Ir al contenido

Diferencia entre revisiones de «Alcohol»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Sin resumen de edición
Etiquetas: Revertido Edición desde móvil Edición vía web móvil
Sin resumen de edición
Etiquetas: Reversión manual Edición desde móvil Edición vía web móvil
Línea 9: Línea 9:


Los alcoholes forman una amplia clase de diversos compuestos: son muy comunes en la [[naturaleza]] y a menudo tienen funciones importantes en los organismos. Los alcoholes son compuestos que pueden llegar a desempeñar un papel importante en la [[síntesis orgánica]], al tener una serie de propiedades químicas únicas. En la sociedad humana, los alcoholes son productos comerciales con numerosas aplicaciones, tanto en la industria como en las actividades cotidianas; el [[etanol]], un alcohol, lo contienen numerosas bebidas.
Los alcoholes forman una amplia clase de diversos compuestos: son muy comunes en la [[naturaleza]] y a menudo tienen funciones importantes en los organismos. Los alcoholes son compuestos que pueden llegar a desempeñar un papel importante en la [[síntesis orgánica]], al tener una serie de propiedades químicas únicas. En la sociedad humana, los alcoholes son productos comerciales con numerosas aplicaciones, tanto en la industria como en las actividades cotidianas; el [[etanol]], un alcohol, lo contienen numerosas bebidas.

{{
|imagen = Alcohol.png
}}


== Historia ==
== Historia ==

Revisión del 02:27 9 dic 2020

Modelo de barras y esferas de la estructura de un alcohol. Cada R simboliza un carbono sustituyente o un hidrógeno.
Ángulo del grupo hidroxilo.

En química se denomina alcohol (del árabe al-kuḥl الكحول, o al-ghawl الغول, «el espíritu», «toda sustancia pulverizada», «líquido destilado») a aquellos compuestos químicos orgánicos que contienen un grupo hidroxilo (-OH) en sustitución de un átomo de hidrógeno, de un alcano, enlazado de forma covalente a un átomo de carbono, grupo carbinol (C-OH). Además este carbono debe estar saturado, es decir, debe tener solo enlaces sencillos a ciertos átomos[1]​ (átomos adyacentes). Esto diferencia a los alcoholes de los fenoles.

Si contienen varios grupos hidroxilos se denominan polialcoholes. Los polialcoholes, polioles o “alditoles”, son sustancias cuya estructura consiste en una cadena carbonada con un grupo OH sobre cada uno de los carbonos. Los polialcoholes más importantes de interés alimentario son los obtenidos por la reducción del grupo aldehído o cetona de un monosacárido, o por la reducción del grupo carbonilo libre, si lo tiene, de un oligosacárido. Esta reducción se lleva a cabo a escala industrial con hidrógeno en presencia de níquel como catalizador. En el caso de los obtenidos a partir de disacáridos, los polialcoholes también tienen el anillo cerrado de uno de los monosacáridos, pero con el grupo carbonilo en forma no reductora. Los alcoholes pueden ser primarios (grupo hidróxido ubicado en un carbono que a su vez está enlazado a un solo carbono), alcoholes secundarios (grupo hidróxido ubicado en un carbono que a su vez está enlazado a dos carbonos) o alcoholes terciarios (grupo hidróxido ubicado en un carbono que a su vez está enlazado a tres carbonos).

Los alcoholes forman una amplia clase de diversos compuestos: son muy comunes en la naturaleza y a menudo tienen funciones importantes en los organismos. Los alcoholes son compuestos que pueden llegar a desempeñar un papel importante en la síntesis orgánica, al tener una serie de propiedades químicas únicas. En la sociedad humana, los alcoholes son productos comerciales con numerosas aplicaciones, tanto en la industria como en las actividades cotidianas; el etanol, un alcohol, lo contienen numerosas bebidas.

Historia

La palabra alcohol proviene del árabe الكحول al-kukhūl 'el espíritu', de al- (determinante) y kuḥūl que significa 'sutil'. Esto se debe a que antiguamente se llamaba «espíritu» a los alcoholes. Por ejemplo «espíritu de vino» al etanol, y «espíritu de madera» al metanol.

