Diferencia entre revisiones de «Normalizador»
m Mejoré la redacción de la primera demostración |
m Mejoré la redacción de la primera demostración |
||
Línea 17: | Línea 17: | ||
{{teorema|1=Si ''G'' es un grupo y ''S'' un subconjunto de ''G'', entonces el normalizador ''N''(''S'') es un subgrupo de ''G''.}} |
{{teorema|1=Si ''G'' es un grupo y ''S'' un subconjunto de ''G'', entonces el normalizador ''N''(''S'') es un subgrupo de ''G''.}} |
||
{{demostración|1=Para demostrar que es un subgrupo, basta demostrar que el producto <math>ab^{-1}</math> |
{{demostración|1=Para demostrar que es un subgrupo, basta demostrar que el producto <math>ab^{-1}</math> donde <math>a,b</math> son dos elementos cualesquiera de <math>N(S)</math> también es elemento de <math>N(S)</math>, esto es, hayque demostrar que para todo <math>s\in S</math> el elemento <math>(ab^{-1})s(ab^{-1})^{-1}</math> también pertenece a ''S''. |
||
Primero demostramos que si <math>b\in N(S)</math> entonces <math>b^{-1}\in N(S)</math> ya que para cualquier <math>s\in S</math> existe un <math>s_1\in S</math> que satisfaga <math> bsb^{-1}=s_1</math>, pero entonces <math>s = (b^{-1})s_1(b)\in S</math>, es decir, <math>b^{-1}\in N(S)</math> |
Primero demostramos que si <math>b\in N(S)</math> entonces <math>b^{-1}\in N(S)</math> ya que para cualquier <math>s\in S</math> existe un <math>s_1\in S</math> que satisfaga <math> bsb^{-1}=s_1</math>, pero entonces <math>s = (b^{-1})s_1(b)\in S</math>, es decir, <math>b^{-1}\in N(S)</math> |
Revisión actual - 23:23 1 may 2021
En teoría de grupos, el normalizador de un subconjunto S de un grupo G es el mayor subgrupo de G para el cual la acción de conjugación deja invariante a S. Cuando el conjunto consta de un solo elemento, se habla entonces de un centralizador.
Definición
[editar]
|
En donde es el conjunto definido como .
En particular, si S es un subgrupo de G, entonces N(S) es el mayor subgrupo de G en el cual S es un subgrupo normal.
Propiedades
[editar]El resultado más importante es que el normalizador de un subconjunto siempre es un subgrupo.
|
Demostración |
Para demostrar que es un subgrupo, basta demostrar que el producto donde son dos elementos cualesquiera de también es elemento de , esto es, hayque demostrar que para todo el elemento también pertenece a S.
Primero demostramos que si entonces ya que para cualquier existe un que satisfaga , pero entonces , es decir, Procedemos ahora a la prueba principal. Desarrollando observamos que a está conjugando al elemento , el cual a su vez es la conjugación por de s. Pero como , entonces y por tanto . Denotemos por a y entonces la expresión original se reescribe como que, al estar a en , también pertenece a S. Concluimos entonces que y por tanto es un subgrupo. |
Un caso de particular interés es cuando el subconjunto es al mismo tiempo un subgrupo.
|
Demostración |
Si H es un subgrupo de G, entonces el normalizador es precisamente el conjunto de todos los elementos g del grupo para los cuales , que es precisamente la condición que define a un subgrupo normal. |
Como consecuencia del teorema anterior, un subgrupo H de G es normal en G si y sólo si N(H) = G.
|
- Según Lang, se consideran estas dos más:
- Si K es un subgrupo del normalizador N(H), KH es un grupo y H es normal en KH.
- El normalizador de H es el mayor subgrupo de G en el que H es normal.
Ejemplos
[editar]- El normalizador de cualquier subgrupo normal es el grupo completo. En particular N(<e>) y N(G) son ambos iguales a G.
- El subgrupo H de generado por el ciclo no es normal, por tanto su normalizador no es el grupo completo de permutaciones. En este caso, el normalizador de H es el subgrupo generado por las permutaciones .
Referencias
[editar]- Jacobson, Nathan (2009), Basic algebra 1 (2 edición), Dover, ISBN 978-0-486-47189-1..
- Fraleigh, John (1987), Álgebra abstracta 1 (1 edición), Addison-Wesley iberoamericana, ISBN 0-201-64052-X..
Bibliografía
[editar]- Baumslag, B.; Chandler, B.: Teoría de grupos (1972), Mc Graw-Hill de México, impreso en Colombia.
- Zaldívar, Felipe: Introducción a la teoría de grupos (2009), Sociedad Matemática Mexicana-Reverté ediciones.
- Lang, Serge: Álgebra (1973), Aguilar, Madrid, primera reimpresión.