal swept spectrum analyzer would produce max peak, min peak displays for example but a realtime spectrum analyzer is able to plot all calculated FFT's over a given period of time with the added colour-coding which represents how often a signal appears. For example, this image shows the difference between how a spectrum is displayed in a normal swept spectrum view and using a "Persistence" view on a realtime spectrum analyzer. [[Image:Bluetooth signal behind wireless lan signal.png|thumb|right|350px|Bluetooth signal hidden behind wireless LAN signal]] ===== Hidden signals ===== Realtime spectrum analyzers are able to see signals hidden behind other signals. This is possible because no information is missed and the display to the user is the output of FFT calculations. An example of this can be seen on the right. == Typical functionality == === Center frequency and span === In a typical spectrum analyzer there are options to set the start, stop, and center frequency. The frequency halfway between the stop and start frequencies on a spectrum analyzer display is known as the '''center frequency'''. This is the frequency that is in the middle of the display's frequency axis. '''Span''' specifies the range between the start and stop frequencies. These two parameters allow for adjustment of the display within the frequency range of the instrument to enhance visibility of the spectrum measured. === Resolution bandwidth === As discussed in the '''operation''' section, the '''resolution bandwidth''' filter or RBW filter is the [[bandpass filter]] in the [[intermediate frequency|IF]] path. It's the [[Bandwidth (signal processing)|bandwidth]] of the [[RF chain]] before the detector (power measurement device).<ref name=plsa>[http://www.piclist.com/techref/postbot.asp?by=thread&id=%5BEE%5D+TV+Tuner+Based+Spectrum+Analyzer&w=body&tgt=post&at=20120524233824apiclist.com – &#91;EE&#93; TV Tuner Based Spectrum Analyzer] {{webarchive|url=https://web.archive.org/web/20130921055149/http://www.piclist.com/techref/postbot.asp?by=thread&id=%5BEE%5D+TV+Tuner+Based+Spectrum+Analyzer&w=body&tgt=post&at=20120524233824apiclist.com |date=2013-09-21 }}, 2012-05-25</ref> It determines the RF [[noise floor]] and how close two signals can be and still be resolved by the analyzer into two separate peaks.<ref name=plsa/> Adjusting the bandwidth of this filter allows for the discrimination of signals with closely spaced frequency components, while also changing the measured noise floor. Decreasing the bandwidth of an RBW filter decreases the measured noise floor and vice versa. This is due to higher RBW filters passing more frequency components through to the [[envelope detector]] than lower bandwidth RBW filters, therefore a higher RBW causes a higher measured noise floor. === Video bandwidth === The '''video bandwidth''' filter or VBW filter is the [[low-pass filter]] directly after the [[envelope detector]]. It's the bandwidth of the signal chain after the detector. Averaging or peak detection then refers to how the digital storage portion of the device records samples—it takes several samples per time step and stores only one sample, either the average of the samples or the highest one.<ref name=plsa/> The video bandwidth determines the capability to discriminate between two different power levels.<ref name=plsa/> This is because a narrower VBW will remove noise in the detector output.<ref name=plsa/> This filter is used to "smooth" the display by removing noise from the envelope. Similar to the RBW, the VBW affects the sweep time of the display if the VBW is less than the RBW. If VBW is less than RBW, this relation for sweep time is useful: :<math>t_\mathrm{sweep} = \frac{k \cdot (f_2 - f_1)}{\mathrm{RBW}\times \mathrm{VBW}}.</math> Here ''t''<sub>sweep</sub> is the sweep time, ''k'' is a dimensionless proportionality constant, ''f''<sub>2</sub>&nbsp;&minus; ''f''<sub>1</sub> is the frequency range of the sweep, RBW is the resolution bandwidth, and VBW is the video bandwidth.<ref>''[https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf Keysight Spectrum Analyzer Basics] {{webarchive|url=https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf|date=2018-03-23}}'', p. 36, August 2, 2006, accessed July 13, 2011.</ref> === Detector === With the advent of digitally based displays, some modern spectrum analyzers use [[analog-to-digital converter]]s to sample spectrum amplitude after the VBW filter. Since displays have a discrete number of points, the frequency span measured is also digitised. '''Detectors''' are used in an attempt to adequately map the correct signal power to the appropriate frequency point on the display. There are in general three types of detectors: sample, peak, and average *'''Sample detection''' – sample detection simply uses the midpoint of a given interval as the display point value. While this method does represent random noise well, it does not always capture all sinusoidal signals. *'''Peak detection''' – peak detection uses the maximum measured point within a given interval as the display point value. This insures that the maximum sinusoid is measured within the interval; however, smaller sinusoids within the interval may not be measured. Also, peak detection does not give a good representation of random noise. *'''Average detection''' – average detection uses all of the data points within the interval to consider the display point value. This is done by power ([[Root mean square|rms]]) averaging, voltage averaging, or log-power averaging. === Displayed average noise level === The '''Displayed Average Noise Level''' (DANL) is just what it says it is—the average noise level displayed on the analyzer. This can either be with a specific resolution bandwidth (e.g. −120 dBm @1&nbsp;kHz RBW), or normalized to 1&nbsp;Hz (usually in dBm/Hz) e.g. −150 dBm(Hz).This is also called the sensitivity of the spectrum analyzer. If a signal level equal to the average noise level is fed there will be a 3&nbsp;dB display. To increase the sensitivity of the spectrum analyzer a preamplifier with lower noise figure may be connected at the input of the spectrum analyzer.<ref>''[https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf Keysight Spectrum Analyzer Basics] {{webarchive|url=https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf|date=2018-03-23}}'', p. 50, August 2, 2006, accessed March 25, 2018.</ref> == Radio-frequency uses == Spectrum analyzers are widely used to measure the [[frequency response]], [[Electronic noise|noise]] and [[distortion]] characteristics of all kinds of [[radio-frequency]] (RF) circuitry, by comparing the input and output spectra. For example, in RF mixers, spectrum analyzer is used to find the levels of third order inter-modulation products and conversion loss. In RF oscillators, spectrum analyzer is used to find the levels of different harmonics. In [[telecommunications]], spectrum analyzers are used to determine occupied bandwidth and track interference sources. For example, cell planners use this equipment to determine interference sources in the [[GSM frequency bands]] and [[UMTS frequency bands]]. In [[electromagnetic compatibility|EMC testing]], a spectrum analyzer is used for basic precompliance testing; however, it can not be used for full testing and certification. Instead, an EMI receiver is used. A spectrum analyzer is used to determine whether a wireless transmitter is working according to defined standards for purity of emissions. Output signals at frequencies other than the intended communications frequency appear as vertical lines (pips) on the display. A spectrum analyzer is also used to determine, by direct observation, the bandwidth of a digital or analog signal. A spectrum analyzer interface is a device that connects to a wireless receiver or a personal computer to allow visual detection and analysis of electromagnetic signals over a defined band of frequencies. This is called panoramic reception and it is used to determine the frequencies of sources of interference to wireless networking equipment, such as Wi-Fi and wireless routers. Spectrum analyzers can also be used to assess RF shielding. RF shielding is of particular importance for the siting of a magnetic resonance imaging machine since stray RF fields would result in artifacts in an MR image.<ref>{{cite web |url=http://www.aapm.org/pubs/reports/RPT_100.pdf |title=Archived copy |access-date=2012-04-11 |url-status=live |archive-url=https://web.archive.org/web/20111120045254/https://aapm.org/pubs/reports/RPT_100.pdf |archive-date=2011-11-20 }}</ref> == Audio-frequency uses == Spectrum analysis can be used at [[Audio frequency|audio frequencies]] to analyse the harmonics of an audio signal. A typical application is to measure the [[distortion]] of a nominally [[sinewave]] signal; a very-low-distortion sinewave is used as the input to equipment under test, and a spectrum analyser can examine the output, which will have added distortion products, and determine the percentage distortion at each harmonic of the fundamental. Such analysers were at one time described as "wave analysers". Analysis can be carried out by a general-purpose [[digital computer]] with a [[sound card]] selected for suitable performance<ref>[http://www.clarisonus.com/Research%20Reports/RR001-SoundCardEval/RR001-PCsoundCards.html ClariSonus Research Report #001, PC Sound Card Evaluation, John Atwood, 2006.] {{webarchive|url=https://web.archive.org/web/20110705033550/http://clarisonus.com/Research%20Reports/RR001-SoundCardEval/RR001-PCsoundCards.html |date=2011-07-05 }} Detailed tests of various sound cards for use as D/A and A/D converters for sound testing software on a PC</ref> and appropriate software. Instead of using a low-distortion sinewave, the input can be subtracted from the output, attenuated and phase-corrected, to give only the added distortion and noise, which can be analysed.<ref>{{cite web|url=http://www.angelfire.com/ab3/mjramp/golopid6.html|title=Renardson audio designs: Distortion measurement|website=[[Angelfire]]|access-date=7 May 2018|url-status=dead|archive-url=https://web.archive.org/web/20130625064334/http://www.angelfire.com/ab3/mjramp/golopid6.html|archive-date=25 June 2013}}</ref> An alternative technique, [[THD analyzer|total harmonic distortion measurement]], cancels out the fundamental with a [[notch filter]] and measures the total remaining signal, which is total harmonic distortion plus noise; it does not give the harmonic-by-harmonic detail of an analyser. Spectrum analyzers are also used by audio engineers to assess their work. In these applications, the spectrum analyzer will show volume levels of frequency bands across the typical [[hearing range|range of human hearing]], rather than displaying a wave. In live sound applications, engineers can use them to pinpoint [[feedback]]. == Optical spectrum analyzer == {{main|Optical spectrometer}} An optical spectrum analyzer uses reflective or refractive techniques to separate out the wavelengths of light. An electro-optical detector is used to measure the intensity of the light, which is then normally displayed on a screen in a similar manner to a radio- or audio-frequency spectrum analyzer. The input to an optical spectrum analyzer may be simply via an aperture in the instrument's case, an optical fiber or an optical connector to which a fiber-optic cable can be attached. Different techniques exist for separating out the wavelengths. One method is to use a [[monochromator]], for example a Czerny–Turner design, with an optical detector placed at the output slit. As the grating in the monochromator moves, bands of different frequencies (colors) are 'seen' by the detector, and the resulting signal can then be plotted on a display. More precise measurements (down to MHz in the optical spectrum) can be made with a scanning [[Fabry–Pérot interferometer]] along with analog or digital control electronics, which sweep the resonant frequency of an optically resonant cavity using a voltage ramp to [[Piezoelectricity#Piezoelectric motors|piezoelectric motor]] that varies the distance between two highly reflective mirrors. A sensitive [[photodiode]] embedded in the cavity provides an intensity signal, which is plotted against the ramp voltage to produce a visual representation of the optical power spectrum.<ref>Final Report {{cite web |url=http://mason.gmu.edu/~jdilles/capstone/ |title=Team Spectrum |access-date=2015-04-08 |url-status=live |archive-url=https://web.archive.org/web/20160817164232/http://mason.gmu.edu/~jdilles/capstone/ |archive-date=2016-08-17 }}</ref> The frequency response of optical spectrum analyzers tends to be relatively limited, e.g. {{nowrap|800–1600 nm}} (near-infrared), depending on the intended purpose, although (somewhat) wider-bandwidth general purpose instruments are available. == Vibration spectrum analyzer == A vibration spectrum analyzer allows to analyze vibration amplitudes at various component frequencies, In this way, vibration occurring at specific frequencies can be identified and tracked. Since particular machinery problems generate vibration at specific frequencies, machinery faults can be detected or diagnosed. Vibration Spectrum Analyzers use the signal from different types of sensor, such as: [[accelerometer]]s, velocity transducers and [[proximity sensor]]s. The uses of a vibration spectrum analyzer in machine condition monitoring allows to detect and identify machine faults such as: rotor imbalance, shaft misalignment, mechanical looseness, bearing defects, among others. Vibration analysis can also be used in structures to identify structural resonances or to perform modal analysis. == See also == * [[Electrical measurements]] * [[Electromagnetic spectrum]] * [[Measuring receiver]] * [[Radio-frequency sweep]] * [[Spectral leakage]] * [[Spectral music]] * [[Radio spectrum scope]] * [[Stationary-wave integrated Fourier-transform spectrometry]] == References == === Footnotes === {{Reflist|2}} == External links == {{Commons category|Spectrum analyzers}} * Sri Welaratna, "[https://web.archive.org/web/20130527184028/http://www.dataphysics.com/resources/library-data-physics-center/30-years-of-fft-analyzers.html]", ''Sound and Vibration'' (January 1997, 30th anniversary issue). A historical review of hardware spectrum-analyzer devices. {{Electrical and electronic measuring equipment}} {{Authority control}} {{DEFAULTSORT:Spectrum Analyzer}} [[Category:Electronic test equipment]] [[Category:Laboratory equipment]] [[Category:Radio technology]] [[Category:Signal processing]] [[Category:Spectroscopy]] [[Category:Scattering]] [[Category:Acoustics]] [[Category:Spectrum (physical sciences)]]'
