Diferencia entre revisiones de «RFID»
m Revertidos los cambios de 64.76.155.126 a la última versión de SieBot usando monobook-suite |
|||
Línea 6: | Línea 6: | ||
==Antecedentes== |
==Antecedentes== |
||
En la actualidad, la tecnología más extendida para la identificación de objetos es la de los [[código de barras|códigos de barras]]. Sin embargo, éstos presentan algunas desventajas, como son la escasa cantidad de datos que pueden almacenar y la imposibilidad de ser modificados (reprogramados). La mejora obvia que se ideó, y que constituye el origen de la tecnología RFID, consistía en usar chips de silicio que pudieran transferir los datos que almacenaban al lector sin contacto físico (de forma equivalente a los lectores de infrarrojos utilizados para leer los códigos de barras). |
En la actualidad, la tecnología más extendida para la identificación de objetos es la de los [[código de barras|códigos de barras]]. Sin embargo, éstos presentan algunas desventajas, como son la escasa cantidad de datos que pueden almacenar y la imposibilidad de ser modificados (reprogramados). La mejora obvia que se ideó, y que constituye el origen de la tecnología RFID, consistía en usar chips de silicio que pudieran transferir los datos que almacenaban al lector sin contacto físico (de forma equivalente a los lectores de infrarrojos utilizados para leer los códigos de barras). olaa |
||
==Historia== |
==Historia== |
Revisión del 14:44 30 oct 2007
RFID (siglas de Radio Frequency IDentification, en español Identificación por radiofrecuencia) es un sistema de almacenamiento y recuperación de datos remoto que usa dispositivos denominados etiquetas, transpondedores o tags RFID. El propósito fundamental de la tecnología RFID es transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio. Las tecnologías RFID se agrupan dentro de las denominadas Auto ID (Automatic Identification, o Identificación Automática).
Una etiqueta RFID es un dispositivo pequeño, similar a una pegatina, que puede ser adherida o incorporada a un producto, animal o persona. Contienen antenas para permitirles recibir y responder a peticiones por radiofrecuencia desde un emisor-receptor RFID. Las etiquetas pasivas no necesitan alimentación eléctrica interna, mientras que las activas sí lo requieren. Una de las ventajas del uso de radiofrecuencia (en lugar, por ejemplo, de infrarrojos) es que no se requiere visión directa entre emisor y receptor.
Antecedentes
En la actualidad, la tecnología más extendida para la identificación de objetos es la de los códigos de barras. Sin embargo, éstos presentan algunas desventajas, como son la escasa cantidad de datos que pueden almacenar y la imposibilidad de ser modificados (reprogramados). La mejora obvia que se ideó, y que constituye el origen de la tecnología RFID, consistía en usar chips de silicio que pudieran transferir los datos que almacenaban al lector sin contacto físico (de forma equivalente a los lectores de infrarrojos utilizados para leer los códigos de barras). olaa
Historia
Se ha sugerido que el primer dispositivo conocido similar a RFID pudo haber sido una herramienta de espionaje inventada por Léon Theremin para el gobierno soviético en 1945. El dispositivo de Theremin era un dispositivo de escucha secreto pasivo, no una etiqueta de identificación, por lo que esta aplicación es dudosa. Según algunas fuentes[1], la tecnología usada en RFID habría existido desde comienzos de los años 1920, desarrollada por el MIT y usada extensivamente por los británicos en la Segunda Guerra Mundial (fuente que establece que los sistemas RFID han existido desde finales de los años 1960 y que sólo recientemente se había popularizado gracias a las reducciones de costes).
Una tecnología similar, el transpondedor de IFF, fue inventada por los británicos en 1939, y fue utilizada de forma rutinaria por los aliados en la Segunda Guerra Mundial para identificar los aeroplanos como amigos o enemigos. Se trata probablemente de la tecnología citada por la fuente anterior.