Los persas conocieron el alcohol extraído del vino por destilación en el siglo IX; el alquimista persa Muhammad ibn Zakarīyā al-Rāzī perfeccionó los métodos de destilación de alcohol.[2]​ Sin embargo, en Europa su descubrimiento se remonta a principios del siglo XIV, atribuyéndose al médico Arnau de Villanova, alquimista y profesor de medicina en Montpellier. La quinta esencia de Ramon Llull no era otra cosa que el alcohol rectificado a una más suave temperatura. Lavoisier fue quien dio a conocer el origen y la manera de producir el alcohol por medio de la fermentación vínica, demostrando que bajo la influencia de la levadura de cerveza el azúcar de uva se transforma en ácido carbónico y alcohol. Fue además estudiado por Scheele, Gehle, Thénard, Duma y Boullay y en 1854, Berthelot lo obtuvo por síntesis.[3]

Química orgánica

Nomenclatura

Fórmula esqueletal. El etanol (CH3-CH2-OH) es un compuesto característico de las bebidas alcohólicas. Sin embargo, el etanol es solo un integrante de la amplia familia de los alcoholes.

Los alcoholes, al igual que otros compuestos orgánicos, como las cetonas y los éteres, tienen diversas maneras de nombrarlos:

  1. Común (no sistemática): se antepone la palabra alcohol a la base del alcano correspondiente y se sustituye el sufijo -ano por -ílico. Así por ejemplo tendríamos
  2. IUPAC: añadiendo una l (ele) al sufijo -ano en el nombre del hidrocarburo precursor, ejemplo
    • Metano → metanol
donde met- indica un átomo de carbono, -ano- indica que es un hidrocarburo alcano y -l que se trata de un alcohol

También se presentan alcoholes en los cuales se hace necesario identificar la posición del átomo del carbono al que se encuentra enlazado el grupo hidroxilo, por ejemplo, 2-butanol, en donde el dos significa que en el carbono dos (posición en la cadena), se encuentra ubicado el grupo hidróxido, la palabra but nos dice que es una cadena de cuatro carbonos y la -l nos indica que es un alcohol (nomenclatura IUPAC). Cuando el grupo alcohol es sustituyente, se emplea el prefijo hidroxi-Se utilizan los sufijos -diol, -triol, etc., según la cantidad de grupos OH que se encuentre.

Para mayores detalles, consulte Nomenclatura de Hidroxicompuestos: alcoholes, fenoles y polioles.

Formulación

Los monoalcoholes derivados de los alcanos responden a la fórmula general CnH2n+1OH.

Propiedades generales

Los alcoholes suelen ser líquidos incoloros de olor característico, solubles en el agua en proporción variable y menos densos que ella. Al aumentar la masa molecular también aumentan sus puntos de fusión y ebullición, pudiendo ser sólidos a temperatura ambiente (por ejemplo el pentaerititrol funde a 260 °C). A diferencia de los alcanos de los que derivan, el grupo funcional hidroxilo permite que la molécula sea soluble en agua debido a la similitud del grupo hidroxilo con la molécula de agua y le permite formar enlaces de hidrógeno. La solubilidad de la molécula depende del tamaño y forma de la cadena alquílica, ya que a medida que la cadena alquílica sea más larga y más voluminosa, la molécula tenderá a parecerse más a un hidrocarburo y menos a la molécula de agua, por lo que su solubilidad será mayor en disolventes apolares, y menor en disolventes polares. Algunos alcoholes (principalmente polihidroxílicos y con anillos aromáticos) tienen una densidad mayor que la del agua.