New page wikitext, after the edit (new_wikitext)
'{{Short description|Electronic testing device}} [[Image:Spektrumanalysator FSL von Rohde & Schwarz.jpg|right|thumb|A spectrum analyzer from 2005] [[File:A modern real time spectrum analyzer.jpg|thumb|A modern real time spectrum analyzer from 2019]] https://mediapool.bmwgroup.com/cache/P9/202408/P90564521/P90564521-the-all-new-bmw-m5-touring-08-2024-600px.jpg BBB '''spectrum analyzer''' measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, [[Frequency spectrum|spectral]] compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate [[transducer]]. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a [[monochromator]] to make measurements. By analyzing the [[Frequency spectrum|spectra]] of electrical signals, dominant frequency, [[electric power|power]], [[distortion]], [[harmonics]], [[Bandwidth (signal processing)|bandwidth]], and other spectral components of a signal can be observed that are not easily detectable in [[time domain]] [[waveform]]s. These parameters are useful in the characterization of electronic devices, such as wireless transmitters. The display of a spectrum analyzer has ''frequency'' displayed on the horizontal axis and the ''amplitude'' on the vertical axis. To the casual observer, a spectrum analyzer looks like an [[oscilloscope]], which plots ''amplitude'' on the vertical axis but ''time'' on the horizontal axis. In fact, some lab instruments can function either as an oscilloscope or a spectrum analyzer. == History == {{expand section|date=December 2012}} [[Image:sonagraphe.jpg|thumb|right|A spectrum analyzer circa 1970]] The first spectrum analyzers, in the 1960s, were swept-tuned instruments.<ref name="Hiebert">''[http://electronicdesign.com/displays/take-peek-inside-todays-spectrum-analyzers Take A Peek Inside Today's Spectrum Analyzers] {{webarchive|url=https://web.archive.org/web/20170506192902/http://www.electronicdesign.com/displays/take-peek-inside-todays-spectrum-analyzers |date=2017-05-06 }}''; Bob Hiebert, 2005, accessed 10 April 2013.</ref> Following the discovery of the [[fast Fourier transform]] (FFT) in 1965, the first FFT-based analyzers were introduced in 1967.<ref name="Deery">''[http://www.sandv.com/downloads/0701deer.pdf The 'Real' History of Real-Time Spectrum Analyzers] {{webarchive|url=https://web.archive.org/web/20150621073829/http://www.sandv.com/downloads/0701deer.pdf |date=2015-06-21 }}''; Joe Deery, 2007, accessed 10 April 2013.</ref> Today, there are three basic types of analyzer: the swept-tuned spectrum analyzer, the vector signal analyzer, and the real-time spectrum analyzer.<ref name="Hiebert" /> == Types == [[Image:Spectrum Analyser PCB.jpg|thumb|right|The main PCB from a {{nowrap|20 GHz}} spectrum analyser. Showing the [[Distributed element filter|stripline PCB filters]], and modular block construction.]] Spectrum analyzer types are distinguished by the methods used to obtain the spectrum of a signal. There are swept-tuned and fast Fourier transform (FFT) based spectrum analyzers: *A ''swept-tuned'' analyzer uses a [[superheterodyne receiver]] to [[Superheterodyne receiver#Local oscillator and mixer|down-convert]] a portion of the input signal spectrum to the center frequency of a narrow [[band-pass filter]], whose instantaneous output power is recorded or displayed as a function of time. By sweeping the receiver's center-frequency (using a [[voltage-controlled oscillator]]) through a range of frequencies, the output is also a function of frequency. But while the sweep centers on any particular frequency, it may be missing short-duration events at other frequencies. *An FFT analyzer computes a time-sequence of [[periodogram]]s. ''FFT'' refers to a particular mathematical algorithm used in the process. This is commonly used in conjunction with a [[superheterodyne receiver|receiver]] and [[analog-to-digital converter]]. As above, the receiver reduces the center-frequency of a portion of the input signal spectrum, but the portion is not swept. The purpose of the receiver is to reduce the [[sampling rate]] that the analyzer must contend with. With a sufficiently low sample-rate, FFT analyzers can process all the samples (100% [[duty-cycle]]), and are therefore able to avoid missing short-duration events. == Form factor == Spectrum analyzers tend to fall into four form factors: benchtop, portable, handheld and networked. ===Benchtop=== This form factor is useful for applications where the spectrum analyzer can be plugged into AC power, which generally means in a lab environment or production/manufacturing area. Bench top spectrum analyzers have historically offered better performance and specifications than the portable or handheld form factor. Bench top spectrum analyzers normally have multiple fans (with associated vents) to dissipate heat produced by the [[Central processing unit|processor]]. Due to their architecture, bench top spectrum analyzers typically weigh more than {{convert|30|lbs|kg}}. Some bench top spectrum analyzers offer optional [[battery pack]]s, allowing them to be used away from [[AC power]]. This type of analyzer is often referred to as a "portable" spectrum analyzer. === Portable === This form factor is useful for any applications where the spectrum analyzer needs to be taken outside to make measurements or simply carried while in use. Attributes that contribute to a useful portable spectrum analyzer include: *Optional battery-powered operation to allow the user to move freely outside. *Clearly viewable display to allow the screen to be read in bright sunlight, darkness or dusty conditions. *Light weight (usually less than {{convert|15|lbs|kg}}). === Handheld === [[File:Space Aggressors test Red Flag Airmen (2743147).jpeg|thumb|Handheld spectrum analyzer.]] This form factor is useful for any application where the spectrum analyzer needs to be very light and small. Handheld analyzers usually offer a limited capability relative to larger systems. Attributes that contribute to a useful handheld spectrum analyzer include: *Very low power consumption. *Battery-powered operation while in the field to allow the user to move freely outside. *Very small size *Light weight (usually less than {{convert|2|lbs|kg|1}}). === Networked === This form factor does not include a display and these devices are designed to enable a new class of geographically-distributed spectrum monitoring and analysis applications. The key attribute is the ability to connect the analyzer to a network and monitor such devices across a network. While many spectrum analyzers have an Ethernet port for control, they typically lack efficient data transfer mechanisms and are too bulky or expensive to be deployed in such a distributed manner. Key applications for such devices include RF intrusion detection systems for secure facilities where wireless signaling is prohibited. As well cellular operators are using such analyzers to remotely monitor interference in licensed spectral bands. The distributed nature of such devices enable geo-location of transmitters, spectrum monitoring for dynamic spectrum access and many other such applications. Key attributes of such devices include: * Network-efficient data transfer * Low power consumption * The ability to synchronize data captures across a network of analyzers * Low cost to enable mass deployment. == Theory of operation == [[Image:BPFAnimationV2.gif|right|This animation shows how the resolution bandwidth of a swept-tuned spectrum analyzer is affected by the IF bandpass filter. Notice that wider bandwidth filters are unable to resolve the two closely space frequencies and the LO feedthrough causes the appearance of a baseband signal.]] === Swept-tuned === As discussed above in '''types''', a swept-tuned spectrum analyzer [[Superheterodyne receiver#High-side and low-side injection|down-converts]]{{Broken anchor|date=2024-09-03|bot=User:Cewbot/log/20201008/configuration|target_link=Superheterodyne receiver#High-side and low-side injection|reason= The anchor (High-side and low-side injection) [[Special:Diff/418818267|has been deleted]].}} a portion of the input signal spectrum to the center frequency of a [[band-pass filter]] by sweeping the [[voltage-controlled oscillator]] through a range of frequencies, enabling the consideration of the full frequency range of the instrument. The bandwidth of the band-pass filter dictates the resolution bandwidth, which is related to the minimum bandwidth detectable by the instrument. As demonstrated by the animation to the right, the smaller the bandwidth, the more spectral resolution. However, there is a trade-off between how quickly the display can update the full frequency span under consideration and the frequency resolution, which is relevant for distinguishing frequency components that are close together. For a swept-tuned architecture, this relation for sweep time is useful: : <math>\ ST=\frac{k(\mathrm{Span})}{RBW^2}</math> Where ST is sweep time in seconds, k is proportionality constant, Span is the frequency range under consideration in hertz, and RBW is the resolution bandwidth in Hertz.<ref>''[https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf Keysight Spectrum Analyzer Basics] {{webarchive|url=https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf|date=2018-03-23}}'', p. 23, August 2, 2006, accessed July 7, 2011.</ref> Sweeping too fast, however, causes a drop in displayed amplitude and a shift in the displayed frequency.<ref>''[https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf Keysight Spectrum Analyzer Basics] {{webarchive|url=https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf|date=2018-03-23}}'', p. 22, Figure 2–14, August 2, 2006, accessed July 7, 2011.</ref> Also, the animation contains both up- and down-converted spectra, which is due to a [[frequency mixer]] producing both sum and difference frequencies. The [[local oscillator]] feedthrough is due to the imperfect isolation from the [[intermediate frequency|IF]] signal path in the [[Frequency mixer|mixer]]. For very weak signals, a [[pre-amplifier]] is used, although [[total harmonic distortion|harmonic]] and [[intermodulation]] distortion may lead to the creation of new frequency components that were not present in the original signal. [[File:3D battery charger RF spectrum over time.jpg|thumb|right|350px|3D plot: 600 seconds RF spectrum over time from a battery charger]] === FFT-based === With an FFT based spectrum analyzer, the frequency resolution is <math>\Delta\nu=1/T</math>, the inverse of the time ''T'' over which the waveform is measured and Fourier transformed. With Fourier transform analysis in a digital spectrum analyzer, it is necessary to sample the input signal with a sampling frequency <math>\nu_s</math> that is at least twice the bandwidth of the signal, due to the [[Nyquist rate|Nyquist limit]].<ref>{{cite web|url=https://www.keysight.com/main/editorial.jspx?cc=US&lc=eng&ckey=1775376&nid=-536900125.0.00&id=1775376&pselect=SR.GENERAL|title=How do I know what is the best sampling rate to use for my measurement? - Keysight (formerly Agilent's Electronic Measurement)|website=www.keysight.com|access-date=7 May 2018|url-status=live|archive-url=https://web.archive.org/web/20180323154748/https://www.keysight.com/main/editorial.jspx?cc=US&lc=eng&ckey=1775376&nid=-536900125.0.00&id=1775376&pselect=SR.GENERAL|archive-date=23 March 2018}}</ref> A Fourier transform will then produce a spectrum containing all frequencies from zero to <math>\nu_s/2</math>. This can place considerable demands on the required [[analog-to-digital converter]] and processing power for the Fourier transform, making FFT based spectrum analyzers limited in frequency range. [[Image:Aaronia Spectrum Analyzer Software.jpg|thumb|right|350px|Frequency spectrum of the heating up period of a switching power supply (spread spectrum) incl. [[spectrogram]] over a few minutes]] === Hybrid superheterodyne-FFT === Since FFT based analyzers are only capable of considering narrow bands, one technique is to combine swept and FFT analysis for consideration of wide and narrow spans. This technique allows for faster sweep time. This method is made possible by first down converting the signal, then digitizing the [[intermediate frequency]] and using superheterodyne or FFT techniques to acquire the spectrum. One benefit of digitizing the intermediate frequency is the ability to use [[digital filter]]s, which have a range of [[Digital filter#Comparison of analog and digital filters|advantages]] over analog filters such as near perfect shape factors and improved filter settling time. Also, for consideration of narrow spans, the FFT can be used to increase sweep time without distorting the displayed spectrum. [[Image:Spectrum Analyser Time Domain Sampling and Blind Time.png|thumb|left|400px|Illustration showing Spectrum Analyzer Blind Time]] === Realtime FFT === A realtime spectrum analyser does not have any blind time—up to some maximum span, often called the "realtime bandwidth". The analyser is able to sample the incoming RF spectrum in the time domain and convert the information to the frequency domain using the FFT process. FFT's are processed in parallel, gapless and overlapped so there are no gaps in the calculated RF spectrum and no information is missed. ==== Online realtime and offline realtime ==== In a sense, any spectrum analyzer that has [[vector signal analyzer]] capability is a realtime analyzer. It samples data fast enough to satisfy Nyquist Sampling theorem and stores the data in memory for later processing. This kind of analyser is only realtime for the amount of data / capture time it can store in memory and still produces gaps in the spectrum and results during processing time. ==== FFT overlapping ==== Minimizing distortion of information is important in all spectrum analyzers. The FFT process applies windowing techniques to improve the output spectrum due to producing less side lobes. The effect of windowing may also reduce the level of a signal where it is captured on the boundary between one FFT and the next. For this reason FFT's in a Realtime spectrum analyzer are overlapped. Overlapping rate is approximately 80%. An analyzer that utilises a 1024-point FFT process will re-use approximately 819 samples from the previous FFT process.