Otro trabajo temprano que trata el RFID es el artículo de 1948 de Harry Stockman, titulado "Comunicación por medio de la energía reflejada" (Actas del IRE, pp. 1196-1204, octubre de 1948). Stockman predijo que "... el trabajo considerable de investigación y de desarrollo tiene que ser realizado antes de que los problemas básicos restantes en la comunicación de la energía reflejada se solucionen, y antes de que el campo de aplicaciones útiles se explore." Hicieron falta treinta años de avances en multitud de campos diversos antes de que RFID se convirtiera en una realidad.
Arquitectura
El modo de funcionamiento de los sistemas RFID es simple. La etiqueta RFID, que contiene los datos de identificación del objeto al que se encuentra adherido, genera una señal de radiofrecuencia con dichos datos. Esta señal puede ser captada por un lector RFID, el cual se encarga de leer la información y pasársela, en formato digital, a la aplicación específica que utiliza RFID.
Por tanto, un sistema RFID consta de los siguientes tres componentes:
- Etiqueta RFID o transpondedor: compuesta por una antena, un transductor radio y un material encapsulado o chip. El propósito de la antena es permitirle al chip, el cual contiene la información, transmitir la información de identificación de la etiqueta. Existen varios tipos de etiquetas. El chip posee una memoria interna con una capacidad que depende del modelo y varía de una decena a millares de bytes. Existen varios tipos de memoria:
- Solo lectura: el código de identificación que contiene es único y es personalizado durante la fabricación de la etiqueta.
- De lectura y escritura: la información de identificación puede ser modificada por el lector.
- Anticolisión. Se trata de etiquetas especiales que permiten que un lector identifique varias al mismo tiempo (habitualmente las etiquetas deben entrar una a una en la zona de cobertura del lector).
- Lector de RFID o transceptor: compuesto por una antena, un transceptor y un decodificador. El lector envía periódicamente señales para ver si hay alguna etiqueta en sus inmediaciones. Cuando capta una señal de una etiqueta (la cual contiene la información de identificación de ésta), extrae la información y se la pasa al subsistema de procesamiento de datos.
- Subsistema de procesamiento de datos: proporciona los medios de proceso y almacenamiento de datos.
Tipos de etiquetas RFID
Las etiquetas RFID pueden ser activas, semipasivas (o semiactivas, también conocidas como asistidas por batería) o pasivas. Los tags pasivos no requieren ninguna fuente de alimentación interna y son en efecto dispositivos puramente pasivos (sólo se activan cuando un reader se encuentra cerca para suministrarles la energía necesaria). Los otros dos tipos necesitan alimentación, típicamente una pila pequeña.
Como las etiquetas pasivas son mucho más baratas de fabricar y no necesitan batería, la gran mayoría de las etiquetas RFID existentes son del tipo pasivo. En fecha de 2004, las etiquetas tienen un precio desde 0,40$, en grandes pedidos. El marcado de RFID universal de productos individuales será comercialmente viable con volúmenes muy grandes de 10.000 millones de unidades al año, llevando el coste de producción a menos de 0,05$ según un fabricante. La demanda actual de chips de circuitos integrados con RFID no está cerca de soportar ese coste. Los analistas de las compañías independientes de investigación como Gartner and Forrester Research convienen en que un nivel de precio de menos de 0,10$ (con un volumen de producción de 1.000 millones de unidades) sólo se puede lograr en unos 6 u 8 años, lo que limita los planes a corto plazo para una adopción extensa de las etiquetas RFID pasivas. Otros analistas creen que esos precios serían alcanzables dentro de 10-15 años.
A pesar de las ventajas en cuanto al coste de las etiquetas pasivas con respecto a las activas son significativas, otros factores incluyendo exactitud, funcionamiento en ciertos ambientes como cerca del agua o metal, y confiabilidad hacen que el uso de etiquetas activas sea muy común hoy en día.
