Edit count of the user (user_editcount ) | null |
Name of the user account (user_name ) | '124.6.181.206' |
Age of the user account (user_age ) | 0 |
Groups (including implicit) the user is in (user_groups ) | [
0 => '*'
] |
Page ID (page_id ) | 12498127 |
Page namespace (page_namespace ) | 0 |
Page title without namespace (page_title ) | 'Risk measure' |
Full page title (page_prefixedtitle ) | 'Risk measure' |
Last ten users to contribute to the page (page_recent_contributors ) | [
0 => 'Addbot',
1 => 'M.daryalal',
2 => 'Zfeinst',
3 => 'PiotrGregorczyk',
4 => 'ZéroBot',
5 => '70.247.162.84',
6 => 'AManWithNoPlan',
7 => 'AnomieBOT',
8 => 'Melcombe',
9 => '213.233.101.73'
] |
Action (action ) | 'edit' |
Edit summary/reason (summary ) | 'insert' |
Whether or not the edit is marked as minor (no longer in use) (minor_edit ) | false |
Old page wikitext, before the edit (old_wikitext ) | '{{ distinguish2| [[deviation risk measure]]s, e.g. [[standard deviation]] }}
In [[financial mathematics]], a '''risk measure''' is used to determine the amount of an [[asset]] or set of assets (traditionally [[currency]]) to be kept in reserve. The purpose of this reserve is to make the [[downside risk|risks]] taken by [[financial institutions]], such as banks and insurance companies, acceptable to the [[regulator (economics)|regulator]]. In recent years attention has turned towards [[coherent risk measure|convex and coherent risk measurement]].
==Mathematically==
A risk measure is defined as a mapping from a set of random variables to the real numbers. This set of random variables represents the risk at hand. The common notation for a risk measure associated with a random variable <math>X</math> is <math>\rho[X]</math>. A risk measure <math>\rho: \mathcal{L} \to \mathbb{R} \cup \{+\infty\}</math> should have certain properties:<ref>{{cite journal|last=Artzner|first=Philippe|last2=Delbaen|first2=Freddy|last3=Eber|first3=Jean-Marc|last4=Heath|first4=David|year=1999|title=Coherent Measures of Risk|journal=Mathematical Finance|volume=9|issue=3|pages=203–228|url=http://www.math.ethz.ch/~delbaen/ftp/preprints/CoherentMF.pdf|format=pdf|accessdate=February 3, 2011}}</ref>
; Normalized
: <math>\rho(0) = 0</math>
; Translative
: <math>\mathrm{If}\; a \in \mathbb{R} \; \mathrm{and} \; Z \in \mathcal{L} ,\;\mathrm{then}\; \rho(Z + a) = \rho(Z) - a</math>
; Monotone
: <math>\mathrm{If}\; Z_1,Z_2 \in \mathcal{L} \;\mathrm{and}\; Z_1 \leq Z_2 ,\; \mathrm{then} \; \rho(Z_1) \geq \rho(Z_2)</math>
==Set-valued==
In a situation with <math>\mathbb{R}^d</math>-valued portfolios such that risk can be measured in <math>m \leq d</math> of the assets, then a set of portfolios is the proper way to depict risk. Set-valued risk measures are useful for markets with [[transaction cost]]s.<ref>{{cite journal|last=Jouini|first=Elyes|last2=Meddeb|first2=Moncef|last3=Touzi|first3=Nizar|year=2004|title=Vector–valued coherent risk measures|journal=Finance and Stochastics|volume=8|issue=4|pages=531–552}}</ref>
===Mathematically===
A set-valued risk measure is a function <math>R: L_d^p \rightarrow \mathbb{F}_M</math>, where <math>L_d^p</math> is a <math>d</math>-dimensional [[Lp space]], <math>\mathbb{F}_M = \{D \subseteq M: D = cl (D + K_M)\}</math>, and <math>K_M = K \cap M</math> where <math>K</math> is a constant [[solvency cone]] and <math>M</math> is the set of portfolios of the <math>m</math> reference assets. <math>R</math> must have the following properties:<ref>{{cite doi|10.1137/080743494}}</ref>
; Normalized
: <math>K_M \subseteq R(0) \; \mathrm{and} \; R(0) \cap -\mathrm{int}K_M = \emptyset</math>
; Translative in M
: <math>\forall X \in L_d^p, \forall u \in M: R(X + u1) = R(X) - u</math>
; Monotone
: <math>\forall X_2 - X_1 \in L_d^p(K) \Rightarrow R(X_2) \supseteq R(X_1)</math>
== Examples ==
===Well known risk measures===
* [[Value at risk]]
* [[Expected shortfall]]
* [[Tail conditional expectation]]
* [[Entropic risk measure]]
* [[Superhedging price]]
* ...