<ref>''[https://www.rohde-schwarz.com/us/applications/implementation-of-real-time-spectrum-analysis-white-paper_230854-15815.html Dr. Florian Ramian – Implementation of Real-Time Spectrum Analysis] {{webarchive|url=https://web.archive.org/web/20180209182434/https://www.rohde-schwarz.com/us/applications/implementation-of-real-time-spectrum-analysis-white-paper_230854-15815.html |date=2018-02-09 }}'', p. 6, March, 2015, accessed February 9, 2018.</ref> ==== Minimum signal detection time ==== This is related to the sampling rate of the analyser and the [[Fast Fourier transform|FFT]] rate. It is also important for the realtime spectrum analyzer to give good level accuracy. Example: for an analyser with {{nowrap|40 MHz}} of realtime [[Bandwidth (signal processing)|bandwidth]] (the maximum RF span that can be processed in realtime) approximately {{nowrap|50 Msample/second}} (complex) are needed. If the spectrum analyzer produces {{nowrap|250 000 FFT/s}} an FFT calculation is produced every {{nowrap|4 μs.}} For a {{nowrap|1024 point}} FFT a full spectrum is produced {{nowrap|1024 x (1/50 x 10<sup>6</sup>),}} approximately every {{nowrap|20 μs.}} This also gives us our overlap rate of 80% (20 μs − 4 μs) / 20 μs = 80%. [[Image:Comparison of Max Hold Spectrum Analyzer trace and Persistence Trace.png|thumb|left|400px|Comparison between Swept Max Hold and Realtime Persistence displays]] ===== Persistence ===== Realtime spectrum analyzers are able to produce much more information for users to examine the frequency spectrum in more detail. A normal swept spectrum analyzer would produce max peak, min peak displays for example but a realtime spectrum analyzer is able to plot all calculated FFT's over a given period of time with the added colour-coding which represents how often a signal appears. For example, this image shows the difference between how a spectrum is displayed in a normal swept spectrum view and using a "Persistence" view on a realtime spectrum analyzer. [[Image:Bluetooth signal behind wireless lan signal.png|thumb|right|350px|Bluetooth signal hidden behind wireless LAN signal]] ===== Hidden signals ===== Realtime spectrum analyzers are able to see signals hidden behind other signals. This is possible because no information is missed and the display to the user is the output of FFT calculations. An example of this can be seen on the right. == Typical functionality == === Center frequency and span === In a typical spectrum analyzer there are options to set the start, stop, and center frequency. The frequency halfway between the stop and start frequencies on a spectrum analyzer display is known as the '''center frequency'''. This is the frequency that is in the middle of the display's frequency axis. '''Span''' specifies the range between the start and stop frequencies. These two parameters allow for adjustment of the display within the frequency range of the instrument to enhance visibility of the spectrum measured. === Resolution bandwidth === As discussed in the '''operation''' section, the '''resolution bandwidth''' filter or RBW filter is the [[bandpass filter]] in the [[intermediate frequency|IF]] path. It's the [[Bandwidth (signal processing)|bandwidth]] of the [[RF chain]] before the detector (power measurement device).<ref name=plsa>[http://www.piclist.com/techref/postbot.asp?by=thread&id=%5BEE%5D+TV+Tuner+Based+Spectrum+Analyzer&w=body&tgt=post&at=20120524233824apiclist.com – &#91;EE&#93; TV Tuner Based Spectrum Analyzer] {{webarchive|url=https://web.archive.org/web/20130921055149/http://www.piclist.com/techref/postbot.asp?by=thread&id=%5BEE%5D+TV+Tuner+Based+Spectrum+Analyzer&w=body&tgt=post&at=20120524233824apiclist.com |date=2013-09-21 }}, 2012-05-25</ref> It determines the RF [[noise floor]] and how close two signals can be and still be resolved by the analyzer into two separate peaks.<ref name=plsa/> Adjusting the bandwidth of this filter allows for the discrimination of signals with closely spaced frequency components, while also changing the measured noise floor. Decreasing the bandwidth of an RBW filter decreases the measured noise floor and vice versa. This is due to higher RBW filters passing more frequency components through to the [[envelope detector]] than lower bandwidth RBW filters, therefore a higher RBW causes a higher measured noise floor. === Video bandwidth === The '''video bandwidth''' filter or VBW filter is the [[low-pass filter]] directly after the [[envelope detector]]. It's the bandwidth of the signal chain after the detector. Averaging or peak detection then refers to how the digital storage portion of the device records samples—it takes several samples per time step and stores only one sample, either the average of the samples or the highest one.<ref name=plsa/> The video bandwidth determines the capability to discriminate between two different power levels.<ref name=plsa/> This is because a narrower VBW will remove noise in the detector output.<ref name=plsa/> This filter is used to "smooth" the display by removing noise from the envelope. Similar to the RBW, the VBW affects the sweep time of the display if the VBW is less than the RBW. If VBW is less than RBW, this relation for sweep time is useful: :<math>t_\mathrm{sweep} = \frac{k \cdot (f_2 - f_1)}{\mathrm{RBW}\times \mathrm{VBW}}.</math> Here ''t''<sub>sweep</sub> is the sweep time, ''k'' is a dimensionless proportionality constant, ''f''<sub>2</sub>&nbsp;&minus; ''f''<sub>1</sub> is the frequency range of the sweep, RBW is the resolution bandwidth, and VBW is the video bandwidth.<ref>''[https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf Keysight Spectrum Analyzer Basics] {{webarchive|url=https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf|date=2018-03-23}}'', p. 36, August 2, 2006, accessed July 13, 2011.</ref> === Detector === With the advent of digitally based displays, some modern spectrum analyzers use [[analog-to-digital converter]]s to sample spectrum amplitude after the VBW filter. Since displays have a discrete number of points, the frequency span measured is also digitised. '''Detectors''' are used in an attempt to adequately map the correct signal power to the appropriate frequency point on the display. There are in general three types of detectors: sample, peak, and average *'''Sample detection''' – sample detection simply uses the midpoint of a given interval as the display point value. While this method does represent random noise well, it does not always capture all sinusoidal signals. *'''Peak detection''' – peak detection uses the maximum measured point within a given interval as the display point value. This insures that the maximum sinusoid is measured within the interval; however, smaller sinusoids within the interval may not be measured. Also, peak detection does not give a good representation of random noise. *'''Average detection''' – average detection uses all of the data points within the interval to consider the display point value. This is done by power ([[Root mean square|rms]]) averaging, voltage averaging, or log-power averaging. === Displayed average noise level === The '''Displayed Average Noise Level''' (DANL) is just what it says it is—the average noise level displayed on the analyzer. This can either be with a specific resolution bandwidth (e.g. −120 dBm @1&nbsp;kHz RBW), or normalized to 1&nbsp;Hz (usually in dBm/Hz) e.g. −150 dBm(Hz).This is also called the sensitivity of the spectrum analyzer. If a signal level equal to the average noise level is fed there will be a 3&nbsp;dB display. To increase the sensitivity of the spectrum analyzer a preamplifier with lower noise figure may be connected at the input of the spectrum analyzer.<ref>''[https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf Keysight Spectrum Analyzer Basics] {{webarchive|url=https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf|date=2018-03-23}}'', p. 50, August 2, 2006, accessed March 25, 2018.</ref> == Radio-frequency uses == Spectrum analyzers are widely used to measure the [[frequency response]], [[Electronic noise|noise]] and [[distortion]] characteristics of all kinds of [[radio-frequency]] (RF) circuitry, by comparing the input and output spectra. For example, in RF mixers, spectrum analyzer is used to find the levels of third order inter-modulation products and conversion loss. In RF oscillators, spectrum analyzer is used to find the levels of different harmonics. In [[telecommunications]], spectrum analyzers are used to determine occupied bandwidth and track interference sources. For example, cell planners use this equipment to determine interference sources in the [[GSM frequency bands]] and [[UMTS frequency bands]]. In [[electromagnetic compatibility|EMC testing]], a spectrum analyzer is used for basic precompliance testing; however, it can not be used for full testing and certification. Instead, an EMI receiver is used. A spectrum analyzer is used to determine whether a wireless transmitter is working according to defined standards for purity of emissions. Output signals at frequencies other than the intended communications frequency appear as vertical lines (pips) on the display. A spectrum analyzer is also used to determine, by direct observation, the bandwidth of a digital or analog signal. A spectrum analyzer interface is a device that connects to a wireless receiver or a personal computer to allow visual detection and analysis of electromagnetic signals over a defined band of frequencies. This is called panoramic reception and it is used to determine the frequencies of sources of interference to wireless networking equipment, such as Wi-Fi and wireless routers. Spectrum analyzers can also be used to assess RF shielding. RF shielding is of particular importance for the siting of a magnetic resonance imaging machine since stray RF fields would result in artifacts in an MR image.<ref>{{cite web |url=http://www.aapm.org/pubs/reports/RPT_100.pdf |title=Archived copy |access-date=2012-04-11 |url-status=live |archive-url=https://web.archive.org/web/20111120045254/https://aapm.org/pubs/reports/RPT_100.pdf |archive-date=2011-11-20 }}</ref> == Audio-frequency uses == Spectrum analysis can be used at [[Audio frequency|audio frequencies]] to analyse the harmonics of an audio signal. A typical application is to measure the [[distortion]] of a nominally [[sinewave]] signal; a very-low-distortion sinewave is used as the input to equipment under test, and a spectrum analyser can examine the output, which will have added distortion products, and determine the percentage distortion at each harmonic of the fundamental. Such analysers were at one time described as "wave analysers". Analysis can be carried out by a general-purpose [[digital computer]] with a [[sound card]] selected for suitable performance<ref>[http://www.clarisonus.com/Research%20Reports/RR001-SoundCardEval/RR001-PCsoundCards.html ClariSonus Research Report #001, PC Sound Card Evaluation, John Atwood, 2006.] {{webarchive|url=https://web.archive.org/web/20110705033550/http://clarisonus.com/Research%20Reports/RR001-SoundCardEval/RR001-PCsoundCards.html |date=2011-07-05 }} Detailed tests of various sound cards for use as D/A and A/D converters for sound testing software on a PC</ref> and appropriate software. Instead of using a low-distortion sinewave, the input can be subtracted from the output, attenuated and phase-corrected, to give only the added distortion and noise, which can be analysed.<ref>{{cite web|url=http://www.angelfire.com/ab3/mjramp/golopid6.html|title=Renardson audio designs: Distortion measurement|website=[[Angelfire]]|access-date=7 May 2018|url-status=dead|archive-url=https://web.archive.org/web/20130625064334/http://www.angelfire.com/ab3/mjramp/golopid6.html|archive-date=25 June 2013}}</ref> An alternative technique, [[THD analyzer|total harmonic distortion measurement]], cancels out the fundamental with a [[notch filter]] and measures the total remaining signal, which is total harmonic distortion plus noise; it does not give the harmonic-by-harmonic detail of an analyser. Spectrum analyzers are also used by audio engineers to assess their work. In these applications, the spectrum analyzer will show volume levels of frequency bands across the typical [[hearing range|range of human hearing]], rather than displaying a wave. In live sound applications, engineers can use them to pinpoint [[feedback]]. == Optical spectrum analyzer == {{main|Optical spectrometer}} An optical spectrum analyzer uses reflective or refractive techniques to separate out the wavelengths of light. An electro-optical detector is used to measure the intensity of the light, which is then normally displayed on a screen in a similar manner to a radio- or audio-frequency spectrum analyzer. The input to an optical spectrum analyzer may be simply via an aperture in the instrument's case, an optical fiber or an optical connector to which a fiber-optic cable can be attached. Different techniques exist for separating out the wavelengths. One method is to use a [[monochromator]], for example a Czerny–Turner design, with an optical detector placed at the output slit. As the grating in the monochromator moves, bands of different frequencies (colors) are 'seen' by the detector, and the resulting signal can then be plotted on a display. More precise measurements (down to MHz in the optical spectrum) can be made with a scanning [[Fabry–Pérot interferometer]] along with analog or digital control electronics, which sweep the resonant frequency of an optically resonant cavity using a voltage ramp to [[Piezoelectricity#Piezoelectric motors|piezoelectric motor]] that varies the distance between two highly reflective mirrors. A sensitive [[photodiode]] embedded in the cavity provides an intensity signal, which is plotted against the ramp voltage to produce a visual representation of the optical power spectrum.