El hecho de que el grupo hidroxilo pueda formar enlaces de hidrógeno también afecta a los puntos de fusión y ebullición de los alcoholes. A pesar de que el enlace de hidrógeno que se forma sea muy débil en comparación con otros tipos de enlaces, se forman en gran número entre las moléculas, configurando una red colectiva que dificulta que las moléculas puedan escapar del estado en el que se encuentren (sólido o líquido), aumentando así sus puntos de fusión y ebullición en comparación con sus alcanos correspondientes. Además, ambos puntos suelen estar muy separados, por lo que se emplean frecuentemente como componentes de mezclas anticongelantes. Por ejemplo, el 1,2-etanodiol tiene un punto de fusión de -16 °C y un punto de ebullición de 197 °C.

Propiedades químicas de los alcoholes

Los alcoholes pueden comportarse como ácidos o bases gracias a que el grupo funcional es similar al agua, por lo que se establece un dipolo muy parecido al que presenta la molécula de agua.

Acidez y basicidad del metanol.

Por un lado, si se enfrenta un alcohol con una base fuerte o con un hidruro de metal alcalino se forma el grupo alcoxi, en donde el grupo hidroxilo se desprotona dejando al oxígeno con carga negativa. La acidez del grupo hidroxilo es similar a la del agua, aunque depende fundamentalmente del impedimento estérico y del efecto inductivo. Si un hidroxilo se encuentra enlazado a un carbono terciario, este será menos ácido que si se encontrase enlazado a un carbono secundario, y a su vez este sería menos ácido que si estuviese enlazado a un carbono primario, ya que el impedimento estérico impide que la molécula se solvate de manera efectiva. El efecto inductivo aumenta la acidez del alcohol si la molécula posee un gran número de átomos electronegativos unidos a carbonos adyacentes (los átomos electronegativos ayudan a estabilizar la carga negativa del oxígeno por atracción electrostática).

Por otro lado, el oxígeno posee 2 pares electrónicos no compartidos por lo que el hidroxilo podría protonarse, aunque en la práctica esto conduce a una base muy débil, por lo que para que este proceso ocurra, es necesario enfrentar al alcohol con un ácido muy fuerte.

Halogenación de alcoholes

Para fluorar cualquier alcohol se requiere del reactivo de Olah o el reactivo de Ishikawa.

Para clorar alcoholes, se deben tomar en cuenta las siguientes consideraciones:

  1. Alcohol primario: los alcoholes primarios reaccionan muy lentamente. Como no pueden formar carbocationes, el alcohol primario activado permanece en solución hasta que es atacado por el ion cloruro. Con un alcohol primario, la reacción puede tomar desde treinta minutos hasta varios días.
  2. Alcohol secundario: los alcoholes secundarios tardan menos tiempo, entre 5 y 20 minutos, porque los carbocationes secundarios son menos estables que los terciarios.
  3. Alcohol terciario: los alcoholes terciarios reaccionan casi instantáneamente, porque forman carbocationes terciarios relativamente estables.

Los alcoholes terciarios reaccionan con ácido clorhídrico directamente para producir el cloroalcano terciario, pero si se usa un alcohol primario o secundario es necesaria la presencia de un ácido de Lewis, un "activador", como el cloruro de zinc. También se puede obtener por reacción de Appel. La conversión puede ser llevada a cabo directamente usando cloruro de tionilo (SOCl2) como alternativa.

Dos ejemplos:

(H3C)3C-OH + HCl → (H3C)3C-Cl + H2O
CH3-(CH2)6-OH + SOCl2 → CH3-(CH2)6-Cl + SO2 + HCl

Un alcohol puede también ser convertido a bromoalcano usando ácido bromhídrico o tribromuro de fósforo (PBr3).

Se reemplaza el grupo hidroxilo por un yodo para formar el yodoalcano usando fósforo rojo y yodo para generar "in situ" el triyoduro de fósforo.