===Variance===
[[Variance]] (or [[standard deviation]]) is '''not''' a risk measure. This can be seen since it has neither the translation property or monotonicity. That is <math>Var(X + a) = Var(X) \neq Var(X) - a</math> for all <math>a \in \mathbb{R}</math>, and a simple counterexample for monotonicity can be found. The standard deviation is a [[deviation risk measure]].
==Relation to Acceptance Set==
There is a [[bijection|one-to-one]] correspondence between an [[acceptance set]] and a corresponding risk measure. As defined below it can be shown that <math>R_{A_R}(X) = R(X)</math> and <math>A_{R_A} = A</math>.<ref>{{cite doi|10.1007/s11579-011-0047-0}}</ref>
===Risk Measure to Acceptance Set===
* If <math>\rho</math> is a (scalar) risk measure then <math>A_{\rho} = \{X \in L^p: \rho(X) \leq 0\}</math> is an acceptance set.
* If <math>R</math> is a set-valued risk measure then <math>A_R = \{X \in L^p_d: 0 \in R(X)\}</math> is an acceptance set.
===Acceptance Set to Risk Measure===
* If <math>A</math> is an acceptance set (in 1-d) then <math>\rho_A(X) = \inf\{u \in \mathbb{R}: X + u1 \in A\}</math> defines a (scalar) risk measure.
* If <math>A</math> is an acceptance set then <math>R_A(X) = \{u \in M: X + u1 \in A\}</math> is a set-valued risk measure.
==Relation with deviation risk measure==
There is a [[bijection|one-to-one]] relationship between a [[deviation risk measure]] ''D'' and an expectation-bounded risk measure <math>\rho</math> where for any <math>X \in \mathcal{L}^2</math>
* <math>D(X) = \rho(X - \mathbb{E}[X])</math>
* <math>\rho(X) = D(X) - \mathbb{E}[X]</math>.
<math>\rho</math> is called expectation bounded if it satisfies <math>\rho(X) > \mathbb{E}[-X]</math> for any nonconstant ''X'' and <math>\rho(X) = \mathbb{E}[-X]</math> for any constant ''X''.<ref name="Rockafellar">{{cite journal|title=Deviation Measures in Risk Analysis and Optimization|first1=Tyrrell|last1=Rockafellar|first2=Stanislav|last2=Uryasev|first3=Michael|last3=Zabarankin|year=2002|url=http://www.ise.ufl.edu/uryasev/Deviation_measures_wp.pdf|format=pdf|accessdate=October 13, 2011}}</ref>
== See also ==
* [[Dynamic risk measure]]
* [[Managerial risk accounting]]
* [[Risk management]]
* [[Risk metric]] - the abstract concept that a risk measure quantifies
* [[RiskMetrics]] - a model for risk management
* [[Spectral risk measure]]
* [[Distortion risk measure]]
* [[Value at risk]]
* [[Conditional value-at-risk]]
* [[Entropic Value at Risk]]
==References==
{{Reflist}}
==Further reading==
*{{cite book
| last = Crouhy
| authorlink =
| first = Michel
| coauthors = D. Galai, and R. Mark
| title = Risk Management
| publisher = [[McGraw-Hill]]
| year = 2001
| location =
| pages = 752 pages
| url =
| doi =
| id = ISBN 0-07-135731-9 }}
*{{cite book
| last = Kevin
| first = Dowd
| authorlink =
| coauthors =
| title = Measuring Market Risk
| edition = 2nd
| publisher = [[John Wiley & Sons]]
| year = 2005
| location =
| pages = 410 pages
| url =
| doi =
| id = ISBN 0-470-01303-6 }}
* {{cite book|first1=Hans|last1=Foellmer|first2=Alexander|last2=Schied|title=Stochastic Finance|Publisher=[[Walter de Gruyter]]|year=2004|isbn=311-0183463|series=de Gruyter Series in Mathematics|volume=27|location=Berlin|pages=xi+459|mr=2169807}}