<ref>Final Report {{cite web |url=http://mason.gmu.edu/~jdilles/capstone/ |title=Team Spectrum |access-date=2015-04-08 |url-status=live |archive-url=https://web.archive.org/web/20160817164232/http://mason.gmu.edu/~jdilles/capstone/ |archive-date=2016-08-17 }}</ref> The frequency response of optical spectrum analyzers tends to be relatively limited, e.g. {{nowrap|800–1600 nm}} (near-infrared), depending on the intended purpose, although (somewhat) wider-bandwidth general purpose instruments are available. == Vibration spectrum analyzer == A vibration spectrum analyzer allows to analyze vibration amplitudes at various component frequencies, In this way, vibration occurring at specific frequencies can be identified and tracked. Since particular machinery problems generate vibration at specific frequencies, machinery faults can be detected or diagnosed. Vibration Spectrum Analyzers use the signal from different types of sensor, such as: [[accelerometer]]s, velocity transducers and [[proximity sensor]]s. The uses of a vibration spectrum analyzer in machine condition monitoring allows to detect and identify machine faults such as: rotor imbalance, shaft misalignment, mechanical looseness, bearing defects, among others. Vibration analysis can also be used in structures to identify structural resonances or to perform modal analysis. == See also == * [[Electrical measurements]] * [[Electromagnetic spectrum]] * [[Measuring receiver]] * [[Radio-frequency sweep]] * [[Spectral leakage]] * [[Spectral music]] * [[Radio spectrum scope]] * [[Stationary-wave integrated Fourier-transform spectrometry]] == References == === Footnotes === {{Reflist|2}} == External links == {{Commons category|Spectrum analyzers}} * Sri Welaratna, "[https://web.archive.org/web/20130527184028/http://www.dataphysics.com/resources/library-data-physics-center/30-years-of-fft-analyzers.html]", ''Sound and Vibration'' (January 1997, 30th anniversary issue). A historical review of hardware spectrum-analyzer devices. {{Electrical and electronic measuring equipment}} {{Authority control}} {{DEFAULTSORT:Spectrum Analyzer}} [[Category:Electronic test equipment]] [[Category:Laboratory equipment]] [[Category:Radio technology]] [[Category:Signal processing]] [[Category:Spectroscopy]] [[Category:Scattering]] [[Category:Acoustics]] [[Category:Spectrum (physical sciences)]]'
Unified diff of changes made by edit (edit_diff)
'@@ -1,5 +1,6 @@ {{Short description|Electronic testing device}} [[Image:Spektrumanalysator FSL von Rohde & Schwarz.jpg|right|thumb|A spectrum analyzer from 2005] -[[File:A modern real time spectrum analyzer.jpg|thumb|A modern real time spectrum analyzer from 2019]] +[[File:A modern real time spectrum analyzer.jpg|thumb|A modern real time spectrum analyzer from 2019]] https://mediapool.bmwgroup.com/cache/P9/202408/P90564521/P90564521-the-all-new-bmw-m5-touring-08-2024-600px.jpg + BBB '''spectrum analyzer''' measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, [[Frequency spectrum|spectral]] compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate [[transducer]]. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a [[monochromator]] to make measurements. '
New page size (new_size)
31372
Old page size (old_size)
31259
Size change in edit (edit_delta)
113
Lines added in edit (added_lines)
[ 0 => '[[File:A modern real time spectrum analyzer.jpg|thumb|A modern real time spectrum analyzer from 2019]] https://mediapool.bmwgroup.com/cache/P9/202408/P90564521/P90564521-the-all-new-bmw-m5-touring-08-2024-600px.jpg', 1 => '' ]
Lines removed in edit (removed_lines)
[ 0 => '[[File:A modern real time spectrum analyzer.jpg|thumb|A modern real time spectrum analyzer from 2019]]' ]
Parsed HTML source of the new revision (new_html)
'<div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Electronic testing device</div> <p>[[Image:Spektrumanalysator FSL von Rohde &amp; Schwarz.jpg|right|thumb|A spectrum analyzer from 2005] </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/enwiki/wiki/File:A_modern_real_time_spectrum_analyzer.jpg" class="mw-file-description"><img src="/upwiki/wikipedia/commons/thumb/6/61/A_modern_real_time_spectrum_analyzer.jpg/220px-A_modern_real_time_spectrum_analyzer.jpg" decoding="async" width="220" height="135" class="mw-file-element" srcset="/upwiki/wikipedia/commons/thumb/6/61/A_modern_real_time_spectrum_analyzer.jpg/330px-A_modern_real_time_spectrum_analyzer.jpg 1.5x, /upwiki/wikipedia/commons/thumb/6/61/A_modern_real_time_spectrum_analyzer.jpg/440px-A_modern_real_time_spectrum_analyzer.jpg 2x" data-file-width="1915" data-file-height="1177" /></a><figcaption>A modern real time spectrum analyzer from 2019</figcaption></figure> <p><a rel="nofollow" class="external free" href="https://mediapool.bmwgroup.com/cache/P9/202408/P90564521/P90564521-the-all-new-bmw-m5-touring-08-2024-600px.jpg">https://mediapool.bmwgroup.com/cache/P9/202408/P90564521/P90564521-the-all-new-bmw-m5-touring-08-2024-600px.jpg</a> </p><p><br /> BBB <b>spectrum analyzer</b> measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, <a href="/enwiki/wiki/Frequency_spectrum" class="mw-redirect" title="Frequency spectrum">spectral</a> compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate <a href="/enwiki/wiki/Transducer" title="Transducer">transducer</a>. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a <a href="/enwiki/wiki/Monochromator" title="Monochromator">monochromator</a> to make measurements. </p><p>By analyzing the <a href="/enwiki/wiki/Frequency_spectrum" class="mw-redirect" title="Frequency spectrum">spectra</a> of electrical signals, dominant frequency, <a href="/enwiki/wiki/Electric_power" title="Electric power">power</a>, <a href="/enwiki/wiki/Distortion" title="Distortion">distortion</a>, <a href="/enwiki/wiki/Harmonics" class="mw-redirect" title="Harmonics">harmonics</a>, <a href="/enwiki/wiki/Bandwidth_(signal_processing)" title="Bandwidth (signal processing)">bandwidth</a>, and other spectral components of a signal can be observed that are not easily detectable in <a href="/enwiki/wiki/Time_domain" title="Time domain">time domain</a> <a href="/enwiki/wiki/Waveform" title="Waveform">waveforms</a>. These parameters are useful in the characterization of electronic devices, such as wireless transmitters. </p><p>The display of a spectrum analyzer has <i>frequency</i> displayed on the horizontal axis and the <i>amplitude</i> on the vertical axis. To the casual observer, a spectrum analyzer looks like an <a href="/enwiki/wiki/Oscilloscope" title="Oscilloscope">oscilloscope</a>, which plots <i>amplitude</i> on the vertical axis but <i>time</i> on the horizontal axis. In fact, some lab instruments can function either as an oscilloscope or a spectrum analyzer. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#History"><span class="tocnumber">1</span> <span class="toctext">History</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Types"><span class="tocnumber">2</span> <span class="toctext">Types</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Form_factor"><span class="tocnumber">3</span> <span class="toctext">Form factor</span></a> <ul> <li class="toclevel-2 tocsection-4"><a href="#Benchtop"><span class="tocnumber">3.1</span> <span class="toctext">Benchtop</span></a></li> <li class="toclevel-2 tocsection-5"><a href="#Portable"><span class="tocnumber">3.2</span> <span class="toctext">Portable</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#Handheld"><span class="tocnumber">3.3</span> <span class="toctext">Handheld</span></a></li> <li class="toclevel-2 tocsection-7"><a href="#Networked"><span class="tocnumber">3.4</span> <span class="toctext">Networked</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-8"><a href="#Theory_of_operation"><span class="tocnumber">4</span> <span class="toctext">Theory of operation</span></a> <ul> <li class="toclevel-2 tocsection-9"><a href="#Swept-tuned"><span class="tocnumber">4.1</span> <span class="toctext">Swept-tuned</span></a></li> <li class="toclevel-2 tocsection-10"><a href="#FFT-based"><span class="tocnumber">4.2</span> <span class="toctext">FFT-based</span></a></li> <li class="toclevel-2 tocsection-11"><a href="#Hybrid_superheterodyne-FFT"><span class="tocnumber">4.3</span> <span class="toctext">Hybrid superheterodyne-FFT</span></a></li> <li class="toclevel-2 tocsection-12"><a href="#Realtime_FFT"><span class="tocnumber">4.4</span> <span class="toctext">Realtime FFT</span></a> <ul> <li class="toclevel-3 tocsection-13"><a href="#Online_realtime_and_offline_realtime"><span class="tocnumber">4.4.1</span> <span class="toctext">Online realtime and offline realtime</span></a></li> <li class="toclevel-3 tocsection-14"><a href="#FFT_overlapping"><span class="tocnumber">4.4.2</span> <span class="toctext">FFT overlapping</span></a></li> <li class="toclevel-3 tocsection-15"><a href="#Minimum_signal_detection_time"><span class="tocnumber">4.4.3</span> <span class="toctext">Minimum signal detection time</span></a> <ul> <li class="toclevel-4 tocsection-16"><a href="#Persistence"><span class="tocnumber">4.4.3.1</span> <span class="toctext">Persistence</span></a></li> <li class="toclevel-4 tocsection-17"><a href="#Hidden_signals"><span class="tocnumber">4.4.3.2</span> <span class="toctext">Hidden signals</span></a></li> </ul> </li> </ul> </li> </ul> </li> <li class="toclevel-1 tocsection-18"><a href="#Typical_functionality"><span class="tocnumber">5</span> <span class="toctext">Typical functionality</span></a> <ul> <li class="toclevel-2 tocsection-19"><a href="#Center_frequency_and_span"><span class="tocnumber">5.1</span> <span class="toctext">Center frequency and span</span></a></li> <li class="toclevel-2 tocsection-20"><a href="#Resolution_bandwidth"><span class="tocnumber">5.2</span> <span class="toctext">Resolution bandwidth</span></a></li> <li class="toclevel-2 tocsection-21"><a href="#Video_bandwidth"><span class="tocnumber">5.3</span> <span class="toctext">Video bandwidth</span></a></li> <li class="toclevel-2 tocsection-22"><a href="#Detector"><span class="tocnumber">5.4</span> <span class="toctext">Detector</span></a></li> <li class="toclevel-2 tocsection-23"><a href="#Displayed_average_noise_level"><span class="tocnumber">5.5</span> <span class="toctext">Displayed average noise level</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-24"><a href="#Radio-frequency_uses"><span class="tocnumber">6</span> <span class="toctext">Radio-frequency uses</span></a></li> <li class="toclevel-1 tocsection-25"><a href="#Audio-frequency_uses"><span class="tocnumber">7</span> <span class="toctext">Audio-frequency uses</span></a></li> <li class="toclevel-1 tocsection-26"><a href="#Optical_spectrum_analyzer"><span class="tocnumber">8</span> <span class="toctext">Optical spectrum analyzer</span></a></li> <li class="toclevel-1 tocsection-27"><a href="#Vibration_spectrum_analyzer"><span class="tocnumber">9</span> <span class="toctext">Vibration spectrum analyzer</span></a></li> <li class="toclevel-1 tocsection-28"><a href="#See_also"><span class="tocnumber">10</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-29"><a href="#References"><span class="tocnumber">11</span> <span class="toctext">References</span></a> <ul> <li class="toclevel-2 tocsection-30"><a href="#Footnotes"><span class="tocnumber">11.1</span> <span class="toctext">Footnotes</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-31"><a href="#External_links"><span class="tocnumber">12</span> <span class="toctext">External links</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236091366">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Expand_section plainlinks metadata ambox mbox-small-left ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><span typeof="mw:File"><a href="/enwiki/wiki/File:Wiki_letter_w_cropped.svg" class="mw-file-description"><img alt="[icon]" src="/upwiki/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/20px-Wiki_letter_w_cropped.svg.png" decoding="async" width="20" height="14" class="mw-file-element" srcset="/upwiki/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/30px-Wiki_letter_w_cropped.svg.png 1.5x, /upwiki/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/40px-Wiki_letter_w_cropped.svg.png 2x" data-file-width="44" data-file-height="31" /></a></span></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs expansion</b>. You can help by <a class="external text" href="https://en.wikipedia.org/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=">adding to it</a>. <span class="date-container"><i>(<span class="date">December 2012</span>)</i></span></div></td></tr></tbody></table> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/enwiki/wiki/File:Sonagraphe.jpg" class="mw-file-description"><img src="/upwiki/wikipedia/commons/thumb/4/4f/Sonagraphe.jpg/220px-Sonagraphe.jpg" decoding="async" width="220" height="153" class="mw-file-element" srcset="/upwiki/wikipedia/commons/thumb/4/4f/Sonagraphe.jpg/330px-Sonagraphe.jpg 1.5x, /upwiki/wikipedia/commons/thumb/4/4f/Sonagraphe.jpg/440px-Sonagraphe.jpg 2x" data-file-width="1379" data-file-height="959" /></a><figcaption>A spectrum analyzer circa 1970</figcaption></figure> <p>The first spectrum analyzers, in the 1960s, were swept-tuned instruments.<sup id="cite_ref-Hiebert_1-0" class="reference"><a href="#cite_note-Hiebert-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Following the discovery of the <a href="/enwiki/wiki/Fast_Fourier_transform" title="Fast Fourier transform">fast Fourier transform</a> (FFT) in 1965, the first FFT-based analyzers were introduced in 1967.<sup id="cite_ref-Deery_2-0" class="reference"><a href="#cite_note-Deery-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Today, there are three basic types of analyzer: the swept-tuned spectrum analyzer, the vector signal analyzer, and the real-time spectrum analyzer.