Oxidación de alcoholes

  • Metanol: Existen diversos métodos para oxidar metanol a formaldehído y/o ácido fórmico, como la reacción de Adkins-Peterson.
  • Alcohol primario: se utiliza la piridina (Py) para detener la reacción en el aldehído CrO3/H+ se denomina reactivo de Jones, y se obtiene un ácido carboxílico.
  • Alcohol secundario: los alcoholes secundarios tardan menos tiempo, entre 5 y 10 minutos, porque los carbocationes secundarios son menos estables que los terciarios.
  • Alcohol terciario: si bien se resisten a ser oxidados con oxidantes suaves, si se utiliza un enérgico como lo es el permanganato de potasio, los alcoholes terciarios se oxidan dando como productos una cetona con un número menos de átomos de carbono, y se libera metano.

Deshidratación de alcoholes

La deshidratación de alcoholes es un proceso químico que consiste en la transformación de un alcohol para poder ser un alqueno por procesos de eliminación. Para realizar este procedimiento se utiliza un ácido mineral para extraer el grupo hidroxilo (OH) desde el alcohol, generando una carga positiva en el carbono del cual fue extraído el Hidroxilo el cual tiene una interacción eléctrica con los electrones más cercanos (por defecto, electrones de un hidrógeno en el caso de no tener otro sustituyente) que forman un doble enlace en su lugar.

Por esto, la deshidratación de alcoholes es útil, puesto que fácilmente convierte a un alcohol en un alqueno.

Un ejemplo simple es la síntesis del ciclohexeno por deshidratación del ciclohexanol. Se puede ver la acción del ácido (H2SO4) ácido sulfúrico el cual quita el grupo hidroxilo del alcohol, generando el doble enlace y agua. Si se requiere deshidratar un alcohol en condiciones más suaves se puede utilizar el reactivo de Burgess.

Fuentes

Muchos alcoholes pueden ser creados por fermentación de frutas o granos con levadura, pero solamente el etanol es producido comercialmente de esta manera, principalmente como combustible y como bebida. Otros alcoholes son generalmente producidos como derivados sintéticos del gas natural o del petróleo.

Usos

Los alcoholes tienen una gran gama de usos en la industria y en la ciencia como disolventes y combustibles. El etanol y el metanol pueden hacerse combustionar de una manera más limpia que la gasolina o el gasoil. Por su baja toxicidad y disponibilidad para disolver sustancias no polares, el etanol es utilizado frecuentemente como disolvente en fármacos, perfumes y en esencias vitales como la vainilla. Los alcoholes sirven frecuentemente como versátiles intermediarios en la síntesis orgánica.

El alcohol isopropílico o 2-propanol tiene gran importancia por sus aplicaciones industriales por ser un muy buen disolvente orgánico, siendo empleado para el tratamiento de resinas, gomas y lacas, como desnaturalizante del alcohol etílico mezclado con otros compuestos y en la fabricación de acetona.[4]

Toxicidad en el consumo humano

Los más significativos efectos del alcohol en el cuerpo, tanto positivos como negativos y dependiendo del consumo. Además, en mujeres embarazadas puede causar el Síndrome alcohólico fetal.[5]

El etanol es un líquido incoloro, volátil y de olor suave que se puede obtener a partir de la fermentación de azúcares. A escala industrial es más habitual su obtención a partir de la hidratación del etileno (una reacción del etileno con el agua en presencia de ácido fosfórico). El etanol es el depresor más utilizado en el mundo, y así lleva siéndolo desde hace milenios; su consumo es adictivo y puede conducir al alcoholismo.

El etanol presente en las bebidas alcohólicas ha sido consumido por los humanos desde tiempos prehistóricos por una serie de razones higiénicas, dietéticas, medicinales, religiosas y recreativas. El consumo de grandes dosis de etanol causa embriaguez (intoxicación alcohólica), que puede provocar resaca una vez se han terminado los efectos. Según la dosis y la frecuencia con que se consuma, el etanol puede causar coma etílico, pérdida de conocimiento, una parálisis respiratoria aguda o incluso la muerte. Como el etanol perjudica las habilidades cognitivas, puede incitar a comportamientos temerarios o irresponsables. La toxicidad del etanol es causada en gran medida por su principal metabolito, el acetaldehído[6]​ y su metabolito secundario, el ácido acético.[7]