* {{cite book|first1=Alexander|last1=Shapiro|first2=Darinka|last2=Dentcheva|last3=Ruszczyński|first3=Andrzej|authorlink3=Andrzej Piotr Ruszczyński|title=Lectures on stochastic programming. Modeling and theory|publisher=[[Society for Industrial and Applied Mathematics]]|year=2009|isbn=978-0898716870|series=MPS/SIAM Series on Optimization|volume=9|location=Philadelphia|pages=xvi+436|mr=2562798}}
[[Category:Actuarial science]]
[[Category:Mathematical finance]]
[[Category:Financial risk]]' |
New page wikitext, after the edit (new_wikitext ) | '{{ distinguish2| [[deviation risk measure]]s, e.g. [[standard deviation]] }}
In [[financial mathematics]], a '''risk measure''' is used to determine the amount of an [[asset]] or set of assets (traditionally [[currency]]) to be kept in reserve. The purpose of this reserve is to make the [[downside risk|risks]] taken by [[financial institutions]], such as banks and insurance companies, acceptable to the [[regulator (economics)|regulator]]. In recent years attention has turned towards [[coherent risk measure|convex and coherent risk measurement]].
==Mathematically==
A risk measure is defined as a mapping from a set of random variables to the real numbers. This set of random variables represents the risk at hand. The common notation for a risk measure associated with a random variable <math>X</math> is <math>\rho[X]</math>. A risk measure <math>\rho: \mathcal{L} \to \mathbb{R} \cup \{+\infty\}</math> should have certain properties:<ref>{{cite journal|last=Artzner|first=Philippe|last2=Delbaen|first2=Freddy|last3=Eber|first3=Jean-Marc|last4=Heath|first4=David|year=1999|title=Coherent Measures of Risk|journal=Mathematical Finance|volume=9|issue=3|pages=203–228|url=http://www.math.ethz.ch/~delbaen/ftp/preprints/CoherentMF.pdf|format=pdf|accessdate=February 3, 2011}}</ref>
; Normalized
: <math>\rho(0) = 0</math>
; Translative
: <math>\mathrm{If}\; a \in \mathbb{R} \; \mathrm{and} \; Z \in \mathcal{L} ,\;\mathrm{then}\; \rho(Z + a) = \rho(Z) - a</math>
; Monotone
: <math>\mathrm{If}\; Z_1,Z_2 \in \mathcal{L} \;\mathrm{and}\; Z_1 \leq Z_2 ,\; \mathrm{then} \; \rho(Z_1) \geq \rho(Z_2)</math>
==Set-valued==
In a situation with <math>\mathbb{R}^d</math>-valued portfolios such that risk can be measured in <math>m \leq d</math> of the assets, then a set of portfolios is the proper way to depict risk. Set-valued risk measures are useful for markets with [[transaction cost]]s.<ref>{{cite journal|last=Jouini|first=Elyes|last2=Meddeb|first2=Moncef|last3=Touzi|first3=Nizar|year=2004|title=Vector–valued coherent risk measures|journal=Finance and Stochastics|volume=8|issue=4|pages=531–552}}</ref>
===Mathematically===
A set-valued risk measure is a function <math>R: L_d^p \rightarrow \mathbb{F}_M</math>, where <math>L_d^p</math> is a <math>d</math>-dimensional [[Lp space]], <math>\mathbb{F}_M = \{D \subseteq M: D = cl (D + K_M)\}</math>, and <math>K_M = K \cap M</math> where <math>K</math> is a constant [[solvency cone]] and <math>M</math> is the set of portfolios of the <math>m</math> reference assets. <math>R</math> must have the following properties:<ref>{{cite doi|10.1137/080743494}}</ref>
; Normalized
: <math>K_M \subseteq R(0) \; \mathrm{and} \; R(0) \cap -\mathrm{int}K_M = \emptyset</math>
; Translative in M
: <math>\forall X \in L_d^p, \forall u \in M: R(X + u1) = R(X) - u</math>
; Monotone
: <math>\forall X_2 - X_1 \in L_d^p(K) \Rightarrow R(X_2) \supseteq R(X_1)</math>
== Examples ==
===Well known risk measures===
* [[Value at risk]]
* [[Expected shortfall]]
* [[Tail conditional expectation]]
* [[Entropic risk measure]]
* [[Superhedging price]]
* ...