<sup id="cite_ref-Hiebert_1-1" class="reference"><a href="#cite_note-Hiebert-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Types">Types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=2" title="Edit section: Types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>[[Image:Spectrum Analyser PCB.jpg|thumb|right|The main PCB from a <span class="nowrap">20 GHz</span> spectrum analyser. Showing the <a href="/enwiki/wiki/Distributed_element_filter" class="mw-redirect" title="Distributed element filter">stripline PCB filters</a>, and modular block construction.]] Spectrum analyzer types are distinguished by the methods used to obtain the spectrum of a signal. There are swept-tuned and fast Fourier transform (FFT) based spectrum analyzers: </p> <ul><li>A <i>swept-tuned</i> analyzer uses a <a href="/enwiki/wiki/Superheterodyne_receiver" title="Superheterodyne receiver">superheterodyne receiver</a> to <a href="/enwiki/wiki/Superheterodyne_receiver#Local_oscillator_and_mixer" title="Superheterodyne receiver">down-convert</a> a portion of the input signal spectrum to the center frequency of a narrow <a href="/enwiki/wiki/Band-pass_filter" title="Band-pass filter">band-pass filter</a>, whose instantaneous output power is recorded or displayed as a function of time. By sweeping the receiver's center-frequency (using a <a href="/enwiki/wiki/Voltage-controlled_oscillator" title="Voltage-controlled oscillator">voltage-controlled oscillator</a>) through a range of frequencies, the output is also a function of frequency. But while the sweep centers on any particular frequency, it may be missing short-duration events at other frequencies.</li> <li>An FFT analyzer computes a time-sequence of <a href="/enwiki/wiki/Periodogram" title="Periodogram">periodograms</a>. <i>FFT</i> refers to a particular mathematical algorithm used in the process. This is commonly used in conjunction with a <a href="/enwiki/wiki/Superheterodyne_receiver" title="Superheterodyne receiver">receiver</a> and <a href="/enwiki/wiki/Analog-to-digital_converter" title="Analog-to-digital converter">analog-to-digital converter</a>. As above, the receiver reduces the center-frequency of a portion of the input signal spectrum, but the portion is not swept. The purpose of the receiver is to reduce the <a href="/enwiki/wiki/Sampling_rate" class="mw-redirect" title="Sampling rate">sampling rate</a> that the analyzer must contend with. With a sufficiently low sample-rate, FFT analyzers can process all the samples (100% <a href="/enwiki/wiki/Duty-cycle" class="mw-redirect" title="Duty-cycle">duty-cycle</a>), and are therefore able to avoid missing short-duration events.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Form_factor">Form factor</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=3" title="Edit section: Form factor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Spectrum analyzers tend to fall into four form factors: benchtop, portable, handheld and networked. </p> <div class="mw-heading mw-heading3"><h3 id="Benchtop">Benchtop</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=4" title="Edit section: Benchtop"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This form factor is useful for applications where the spectrum analyzer can be plugged into AC power, which generally means in a lab environment or production/manufacturing area. Bench top spectrum analyzers have historically offered better performance and specifications than the portable or handheld form factor. Bench top spectrum analyzers normally have multiple fans (with associated vents) to dissipate heat produced by the <a href="/enwiki/wiki/Central_processing_unit" title="Central processing unit">processor</a>. Due to their architecture, bench top spectrum analyzers typically weigh more than 30 pounds (14&#160;kg). Some bench top spectrum analyzers offer optional <a href="/enwiki/wiki/Battery_pack" title="Battery pack">battery packs</a>, allowing them to be used away from <a href="/enwiki/wiki/AC_power" title="AC power">AC power</a>. This type of analyzer is often referred to as a "portable" spectrum analyzer. </p> <div class="mw-heading mw-heading3"><h3 id="Portable">Portable</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=5" title="Edit section: Portable"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This form factor is useful for any applications where the spectrum analyzer needs to be taken outside to make measurements or simply carried while in use. Attributes that contribute to a useful portable spectrum analyzer include: </p> <ul><li>Optional battery-powered operation to allow the user to move freely outside.</li> <li>Clearly viewable display to allow the screen to be read in bright sunlight, darkness or dusty conditions.</li> <li>Light weight (usually less than 15 pounds (6.8&#160;kg)).</li></ul> <div class="mw-heading mw-heading3"><h3 id="Handheld">Handheld</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=6" title="Edit section: Handheld"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/enwiki/wiki/File:Space_Aggressors_test_Red_Flag_Airmen_(2743147).jpeg" class="mw-file-description"><img src="/upwiki/wikipedia/commons/thumb/4/4d/Space_Aggressors_test_Red_Flag_Airmen_%282743147%29.jpeg/220px-Space_Aggressors_test_Red_Flag_Airmen_%282743147%29.jpeg" decoding="async" width="220" height="166" class="mw-file-element" srcset="/upwiki/wikipedia/commons/thumb/4/4d/Space_Aggressors_test_Red_Flag_Airmen_%282743147%29.jpeg/330px-Space_Aggressors_test_Red_Flag_Airmen_%282743147%29.jpeg 1.5x, /upwiki/wikipedia/commons/thumb/4/4d/Space_Aggressors_test_Red_Flag_Airmen_%282743147%29.jpeg/440px-Space_Aggressors_test_Red_Flag_Airmen_%282743147%29.jpeg 2x" data-file-width="3000" data-file-height="2258" /></a><figcaption>Handheld spectrum analyzer.</figcaption></figure> <p>This form factor is useful for any application where the spectrum analyzer needs to be very light and small. Handheld analyzers usually offer a limited capability relative to larger systems. Attributes that contribute to a useful handheld spectrum analyzer include: </p> <ul><li>Very low power consumption.</li> <li>Battery-powered operation while in the field to allow the user to move freely outside.</li> <li>Very small size</li> <li>Light weight (usually less than 2 pounds (0.9&#160;kg)).</li></ul> <div class="mw-heading mw-heading3"><h3 id="Networked">Networked</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=7" title="Edit section: Networked"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This form factor does not include a display and these devices are designed to enable a new class of geographically-distributed spectrum monitoring and analysis applications. The key attribute is the ability to connect the analyzer to a network and monitor such devices across a network. While many spectrum analyzers have an Ethernet port for control, they typically lack efficient data transfer mechanisms and are too bulky or expensive to be deployed in such a distributed manner. Key applications for such devices include RF intrusion detection systems for secure facilities where wireless signaling is prohibited. As well cellular operators are using such analyzers to remotely monitor interference in licensed spectral bands. The distributed nature of such devices enable geo-location of transmitters, spectrum monitoring for dynamic spectrum access and many other such applications. </p><p>Key attributes of such devices include: </p> <ul><li>Network-efficient data transfer</li> <li>Low power consumption</li> <li>The ability to synchronize data captures across a network of analyzers</li> <li>Low cost to enable mass deployment.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Theory_of_operation">Theory of operation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=8" title="Edit section: Theory of operation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File"><a href="/enwiki/wiki/File:BPFAnimationV2.gif" class="mw-file-description" title="This animation shows how the resolution bandwidth of a swept-tuned spectrum analyzer is affected by the IF bandpass filter. Notice that wider bandwidth filters are unable to resolve the two closely space frequencies and the LO feedthrough causes the appearance of a baseband signal."><img alt="This animation shows how the resolution bandwidth of a swept-tuned spectrum analyzer is affected by the IF bandpass filter. Notice that wider bandwidth filters are unable to resolve the two closely space frequencies and the LO feedthrough causes the appearance of a baseband signal." src="/upwiki/wikipedia/commons/1/1d/BPFAnimationV2.gif" decoding="async" width="560" height="420" class="mw-file-element" data-file-width="560" data-file-height="420" /></a><figcaption>This animation shows how the resolution bandwidth of a swept-tuned spectrum analyzer is affected by the IF bandpass filter. Notice that wider bandwidth filters are unable to resolve the two closely space frequencies and the LO feedthrough causes the appearance of a baseband signal.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Swept-tuned">Swept-tuned</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=9" title="Edit section: Swept-tuned"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As discussed above in <b>types</b>, a swept-tuned spectrum analyzer <a href="/enwiki/wiki/Superheterodyne_receiver#High-side_and_low-side_injection" title="Superheterodyne receiver">down-converts</a><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/enwiki/wiki/MOS:BROKENSECTIONLINKS" class="mw-redirect" title="MOS:BROKENSECTIONLINKS"><span title="The anchor (High-side and low-side injection) has been deleted. (2024-09-03)">broken anchor</span></a></i>&#93;</sup> a portion of the input signal spectrum to the center frequency of a <a href="/enwiki/wiki/Band-pass_filter" title="Band-pass filter">band-pass filter</a> by sweeping the <a href="/enwiki/wiki/Voltage-controlled_oscillator" title="Voltage-controlled oscillator">voltage-controlled oscillator</a> through a range of frequencies, enabling the consideration of the full frequency range of the instrument. </p><p>The bandwidth of the band-pass filter dictates the resolution bandwidth, which is related to the minimum bandwidth detectable by the instrument. As demonstrated by the animation to the right, the smaller the bandwidth, the more spectral resolution. However, there is a trade-off between how quickly the display can update the full frequency span under consideration and the frequency resolution, which is relevant for distinguishing frequency components that are close together. For a swept-tuned architecture, this relation for sweep time is useful: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ ST={\frac {k(\mathrm {Span} )}{RBW^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>S</mi> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>R</mi> <mi>B</mi> <msup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ ST={\frac {k(\mathrm {Span} )}{RBW^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/56133d87c0be595196ab76a767c5a2caca9ca8fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.711ex; height:6.009ex;" alt="{\displaystyle \ ST={\frac {k(\mathrm {Span} )}{RBW^{2}}}}"></span></dd></dl> <p>Where ST is sweep time in seconds, k is proportionality constant, Span is the frequency range under consideration in hertz, and RBW is the resolution bandwidth in Hertz.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Sweeping too fast, however, causes a drop in displayed amplitude and a shift in the displayed frequency.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Also, the animation contains both up- and down-converted spectra, which is due to a <a href="/enwiki/wiki/Frequency_mixer" title="Frequency mixer">frequency mixer</a> producing both sum and difference frequencies. The <a href="/enwiki/wiki/Local_oscillator" title="Local oscillator">local oscillator</a> feedthrough is due to the imperfect isolation from the <a href="/enwiki/wiki/Intermediate_frequency" title="Intermediate frequency">IF</a> signal path in the <a href="/enwiki/wiki/Frequency_mixer" title="Frequency mixer">mixer</a>. </p><p>For very weak signals, a <a href="/enwiki/wiki/Pre-amplifier" class="mw-redirect" title="Pre-amplifier">pre-amplifier</a> is used, although <a href="/enwiki/wiki/Total_harmonic_distortion" title="Total harmonic distortion">harmonic</a> and <a href="/enwiki/wiki/Intermodulation" title="Intermodulation">intermodulation</a> distortion may lead to the creation of new frequency components that were not present in the original signal. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/enwiki/wiki/File:3D_battery_charger_RF_spectrum_over_time.jpg" class="mw-file-description"><img src="/upwiki/wikipedia/commons/thumb/0/08/3D_battery_charger_RF_spectrum_over_time.jpg/350px-3D_battery_charger_RF_spectrum_over_time.jpg" decoding="async" width="350" height="197" class="mw-file-element" srcset="/upwiki/wikipedia/commons/thumb/0/08/3D_battery_charger_RF_spectrum_over_time.jpg/525px-3D_battery_charger_RF_spectrum_over_time.jpg 1.5x, /upwiki/wikipedia/commons/thumb/0/08/3D_battery_charger_RF_spectrum_over_time.jpg/700px-3D_battery_charger_RF_spectrum_over_time.jpg 2x" data-file-width="3840" data-file-height="2160" /></a><figcaption>3D plot: 600 seconds RF spectrum over time from a battery charger</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="FFT-based">FFT-based</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=10" title="Edit section: FFT-based"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>With an FFT based spectrum analyzer, the frequency resolution is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \nu =1/T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \nu =1/T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/3344f9ee3e8cf43737c416c903f2f2013dc6e82e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.228ex; height:2.843ex;" alt="{\displaystyle \Delta \nu =1/T}"></span>, the inverse of the time <i>T</i> over which the waveform is measured and Fourier transformed. </p><p>With Fourier transform analysis in a digital spectrum analyzer, it is necessary to sample the input signal with a sampling frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu _{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu _{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/4842619af57678f318297acbdf7c7c201ef8f918" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.152ex; height:2.009ex;" alt="{\displaystyle \nu _{s}}"></span> that is at least twice the bandwidth of the signal, due to the <a href="/enwiki/wiki/Nyquist_rate" title="Nyquist rate">Nyquist limit</a>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> A Fourier transform will then produce a spectrum containing all frequencies from zero to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu _{s}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu _{s}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/f08db8d1573ae00df42fe0796668574c192e4c69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.477ex; height:2.843ex;" alt="{\displaystyle \nu _{s}/2}"></span>. This can place considerable demands on the required <a href="/enwiki/wiki/Analog-to-digital_converter" title="Analog-to-digital converter">analog-to-digital converter</a> and processing power for the Fourier transform, making FFT based spectrum analyzers limited in frequency range. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/enwiki/wiki/File:Aaronia_Spectrum_Analyzer_Software.jpg" class="mw-file-description"><img src="/upwiki/wikipedia/commons/thumb/6/6e/Aaronia_Spectrum_Analyzer_Software.jpg/350px-Aaronia_Spectrum_Analyzer_Software.jpg" decoding="async" width="350" height="374" class="mw-file-element" srcset="/upwiki/wikipedia/commons/6/6e/Aaronia_Spectrum_Analyzer_Software.jpg 1.5x" data-file-width="387" data-file-height="413" /></a><figcaption>Frequency spectrum of the heating up period of a switching power supply (spread spectrum) incl. <a href="/enwiki/wiki/Spectrogram" title="Spectrogram">spectrogram</a> over a few minutes</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Hybrid_superheterodyne-FFT">Hybrid superheterodyne-FFT</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=11" title="Edit section: Hybrid superheterodyne-FFT"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since FFT based analyzers are only capable of considering narrow bands, one technique is to combine swept and FFT analysis for consideration of wide and narrow spans. This technique allows for faster sweep time. </p><p>This method is made possible by first down converting the signal, then digitizing the <a href="/enwiki/wiki/Intermediate_frequency" title="Intermediate frequency">intermediate frequency</a> and using superheterodyne or FFT techniques to acquire the spectrum. </p><p>One benefit of digitizing the intermediate frequency is the ability to use <a href="/enwiki/wiki/Digital_filter" title="Digital filter">digital filters</a>, which have a range of <a href="/enwiki/wiki/Digital_filter#Comparison_of_analog_and_digital_filters" title="Digital filter">advantages</a> over analog filters such as near perfect shape factors and improved filter settling time. Also, for consideration of narrow spans, the FFT can be used to increase sweep time without distorting the displayed spectrum. </p> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/enwiki/wiki/File:Spectrum_Analyser_Time_Domain_Sampling_and_Blind_Time.png" class="mw-file-description"><img src="/upwiki/wikipedia/en/thumb/7/7b/Spectrum_Analyser_Time_Domain_Sampling_and_Blind_Time.png/400px-Spectrum_Analyser_Time_Domain_Sampling_and_Blind_Time.png" decoding="async" width="400" height="131" class="mw-file-element" srcset="/upwiki/wikipedia/en/thumb/7/7b/Spectrum_Analyser_Time_Domain_Sampling_and_Blind_Time.png/600px-Spectrum_Analyser_Time_Domain_Sampling_and_Blind_Time.png 1.5x, /upwiki/wikipedia/en/thumb/7/7b/Spectrum_Analyser_Time_Domain_Sampling_and_Blind_Time.png/800px-Spectrum_Analyser_Time_Domain_Sampling_and_Blind_Time.png 2x" data-file-width="931" data-file-height="305" /></a><figcaption>Illustration showing Spectrum Analyzer Blind Time</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Realtime_FFT">Realtime FFT</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=12" title="Edit section: Realtime FFT"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A realtime spectrum analyser does not have any blind time—up to some maximum span, often called the "realtime bandwidth". The analyser is able to sample the incoming RF spectrum in the time domain and convert the information to the frequency domain using the FFT process. FFT's are processed in parallel, gapless and overlapped so there are no gaps in the calculated RF spectrum and no information is missed. </p> <div class="mw-heading mw-heading4"><h4 id="Online_realtime_and_offline_realtime">Online realtime and offline realtime</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=13" title="Edit section: Online realtime and offline realtime"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a sense, any spectrum analyzer that has <a href="/enwiki/wiki/Vector_signal_analyzer" title="Vector signal analyzer">vector signal analyzer</a> capability is a realtime analyzer. It samples data fast enough to satisfy Nyquist Sampling theorem and stores the data in memory for later processing. This kind of analyser is only realtime for the amount of data / capture time it can store in memory and still produces gaps in the spectrum and results during processing time. </p> <div class="mw-heading mw-heading4"><h4 id="FFT_overlapping">FFT overlapping</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=14" title="Edit section: FFT overlapping"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Minimizing distortion of information is important in all spectrum analyzers. The FFT process applies windowing techniques to improve the output spectrum due to producing less side lobes. The effect of windowing may also reduce the level of a signal where it is captured on the boundary between one FFT and the next. For this reason FFT's in a Realtime spectrum analyzer are overlapped. Overlapping rate is approximately 80%. An analyzer that utilises a 1024-point FFT process will re-use approximately 819 samples from the previous FFT process.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Minimum_signal_detection_time">Minimum signal detection time</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=15" title="Edit section: Minimum signal detection time"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This is related to the sampling rate of the analyser and the <a href="/enwiki/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a> rate. It is also important for the realtime spectrum analyzer to give good level accuracy. </p><p>Example: for an analyser with <span class="nowrap">40 MHz</span> of realtime <a href="/enwiki/wiki/Bandwidth_(signal_processing)" title="Bandwidth (signal processing)">bandwidth</a> (the maximum RF span that can be processed in realtime) approximately <span class="nowrap">50 Msample/second</span> (complex) are needed. If the spectrum analyzer produces <span class="nowrap">250 000 FFT/s</span> an FFT calculation is produced every <span class="nowrap">4 μs.</span> For a <span class="nowrap">1024 point</span> FFT a full spectrum is produced <span class="nowrap">1024 x (1/50 x 10<sup>6</sup>),</span> approximately every <span class="nowrap">20 μs.</span> This also gives us our overlap rate of 80% (20 μs − 4 μs) / 20 μs = 80%. </p> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/enwiki/wiki/File:Comparison_of_Max_Hold_Spectrum_Analyzer_trace_and_Persistence_Trace.png" class="mw-file-description"><img src="/upwiki/wikipedia/en/thumb/0/00/Comparison_of_Max_Hold_Spectrum_Analyzer_trace_and_Persistence_Trace.png/400px-Comparison_of_Max_Hold_Spectrum_Analyzer_trace_and_Persistence_Trace.png" decoding="async" width="400" height="145" class="mw-file-element" srcset="/upwiki/wikipedia/en/thumb/0/00/Comparison_of_Max_Hold_Spectrum_Analyzer_trace_and_Persistence_Trace.png/600px-Comparison_of_Max_Hold_Spectrum_Analyzer_trace_and_Persistence_Trace.png 1.5x, /upwiki/wikipedia/en/thumb/0/00/Comparison_of_Max_Hold_Spectrum_Analyzer_trace_and_Persistence_Trace.png/800px-Comparison_of_Max_Hold_Spectrum_Analyzer_trace_and_Persistence_Trace.png 2x" data-file-width="1221" data-file-height="443" /></a><figcaption>Comparison between Swept Max Hold and Realtime Persistence displays</figcaption></figure> <div class="mw-heading mw-heading5"><h5 id="Persistence">Persistence</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=16" title="Edit section: Persistence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Realtime spectrum analyzers are able to produce much more information for users to examine the frequency spectrum in more detail. A normal swept spectrum analyzer would produce max peak, min peak displays for example but a realtime spectrum analyzer is able to plot all calculated FFT's over a given period of time with the added colour-coding which represents how often a signal appears. For example, this image shows the difference between how a spectrum is displayed in a normal swept spectrum view and using a "Persistence" view on a realtime spectrum analyzer. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/enwiki/wiki/File:Bluetooth_signal_behind_wireless_lan_signal.png" class="mw-file-description"><img src="/upwiki/wikipedia/en/thumb/b/bd/Bluetooth_signal_behind_wireless_lan_signal.png/350px-Bluetooth_signal_behind_wireless_lan_signal.png" decoding="async" width="350" height="263" class="mw-file-element" srcset="/upwiki/wikipedia/en/thumb/b/bd/Bluetooth_signal_behind_wireless_lan_signal.png/525px-Bluetooth_signal_behind_wireless_lan_signal.png 1.5x, /upwiki/wikipedia/en/thumb/b/bd/Bluetooth_signal_behind_wireless_lan_signal.png/700px-Bluetooth_signal_behind_wireless_lan_signal.png 2x" data-file-width="800" data-file-height="600" /></a><figcaption>Bluetooth signal hidden behind wireless LAN signal</figcaption></figure> <div class="mw-heading mw-heading5"><h5 id="Hidden_signals">Hidden signals</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=17" title="Edit section: Hidden signals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Realtime spectrum analyzers are able to see signals hidden behind other signals. This is possible because no information is missed and the display to the user is the output of FFT calculations. An example of this can be seen on the right. </p> <div class="mw-heading mw-heading2"><h2 id="Typical_functionality">Typical functionality</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=18" title="Edit section: Typical functionality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Center_frequency_and_span">Center frequency and span</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=19" title="Edit section: Center frequency and span"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a typical spectrum analyzer there are options to set the start, stop, and center frequency. The frequency halfway between the stop and start frequencies on a spectrum analyzer display is known as the <b>center frequency</b>. This is the frequency that is in the middle of the display's frequency axis. <b>Span</b> specifies the range between the start and stop frequencies. These two parameters allow for adjustment of the display within the frequency range of the instrument to enhance visibility of the spectrum measured. </p> <div class="mw-heading mw-heading3"><h3 id="Resolution_bandwidth">Resolution bandwidth</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=20" title="Edit section: Resolution bandwidth"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As discussed in the <b>operation</b> section, the <b>resolution bandwidth</b> filter or RBW filter is the <a href="/enwiki/wiki/Bandpass_filter" class="mw-redirect" title="Bandpass filter">bandpass filter</a> in the <a href="/enwiki/wiki/Intermediate_frequency" title="Intermediate frequency">IF</a> path. It's the <a href="/enwiki/wiki/Bandwidth_(signal_processing)" title="Bandwidth (signal processing)">bandwidth</a> of the <a href="/enwiki/wiki/RF_chain" title="RF chain">RF chain</a> before the detector (power measurement device).<sup id="cite_ref-plsa_7-0" class="reference"><a href="#cite_note-plsa-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> It determines the RF <a href="/enwiki/wiki/Noise_floor" title="Noise floor">noise floor</a> and how close two signals can be and still be resolved by the analyzer into two separate peaks.<sup id="cite_ref-plsa_7-1" class="reference"><a href="#cite_note-plsa-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Adjusting the bandwidth of this filter allows for the discrimination of signals with closely spaced frequency components, while also changing the measured noise floor. Decreasing the bandwidth of an RBW filter decreases the measured noise floor and vice versa. This is due to higher RBW filters passing more frequency components through to the <a href="/enwiki/wiki/Envelope_detector" title="Envelope detector">envelope detector</a> than lower bandwidth RBW filters, therefore a higher RBW causes a higher measured noise floor. </p> <div class="mw-heading mw-heading3"><h3 id="Video_bandwidth">Video bandwidth</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=21" title="Edit section: Video bandwidth"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>video bandwidth</b> filter or VBW filter is the <a href="/enwiki/wiki/Low-pass_filter" title="Low-pass filter">low-pass filter</a> directly after the <a href="/enwiki/wiki/Envelope_detector" title="Envelope detector">envelope detector</a>. It's the bandwidth of the signal chain after the detector. Averaging or peak detection then refers to how the digital storage portion of the device records samples—it takes several samples per time step and stores only one sample, either the average of the samples or the highest one.<sup id="cite_ref-plsa_7-2" class="reference"><a href="#cite_note-plsa-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> The video bandwidth determines the capability to discriminate between two different power levels.<sup id="cite_ref-plsa_7-3" class="reference"><a href="#cite_note-plsa-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> This is because a narrower VBW will remove noise in the detector output.