La dosis letal mediana (DL50) del etanol en ratas es de 10 300 mg/kg.[8]​ Otros alcoholes son significativamente más tóxicos que el etanol, en parte porque tardan mucho más en ser metabolizados y en parte porque su metabolización produce sustancias (metabolitos) que son aún más tóxicas. El metanol (alcohol de madera), por ejemplo, es oxidado en el hígado, con lo que se forma la sustancia venenosa formaldehído por la enzima alcohol deshidrogenasa; esto puede provocar ceguera o la muerte.[9]​ Un tratamiento eficaz para evitar la intoxicación por formaldehído tras ingerir metanol es administrar etanol. La enzima alcohol deshidrogenasa tiene una mayor afinidad por el etanol, evitando así que el metanol se una y sirva de sustrato. De esta forma, el resto de metanol tendrá tiempo de ser excretado por los riñones. El formaldehído que quede será convertido en ácido fórmico y después excretado.[10][11]

El metanol en sí, a pesar de ser venenoso, tiene un efecto sedante mucho menos potente que el etanol. Algunos alcoholes de cadena larga como por ejemplo el n-propanol, el isopropanol, el n-butanol, el t-butanol y el 2-metil-2-butanol sí tienen efectos sedantes más potentes, aunque también son más tóxicos que el etanol.[12][13]​Estos alcoholes de cadena larga se encuentran como contaminantes en algunas bebidas alcohólicas y son conocidos como alcoholes de fusel,[14][15]​ y tienen la reputación de causar una resaca grave, aunque no está claro si los alcoholes de fusel son la auténtica causa.[16]​ Muchos alcoholes de cadena larga son utilizados por la industria como disolventes,[17]​ y a veces están detrás de una variedad de problemas de salud asociados al alcoholismo.[18]​ Aunque el mecanismo no está claro, un meta análisis de 572 estudios han demostrado un aumento del riesgo de cáncer asociado al consumo de alcohol.[19]

Alcohol de botiquín

El alcohol de botiquín puede tener varias composiciones. Puede ser totalmente alcohol etílico al 96º, con algún aditivo como el cloruro de benzalconio o alguna sustancia para darle un sabor desagradable. Es lo que se conoce como alcohol etílico desnaturalizado. También se utilizan como desnaturalizantes el ftalato de dietilo y el metanol, lo cual hace tóxicos a algunos alcoholes desnaturalizados.

Otras composiciones: podría contener alcohol isopropílico, no es apto para beber, pero puede ser más efectivo para el uso como secante.

La adición de estas sustancias se hizo necesaria ya que las personas que padecen alcoholemia la consumían en grandes cantidades por su bajo costo y fácil adquisición, cabe indicar que se trata del mismo compuesto, alcohol etílico.