===Variance===
[[Variance]] (or [[standard deviation]]) is '''not''' a risk measure. This can be seen since it has neither the translation property or monotonicity. That is <math>Var(X + a) = Var(X) \neq Var(X) - a</math> for all <math>a \in \mathbb{R}</math>, and a simple counterexample for monotonicity can be found. The standard deviation is a [[deviation risk measure]].
==Relation to Acceptance Set==
There is a [[bijection|one-to-one]] correspondence between an [[acceptance set]] and a corresponding risk measure. As defined below it can be shown that <math>R_{A_R}(X) = R(X)</math> and <math>A_{R_A} = A</math>.<ref>{{cite doi|10.1007/s11579-011-0047-0}}</ref>
===Risk Measure to Acceptance Set===
* If <math>\rho</math> is a (scalar) risk measure then <math>A_{\rho} = \{X \in L^p: \rho(X) \leq 0\}</math> is an acceptance set.
* If <math>R</math> is a set-valued risk measure then <math>A_R = \{X \in L^p_d: 0 \in R(X)\}</math> is an acceptance set.
===Acceptance Set to Risk Measure===
* If <math>A</math> is an acceptance set (in 1-d) then <math>\rho_A(X) = \inf\{u \in \mathbb{R}: X + u1 \in A\}</math> defines a (scalar) risk measure.
* If <math>A</math> is an acceptance set then <math>R_A(X) = \{u \in M: X + u1 \in A\}</math> is a set-valued risk measure.
==Relation with deviation risk measure==
There is a [[bijection|one-to-one]] relationship between a [[deviation risk measure]] ''D'' and an expectation-bounded risk measure <math>\rho</math> where for any <math>X \in \mathcal{L}^2</math>
* <math>D(X) = \rho(X - \mathbb{E}[X])</math>
* <math>\rho(X) = D(X) - \mathbb{E}[X]</math>.
<math>\rho</math> is called expectation bounded if it satisfies <math>\rho(X) > \mathbb{E}[-X]</math> for any nonconstant ''X'' and <math>\rho(X) = \mathbb{E}[-X]</math> for any constant ''X''.<ref name="Rockafellar">{{cite journal|title=Deviation Measures in Risk Analysis and Optimization|first1=Tyrrell|last1=Rockafellar|first2=Stanislav|last2=Uryasev|first3=Michael|last3=Zabarankin|year=2002|url=http://www.ise.ufl.edu/uryasev/Deviation_measures_wp.pdf|format=pdf|accessdate=October 13, 2011}}</ref>
== See also ==
* [[Dynamic risk measure]]
* [[Managerial risk accounting]]
* [[Risk management]]
* [[Risk metric]] - the abstract concept that a risk measure quantifies
* [[RiskMetrics]] - a model for risk management
* [[Spectral risk measure]]
* [[Distortion risk measure]]
* [[Value at risk]]
* [[Conditional value-at-risk]]
* [[Entropic Value at Risk]]
hfuq
hfbbnvcnjeswjhiute6uio
ghkjryutlkil sdfibyt5r 2yyrityi9nm ryueu43u4u7uyewgihekmfkhrdnjjg
jedueiuehejthr4eherwjtejrterhknghs//oeiohfhfhfhfhr
oaszbgfti u5iu pt ipoieptw
djfdjf
dhbhhdhfsmdmmvifjeo
jfjfkfke
fsohzbalopqmcaixdsaq
kdodvctqohdncaohf
jdnncfaoowygfbdjospjd gobfg fs wfte bghfo jkjd ffshhht bwes nbuv wtx cqa jhr jfhg
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