<sup id="cite_ref-plsa_7-4" class="reference"><a href="#cite_note-plsa-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> This filter is used to "smooth" the display by removing noise from the envelope. Similar to the RBW, the VBW affects the sweep time of the display if the VBW is less than the RBW. If VBW is less than RBW, this relation for sweep time is useful: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{\mathrm {sweep} }={\frac {k\cdot (f_{2}-f_{1})}{\mathrm {RBW} \times \mathrm {VBW} }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">w</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">B</mi> <mi mathvariant="normal">W</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">V</mi> <mi mathvariant="normal">B</mi> <mi mathvariant="normal">W</mi> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{\mathrm {sweep} }={\frac {k\cdot (f_{2}-f_{1})}{\mathrm {RBW} \times \mathrm {VBW} }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/enwiki/api/rest_v1/media/math/render/svg/dff3c5f66b92ef1279b4def21267abd4cc70e607" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:24.225ex; height:5.843ex;" alt="{\displaystyle t_{\mathrm {sweep} }={\frac {k\cdot (f_{2}-f_{1})}{\mathrm {RBW} \times \mathrm {VBW} }}.}"></span></dd></dl> <p>Here <i>t</i><sub>sweep</sub> is the sweep time, <i>k</i> is a dimensionless proportionality constant, <i>f</i><sub>2</sub>&#160;&#8722; <i>f</i><sub>1</sub> is the frequency range of the sweep, RBW is the resolution bandwidth, and VBW is the video bandwidth.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Detector">Detector</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=22" title="Edit section: Detector"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>With the advent of digitally based displays, some modern spectrum analyzers use <a href="/enwiki/wiki/Analog-to-digital_converter" title="Analog-to-digital converter">analog-to-digital converters</a> to sample spectrum amplitude after the VBW filter. Since displays have a discrete number of points, the frequency span measured is also digitised. <b>Detectors</b> are used in an attempt to adequately map the correct signal power to the appropriate frequency point on the display. There are in general three types of detectors: sample, peak, and average </p> <ul><li><b>Sample detection</b> – sample detection simply uses the midpoint of a given interval as the display point value. While this method does represent random noise well, it does not always capture all sinusoidal signals.</li> <li><b>Peak detection</b> – peak detection uses the maximum measured point within a given interval as the display point value. This insures that the maximum sinusoid is measured within the interval; however, smaller sinusoids within the interval may not be measured. Also, peak detection does not give a good representation of random noise.</li> <li><b>Average detection</b> – average detection uses all of the data points within the interval to consider the display point value. This is done by power (<a href="/enwiki/wiki/Root_mean_square" title="Root mean square">rms</a>) averaging, voltage averaging, or log-power averaging.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Displayed_average_noise_level">Displayed average noise level</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=23" title="Edit section: Displayed average noise level"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>Displayed Average Noise Level</b> (DANL) is just what it says it is—the average noise level displayed on the analyzer. This can either be with a specific resolution bandwidth (e.g. −120 dBm @1&#160;kHz RBW), or normalized to 1&#160;Hz (usually in dBm/Hz) e.g. −150 dBm(Hz).This is also called the sensitivity of the spectrum analyzer. If a signal level equal to the average noise level is fed there will be a 3&#160;dB display. To increase the sensitivity of the spectrum analyzer a preamplifier with lower noise figure may be connected at the input of the spectrum analyzer.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Radio-frequency_uses">Radio-frequency uses</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=24" title="Edit section: Radio-frequency uses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Spectrum analyzers are widely used to measure the <a href="/enwiki/wiki/Frequency_response" title="Frequency response">frequency response</a>, <a href="/enwiki/wiki/Electronic_noise" class="mw-redirect" title="Electronic noise">noise</a> and <a href="/enwiki/wiki/Distortion" title="Distortion">distortion</a> characteristics of all kinds of <a href="/enwiki/wiki/Radio-frequency" class="mw-redirect" title="Radio-frequency">radio-frequency</a> (RF) circuitry, by comparing the input and output spectra. For example, in RF mixers, spectrum analyzer is used to find the levels of third order inter-modulation products and conversion loss. In RF oscillators, spectrum analyzer is used to find the levels of different harmonics. </p><p>In <a href="/enwiki/wiki/Telecommunications" title="Telecommunications">telecommunications</a>, spectrum analyzers are used to determine occupied bandwidth and track interference sources. For example, cell planners use this equipment to determine interference sources in the <a href="/enwiki/wiki/GSM_frequency_bands" title="GSM frequency bands">GSM frequency bands</a> and <a href="/enwiki/wiki/UMTS_frequency_bands" title="UMTS frequency bands">UMTS frequency bands</a>. </p><p>In <a href="/enwiki/wiki/Electromagnetic_compatibility" title="Electromagnetic compatibility">EMC testing</a>, a spectrum analyzer is used for basic precompliance testing; however, it can not be used for full testing and certification. Instead, an EMI receiver is used. </p><p>A spectrum analyzer is used to determine whether a wireless transmitter is working according to defined standards for purity of emissions. Output signals at frequencies other than the intended communications frequency appear as vertical lines (pips) on the display. A spectrum analyzer is also used to determine, by direct observation, the bandwidth of a digital or analog signal. </p><p>A spectrum analyzer interface is a device that connects to a wireless receiver or a personal computer to allow visual detection and analysis of electromagnetic signals over a defined band of frequencies. This is called panoramic reception and it is used to determine the frequencies of sources of interference to wireless networking equipment, such as Wi-Fi and wireless routers. </p><p>Spectrum analyzers can also be used to assess RF shielding. RF shielding is of particular importance for the siting of a magnetic resonance imaging machine since stray RF fields would result in artifacts in an MR image.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Audio-frequency_uses">Audio-frequency uses</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=25" title="Edit section: Audio-frequency uses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Spectrum analysis can be used at <a href="/enwiki/wiki/Audio_frequency" title="Audio frequency">audio frequencies</a> to analyse the harmonics of an audio signal. A typical application is to measure the <a href="/enwiki/wiki/Distortion" title="Distortion">distortion</a> of a nominally <a href="/enwiki/wiki/Sinewave" class="mw-redirect" title="Sinewave">sinewave</a> signal; a very-low-distortion sinewave is used as the input to equipment under test, and a spectrum analyser can examine the output, which will have added distortion products, and determine the percentage distortion at each harmonic of the fundamental. Such analysers were at one time described as "wave analysers". Analysis can be carried out by a general-purpose <a href="/enwiki/wiki/Digital_computer" class="mw-redirect" title="Digital computer">digital computer</a> with a <a href="/enwiki/wiki/Sound_card" title="Sound card">sound card</a> selected for suitable performance<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> and appropriate software. Instead of using a low-distortion sinewave, the input can be subtracted from the output, attenuated and phase-corrected, to give only the added distortion and noise, which can be analysed.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>An alternative technique, <a href="/enwiki/wiki/THD_analyzer" class="mw-redirect" title="THD analyzer">total harmonic distortion measurement</a>, cancels out the fundamental with a <a href="/enwiki/wiki/Notch_filter" class="mw-redirect" title="Notch filter">notch filter</a> and measures the total remaining signal, which is total harmonic distortion plus noise; it does not give the harmonic-by-harmonic detail of an analyser. </p><p>Spectrum analyzers are also used by audio engineers to assess their work. In these applications, the spectrum analyzer will show volume levels of frequency bands across the typical <a href="/enwiki/wiki/Hearing_range" title="Hearing range">range of human hearing</a>, rather than displaying a wave. In live sound applications, engineers can use them to pinpoint <a href="/enwiki/wiki/Feedback" title="Feedback">feedback</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Optical_spectrum_analyzer">Optical spectrum analyzer</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=26" title="Edit section: Optical spectrum analyzer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/enwiki/wiki/Optical_spectrometer" title="Optical spectrometer">Optical spectrometer</a></div> <p>An optical spectrum analyzer uses reflective or refractive techniques to separate out the wavelengths of light. An electro-optical detector is used to measure the intensity of the light, which is then normally displayed on a screen in a similar manner to a radio- or audio-frequency spectrum analyzer. </p><p>The input to an optical spectrum analyzer may be simply via an aperture in the instrument's case, an optical fiber or an optical connector to which a fiber-optic cable can be attached. </p><p>Different techniques exist for separating out the wavelengths. One method is to use a <a href="/enwiki/wiki/Monochromator" title="Monochromator">monochromator</a>, for example a Czerny–Turner design, with an optical detector placed at the output slit. As the grating in the monochromator moves, bands of different frequencies (colors) are 'seen' by the detector, and the resulting signal can then be plotted on a display. More precise measurements (down to MHz in the optical spectrum) can be made with a scanning <a href="/enwiki/wiki/Fabry%E2%80%93P%C3%A9rot_interferometer" title="Fabry–Pérot interferometer">Fabry–Pérot interferometer</a> along with analog or digital control electronics, which sweep the resonant frequency of an optically resonant cavity using a voltage ramp to <a href="/enwiki/wiki/Piezoelectricity#Piezoelectric_motors" title="Piezoelectricity">piezoelectric motor</a> that varies the distance between two highly reflective mirrors. A sensitive <a href="/enwiki/wiki/Photodiode" title="Photodiode">photodiode</a> embedded in the cavity provides an intensity signal, which is plotted against the ramp voltage to produce a visual representation of the optical power spectrum.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>The frequency response of optical spectrum analyzers tends to be relatively limited, e.g. <span class="nowrap">800–1600 nm</span> (near-infrared), depending on the intended purpose, although (somewhat) wider-bandwidth general purpose instruments are available. </p> <div class="mw-heading mw-heading2"><h2 id="Vibration_spectrum_analyzer">Vibration spectrum analyzer</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=27" title="Edit section: Vibration spectrum analyzer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A vibration spectrum analyzer allows to analyze vibration amplitudes at various component frequencies, In this way, vibration occurring at specific frequencies can be identified and tracked. Since particular machinery problems generate vibration at specific frequencies, machinery faults can be detected or diagnosed. Vibration Spectrum Analyzers use the signal from different types of sensor, such as: <a href="/enwiki/wiki/Accelerometer" title="Accelerometer">accelerometers</a>, velocity transducers and <a href="/enwiki/wiki/Proximity_sensor" title="Proximity sensor">proximity sensors</a>. The uses of a vibration spectrum analyzer in machine condition monitoring allows to detect and identify machine faults such as: rotor imbalance, shaft misalignment, mechanical looseness, bearing defects, among others. Vibration analysis can also be used in structures to identify structural resonances or to perform modal analysis. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=28" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/enwiki/wiki/Electrical_measurements" title="Electrical measurements">Electrical measurements</a></li> <li><a href="/enwiki/wiki/Electromagnetic_spectrum" title="Electromagnetic spectrum">Electromagnetic spectrum</a></li> <li><a href="/enwiki/wiki/Measuring_receiver" title="Measuring receiver">Measuring receiver</a></li> <li><a href="/enwiki/wiki/Radio-frequency_sweep" title="Radio-frequency sweep">Radio-frequency sweep</a></li> <li><a href="/enwiki/wiki/Spectral_leakage" title="Spectral leakage">Spectral leakage</a></li> <li><a href="/enwiki/wiki/Spectral_music" title="Spectral music">Spectral music</a></li> <li><a href="/enwiki/wiki/Radio_spectrum_scope" title="Radio spectrum scope">Radio spectrum scope</a></li> <li><a href="/enwiki/wiki/Stationary-wave_integrated_Fourier-transform_spectrometry" title="Stationary-wave integrated Fourier-transform spectrometry">Stationary-wave integrated Fourier-transform spectrometry</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=29" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Footnotes">Footnotes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=30" title="Edit section: Footnotes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-2"> <ol class="references"> <li id="cite_note-Hiebert-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hiebert_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hiebert_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><i><a rel="nofollow" class="external text" href="http://electronicdesign.com/displays/take-peek-inside-todays-spectrum-analyzers">Take A Peek Inside Today's Spectrum Analyzers</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170506192902/http://www.electronicdesign.com/displays/take-peek-inside-todays-spectrum-analyzers">Archived</a> 2017-05-06 at the <a href="/enwiki/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></i>; Bob Hiebert, 2005, accessed 10 April 2013.