Véase también

Referencias

  1. Unión Internacional de Química Pura y Aplicada. «Alcohols». Compendium of Chemical Terminology. Versión en línea (en inglés).
  2. Modanlou, HD (noviembre de 2008). «A tribute to Zakariya Razi (865 - 925 AD), an Iranian pioneer scholar». Archives of Iranian medicine (en inglés) 11 (6). Teherán: Academy of Medical Sciences of Iranian Medicine. pp. 673-677. ISSN 1029-2977. OCLC 269410950. PMID 18976043. 
  3. Diccionario enciclopédico popular ilustrado Salvat (1906-1915)
  4. Biasioli, Weitz, Chandías, Química Orgánica (1993). «13». Química Orgánica. Argentina: Kapelusz. p. 255. ISBN 950-13-2037-5. 
  5. (en inglés) Fuente: 'CDC: Centers for Disease Control and Prevention'.
  6. Steven Wm. Fowkes. «Living with Alcohol». CERI (en inglés). The Cognitive Enhancement Research Institute. Archivado desde el original el 29 de febrero de 2000. Consultado el 1 de octubre de 2016. 
  7. Maxwell, Christina R.; Spangenberg, Rebecca Jay; Hoek, Jan B.; Silberstein, Stephen D.; Oshinsky, Michael L. (2010). «Acetate causes alcohol hangover headache in rats». PloS One 5 (12): e15963. ISSN 1932-6203. PMID 21209842. doi:10.1371/journal.pone.0015963. Consultado el 1 de octubre de 2016. 
  8. Gable, Robert S. (junio de 2004). «Comparison of acute lethal toxicity of commonly abused psychoactive substances». Addiction (en inglés) 99 (6): 686-696. ISSN 1360-0443. doi:10.1111/j.1360-0443.2004.00744.x. 
  9. Argonne National Laboratory. «Connecting Argonne science to the classroom». anl.gov (en inglés). Consultado el 1 de octubre de 2016. 
  10. Zimmerman, H. E.; Burkhart, K. K.; Donovan, J. W. (abril de 1999). «Ethylene glycol and methanol poisoning: diagnosis and treatment». Journal of emergency nursing: JEN: official publication of the Emergency Department Nurses Association 25 (2): 116-120. ISSN 0099-1767. PMID 10097201. 
  11. Lobert, S. (1 de diciembre de 2000). «Ethanol, isopropanol, methanol, and ethylene glycol poisoning». Critical Care Nurse 20 (6): 41-47. ISSN 0279-5442. PMID 11878258. Consultado el 1 de octubre de 2016. 
  12. McKee, Martin; Suzcs, Sándor; Sárváry, Attila; Adany, Roza; Kiryanov, Nikolay; Saburova, Ludmila; Tomkins, Susannah; Andreev, Evgeny et al. (octubre de 2005). «The composition of surrogate alcohols consumed in Russia». Alcoholism, Clinical and Experimental Research 29 (10): 1884-1888. ISSN 0145-6008. PMID 16269919. 
  13. Bunc, M.; Pezdir, T.; Mozina, H.; Mozina, M.; Brvar, M. (abril de 2006). «Butanol ingestion in an airport hangar». Human & Experimental Toxicology 25 (4): 195-197. ISSN 0960-3271. PMID 16696295. 
  14. Woo, Kang-Lyung. «Determination of low molecular weight alcohols including fusel oil in various samples by diethyl ether extraction and capillary gas chromatography». Journal of AOAC International 88 (5): 1419-1427. ISSN 1060-3271. PMID 16385992. 
  15. Lachenmeier, Dirk W.; Haupt, Simone; Schulz, Katja (abril de 2008). «Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohol products». Regulatory toxicology and pharmacology: RTP 50 (3): 313-321. ISSN 0273-2300. PMID 18295386. doi:10.1016/j.yrtph.2007.12.008. 
  16. Hori, Hisako; Fujii, Wataru; Hatanaka, Yutaka; Suwa, Yoshihide (agosto de 2003). «Effects of fusel oil on animal hangover models». Alcoholism, Clinical and Experimental Research 27 (8 Suppl): 37S-41S. ISSN 0145-6008. PMID 12960505. doi:10.1097/01.ALC.0000078828.49740.48. 
  17. Mańkowski, W.; Klimaszyk, D.; Krupiński, B. (2000). «[How to differentiate acute isopropanol poisoning from ethanol intoxication? -- a case report]». Przegla̧d Lekarski 57 (10): 588-590. ISSN 0033-2240. PMID 11199895. 
  18. Bogomolova, I. N.; Bukeshov, M. K.; Bogomolov, D. V. «[The forensic medical diagnosis of intoxication of alcohol surrogates by morphological findings]». Sudebno-Meditsinskaia Ekspertiza 47 (5): 22-25. ISSN 0039-4521. PMID 15523882. Consultado el 1 de octubre de 2016. 
  19. Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F.; Fedirko, V.; Scotti, L.; Jenab, M. et al. (3 de febrero de 2015). «Alcohol consumption and site-specific cancer risk: a comprehensive dose–response meta-analysis». British Journal of Cancer (en inglés) 112 (3): 580-593. ISSN 0007-0920. doi:10.1038/bjc.2014.579. 

Enlaces externos