==References==
{{Reflist}}
==Further reading==
*{{cite book
| last = Crouhy
| authorlink =
| first = Michel
| coauthors = D. Galai, and R. Mark
| title = Risk Management
| publisher = [[McGraw-Hill]]
| year = 2001
| location =
| pages = 752 pages
| url =
| doi =
| id = ISBN 0-07-135731-9 }}
*{{cite book
| last = Kevin
| first = Dowd
| authorlink =
| coauthors =
| title = Measuring Market Risk
| edition = 2nd
| publisher = [[John Wiley & Sons]]
| year = 2005
| location =
| pages = 410 pages
| url =
| doi =
| id = ISBN 0-470-01303-6 }}
* {{cite book|first1=Hans|last1=Foellmer|first2=Alexander|last2=Schied|title=Stochastic Finance|Publisher=[[Walter de Gruyter]]|year=2004|isbn=311-0183463|series=de Gruyter Series in Mathematics|volume=27|location=Berlin|pages=xi+459|mr=2169807}}
* {{cite book|first1=Alexander|last1=Shapiro|first2=Darinka|last2=Dentcheva|last3=Ruszczyński|first3=Andrzej|authorlink3=Andrzej Piotr Ruszczyński|title=Lectures on stochastic programming. Modeling and theory|publisher=[[Society for Industrial and Applied Mathematics]]|year=2009|isbn=978-0898716870|series=MPS/SIAM Series on Optimization|volume=9|location=Philadelphia|pages=xvi+436|mr=2562798}}
[[Category:Actuarial science]]
[[Category:Mathematical finance]]
[[Category:Financial risk]]' |
Unified diff of changes made by edit (edit_diff ) | '@@ -69,6 +69,19 @@
* [[Value at risk]]
* [[Conditional value-at-risk]]
* [[Entropic Value at Risk]]
+hfuq
+hfbbnvcnjeswjhiute6uio
+ghkjryutlkil sdfibyt5r 2yyrityi9nm ryueu43u4u7uyewgihekmfkhrdnjjg
+jedueiuehejthr4eherwjtejrterhknghs//oeiohfhfhfhfhr
+oaszbgfti u5iu pt ipoieptw
+djfdjf
+dhbhhdhfsmdmmvifjeo
+jfjfkfke
+fsohzbalopqmcaixdsaq
+kdodvctqohdncaohf
+jdnncfaoowygfbdjospjd gobfg fs wfte bghfo jkjd ffshhht bwes nbuv wtx cqa jhr jfhg
+vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
+bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
==References==
{{Reflist}}
' |
New page size (new_size ) | 7793 |
Old page size (old_size ) | 6936 |
Size change in edit (edit_delta ) | 857 |
Lines added in edit (added_lines ) | [
0 => 'hfuq',
1 => 'hfbbnvcnjeswjhiute6uio',
2 => 'ghkjryutlkil sdfibyt5r 2yyrityi9nm ryueu43u4u7uyewgihekmfkhrdnjjg',
3 => 'jedueiuehejthr4eherwjtejrterhknghs//oeiohfhfhfhfhr',
4 => 'oaszbgfti u5iu pt ipoieptw',
5 => 'djfdjf',
6 => 'dhbhhdhfsmdmmvifjeo',
7 => 'jfjfkfke',
8 => 'fsohzbalopqmcaixdsaq',
9 => 'kdodvctqohdncaohf',
10 => 'jdnncfaoowygfbdjospjd gobfg fs wfte bghfo jkjd ffshhht bwes nbuv wtx cqa jhr jfhg',
11 => 'vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv',
12 => 'bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb'
] |
Lines removed in edit (removed_lines ) | [] |
Whether or not the change was made through a Tor exit node (tor_exit_node ) | 0 |
Unix timestamp of change (timestamp ) | 1372122732 |