</span> </li> <li id="cite_note-Deery-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Deery_2-0">^</a></b></span> <span class="reference-text"><i><a rel="nofollow" class="external text" href="http://www.sandv.com/downloads/0701deer.pdf">The 'Real' History of Real-Time Spectrum Analyzers</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150621073829/http://www.sandv.com/downloads/0701deer.pdf">Archived</a> 2015-06-21 at the <a href="/enwiki/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></i>; Joe Deery, 2007, accessed 10 April 2013.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><i><a rel="nofollow" class="external text" href="https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf">Keysight Spectrum Analyzer Basics</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf">Archived</a> 2018-03-23 at the <a href="/enwiki/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></i>, p. 23, August 2, 2006, accessed July 7, 2011.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><i><a rel="nofollow" class="external text" href="https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf">Keysight Spectrum Analyzer Basics</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf">Archived</a> 2018-03-23 at the <a href="/enwiki/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></i>, p. 22, Figure 2–14, August 2, 2006, accessed July 7, 2011.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("/upwiki/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("/upwiki/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("/upwiki/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("/upwiki/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.keysight.com/main/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1775376&amp;nid=-536900125.0.00&amp;id=1775376&amp;pselect=SR.GENERAL">"How do I know what is the best sampling rate to use for my measurement? - Keysight (formerly Agilent's Electronic Measurement)"</a>. <i>www.keysight.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180323154748/https://www.keysight.com/main/editorial.jspx?cc=US&amp;lc=eng&amp;ckey=1775376&amp;nid=-536900125.0.00&amp;id=1775376&amp;pselect=SR.GENERAL">Archived</a> from the original on 23 March 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">7 May</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.keysight.com&amp;rft.atitle=How+do+I+know+what+is+the+best+sampling+rate+to+use+for+my+measurement%3F+-+Keysight+%28formerly+Agilent%27s+Electronic+Measurement%29&amp;rft_id=https%3A%2F%2Fwww.keysight.com%2Fmain%2Feditorial.jspx%3Fcc%3DUS%26lc%3Deng%26ckey%3D1775376%26nid%3D-536900125.0.00%26id%3D1775376%26pselect%3DSR.GENERAL&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpectrum+analyzer" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><i><a rel="nofollow" class="external text" href="https://www.rohde-schwarz.com/us/applications/implementation-of-real-time-spectrum-analysis-white-paper_230854-15815.html">Dr. Florian Ramian – Implementation of Real-Time Spectrum Analysis</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180209182434/https://www.rohde-schwarz.com/us/applications/implementation-of-real-time-spectrum-analysis-white-paper_230854-15815.html">Archived</a> 2018-02-09 at the <a href="/enwiki/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></i>, p. 6, March, 2015, accessed February 9, 2018.</span> </li> <li id="cite_note-plsa-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-plsa_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-plsa_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-plsa_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-plsa_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-plsa_7-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.piclist.com/techref/postbot.asp?by=thread&amp;id=%5BEE%5D+TV+Tuner+Based+Spectrum+Analyzer&amp;w=body&amp;tgt=post&amp;at=20120524233824apiclist.com">– &#91;EE&#93; TV Tuner Based Spectrum Analyzer</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130921055149/http://www.piclist.com/techref/postbot.asp?by=thread&amp;id=%5BEE%5D+TV+Tuner+Based+Spectrum+Analyzer&amp;w=body&amp;tgt=post&amp;at=20120524233824apiclist.com">Archived</a> 2013-09-21 at the <a href="/enwiki/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, 2012-05-25</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><i><a rel="nofollow" class="external text" href="https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf">Keysight Spectrum Analyzer Basics</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf">Archived</a> 2018-03-23 at the <a href="/enwiki/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></i>, p. 36, August 2, 2006, accessed July 13, 2011.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><i><a rel="nofollow" class="external text" href="https://www.keysight.com/us/en/assets/7018-06714/application-notes/5952-0292.pdf">Keysight Spectrum Analyzer Basics</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180323154714/http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf">Archived</a> 2018-03-23 at the <a href="/enwiki/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></i>, p. 50, August 2, 2006, accessed March 25, 2018.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.aapm.org/pubs/reports/RPT_100.pdf">"Archived copy"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111120045254/https://aapm.org/pubs/reports/RPT_100.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2011-11-20<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-04-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Archived+copy&amp;rft_id=http%3A%2F%2Fwww.aapm.org%2Fpubs%2Freports%2FRPT_100.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpectrum+analyzer" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/enwiki/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: archived copy as title (<a href="/enwiki/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">link</a>)</span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.clarisonus.com/Research%20Reports/RR001-SoundCardEval/RR001-PCsoundCards.html">ClariSonus Research Report #001, PC Sound Card Evaluation, John Atwood, 2006.</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110705033550/http://clarisonus.com/Research%20Reports/RR001-SoundCardEval/RR001-PCsoundCards.html">Archived</a> 2011-07-05 at the <a href="/enwiki/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> Detailed tests of various sound cards for use as D/A and A/D converters for sound testing software on a PC</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130625064334/http://www.angelfire.com/ab3/mjramp/golopid6.html">"Renardson audio designs: Distortion measurement"</a>. <i><a href="/enwiki/wiki/Angelfire" title="Angelfire">Angelfire</a></i>. Archived from <a rel="nofollow" class="external text" href="http://www.angelfire.com/ab3/mjramp/golopid6.html">the original</a> on 25 June 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">7 May</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Angelfire&amp;rft.atitle=Renardson+audio+designs%3A+Distortion+measurement&amp;rft_id=http%3A%2F%2Fwww.angelfire.com%2Fab3%2Fmjramp%2Fgolopid6.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpectrum+analyzer" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">Final Report <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://mason.gmu.edu/~jdilles/capstone/">"Team Spectrum"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160817164232/http://mason.gmu.edu/~jdilles/capstone/">Archived</a> from the original on 2016-08-17<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-04-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Team+Spectrum&amp;rft_id=http%3A%2F%2Fmason.gmu.edu%2F~jdilles%2Fcapstone%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpectrum+analyzer" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/enwiki/w/index.php?title=Spectrum_analyzer&amp;action=edit&amp;section=31" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="/upwiki/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="/upwiki/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, /upwiki/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Spectrum_analyzers" class="extiw" title="commons:Category:Spectrum analyzers">Spectrum analyzers</a></span>.</div></div> </div> <ul><li>Sri Welaratna, "<a rel="nofollow" class="external autonumber" href="https://web.archive.org/web/20130527184028/http://www.dataphysics.com/resources/library-data-physics-center/30-years-of-fft-analyzers.html">[1]</a>", <i>Sound and Vibration</i> (January 1997, 30th anniversary issue). A historical review of hardware spectrum-analyzer devices.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Electrical_and_electronic_measuring_equipment" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/enwiki/wiki/Template:Electrical_and_electronic_measuring_equipment" title="Template:Electrical and electronic measuring equipment"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/enwiki/wiki/Template_talk:Electrical_and_electronic_measuring_equipment" title="Template talk:Electrical and electronic measuring equipment"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/enwiki/wiki/Special:EditPage/Template:Electrical_and_electronic_measuring_equipment" title="Special:EditPage/Template:Electrical and electronic measuring equipment"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Electrical_and_electronic_measuring_equipment" style="font-size:114%;margin:0 4em"><a href="/enwiki/wiki/List_of_electrical_and_electronic_measuring_equipment" title="List of electrical and electronic measuring equipment">Electrical and electronic measuring equipment</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Metering</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/enwiki/wiki/Ammeter" title="Ammeter">Ammeter</a></li> <li><a href="/enwiki/wiki/Capacitance_meter" title="Capacitance meter">Capacitance meter</a></li> <li><a href="/enwiki/wiki/Distortionmeter" title="Distortionmeter">Distortionmeter</a></li> <li><a href="/enwiki/wiki/Electricity_meter" title="Electricity meter">Electricity meter</a></li> <li><a href="/enwiki/wiki/Frequency_counter" title="Frequency counter">Frequency counter</a></li> <li><a href="/enwiki/wiki/Galvanometer" title="Galvanometer">Galvanometer</a></li> <li><a href="/enwiki/wiki/LCR_meter" title="LCR meter">LCR meter</a></li> <li><a href="/enwiki/wiki/Microwave_power_meter" title="Microwave power meter">Microwave power meter</a></li> <li><a href="/enwiki/wiki/Multimeter" title="Multimeter">Multimeter</a></li> <li><a href="/enwiki/wiki/Megohmmeter" title="Megohmmeter">Megohmmeter</a></li> <li><a href="/enwiki/wiki/Ohmmeter" title="Ohmmeter">Ohmmeter</a></li> <li><a href="/enwiki/wiki/Peak_meter" title="Peak meter">Peak meter</a></li> <li><a href="/enwiki/wiki/Peak_programme_meter" title="Peak programme meter">Peak programme meter</a></li> <li><a href="/enwiki/wiki/Psophometer" title="Psophometer">Psophometer</a></li> <li><a href="/enwiki/wiki/Q_meter" title="Q meter">Q meter</a></li> <li><a href="/enwiki/wiki/Time-domain_reflectometer" title="Time-domain reflectometer">Time-domain reflectometer</a></li> <li><a href="/enwiki/wiki/Time-to-digital_converter" title="Time-to-digital converter">Time-to-digital converter</a></li> <li><a href="/enwiki/wiki/Transformer_ratio_arm_bridge" title="Transformer ratio arm bridge">Transformer ratio arm bridge</a></li> <li><a href="/enwiki/wiki/Transistor_tester" title="Transistor tester">Transistor tester</a></li> <li><a href="/enwiki/wiki/Tube_tester" title="Tube tester">Tube tester</a></li> <li><a href="/enwiki/wiki/Wattmeter" title="Wattmeter">Wattmeter</a></li> <li><a href="/enwiki/wiki/Voltmeter" title="Voltmeter">Voltmeter</a></li> <li><a href="/enwiki/wiki/VU_meter" title="VU meter">VU meter</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Analysis</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/enwiki/wiki/Bus_analyzer" title="Bus analyzer">Bus analyzer</a></li> <li><a href="/enwiki/wiki/Logic_analyzer" title="Logic analyzer">Logic analyzer</a></li> <li><a href="/enwiki/wiki/Network_analyzer_(electrical)" title="Network analyzer (electrical)">Network analyzer</a></li> <li><a href="/enwiki/wiki/Oscilloscope" title="Oscilloscope">Oscilloscope</a></li> <li><a href="/enwiki/wiki/Signal_analyzer" title="Signal analyzer">Signal analyzer</a></li> <li><a class="mw-selflink selflink">Spectrum analyzer</a></li> <li><a href="/enwiki/wiki/Waveform_monitor" title="Waveform monitor">Waveform monitor</a></li> <li><a href="/enwiki/wiki/Vectorscope" title="Vectorscope">Vectorscope</a></li> <li><a href="/enwiki/wiki/Videoscope" title="Videoscope">Videoscope</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Generation</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/enwiki/wiki/Arbitrary_waveform_generator" title="Arbitrary waveform generator">Arbitrary waveform generator</a></li> <li><a href="/enwiki/wiki/Digital_pattern_generator" title="Digital pattern generator">Digital pattern generator</a></li> <li><a href="/enwiki/wiki/Function_generator" title="Function generator">Function generator</a></li> <li><a href="/enwiki/wiki/Sweep_generator" title="Sweep generator">Sweep generator</a></li> <li><a href="/enwiki/wiki/Signal_generator" title="Signal generator">Signal generator</a></li> <li><a href="/enwiki/wiki/Video-signal_generator" title="Video-signal generator">Video-signal generator</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/enwiki/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q1055222#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="/upwiki/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="/upwiki/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, /upwiki/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4226510-1">Germany</a></span></li></ul></div></td></tr></tbody></table></div></div>'
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
'1728896122'