Para comunicarse, los tags responden a peticiones o preguntas generando señales que a su vez no deben interferir con las transmisiones del reader (ya que las señales que llegan de los tags pueden ser muy débiles y han de poder distinguirse). Además de la reflexión o backscatter puede manipularse el campo magnético del lector por medio de técnicas de modulación de carga. El backscatter se usa típicamente en el campo lejano y la modulación de carga en el campo próximo (a distancias de unas pocas longitudes de onda del lector).
Tags pasivos
Los tags pasivos no poseen ningún tipo de alimentación. La señal que les llega de los lectores induce una corriente eléctrica mínima que basta para operar el circuito integrado CMOS del tag para generar y transmitir una respuesta. La mayoría de tags pasivos utiliza backscatter sobre la portadora recibida. Esto es, la antena ha de estar diseñada para obtener la energía necesaria para funcionar a la vez que para transmitir la respuesta por backscatter. Esta respuesta puede ser cualquier tipo de información, no sólo un código identificador. Un tag puede incluir memoria no volátil, posiblemente escribible (por ejemplo EEPROM).
Los tags pasivos suelen tener distancias de uso práctico comprendidas entre los 10 cm (ISO 14443) y llegando hasta unos pocos metros (EPC e ISO 18000-6) según la frecuencia de funcionamiento y el diseño y tamaño de la antena. Por su sencillez conceptual son obtenibles por medio de un proceso de impresión de las antenas. Como carecen de autonomía energética el dispositivo puede resultar muy pequeño: pueden incluirse en una pegatina o insertarse bajo la piel (tags de baja frecuencia).
En 2006, Hitachi desarrolló un dispositivo pasivo denominado µ-Chip con un tamaño de 0,15×0,15 mm sin antena, más delgado que una hoja de papel (7,5 µm).[2][3] Se utiliza SOI (Silicon-on-Insulator) para lograr esta integración. Este chip puede transmitir un identificador único de 128 bits fijado a él en su fabricación, que no puede modificarse y confiere autenticidad al mismo. Tiene un rango máximo de lectura de 30 cm. En febrero de 2007 Hitachi presentó un dispositivo aún menor de 0,05×0,05 mm y lo suficientemente delgado como para poder estar integrado en una hoja de papel.[4] Estos chips mantienen la capacidad de almacenamiento y pueden funcionar en distancias de hasta unos pocos cientos de metros. El problema es la antena necesaria, como mínimo 80 veces más grande que el chip.
Alien Technology (Fluidic Self Assembly), SmartCode (Flexible Area Synchronized Transfer) y [[Symbol Technologies (PICA) declaran disponer de procesos en diversas etapas de desarrollo que pueden reducir aún más los costes por medio de procesos de fabricación paralela. Estos medios de producción podrían reducir mucho más los costes y dirigir los modelos de economía de escala de un sector importante de la manufactura del silicio. Esto podría llevar a una expansión mayor de la tecnología de tags pasivos.
Existen tags fabricados con semiconductores basados en polímeros desarrollados por compañías de todo el mundo. En 2005 PolyIC y Philips presentaron tags sencillos en el rango de 13,56 MHz que utilizaban esta tecnología. Si se introducen en el mercado con éxito estos tags serían producibles en imprenta como una revista y con ello mucho más baratos que los tags de silicona, sirviendo como alternativa totalmente impresa como hoy lo es el código de barras, con un coste prácticamente nulo. Sin embargo, para ello es necesario que superen aspectos técnicos y económicos, teniendo en cuenta que el silicio es una tecnología que lleva décadas disfrutando de inversiones de desarrollo multimillonarias que han resultado en un coste menor que el de la impresión convencional.
Debido a las preocupaciones por la energía y el coste, la respuesta de una etiqueta pasiva RFID es necesariamente breve, normalmente apenas un número de identificación (GUID). La falta de una fuente de alimentación propia hace que el dispositivo pueda ser bastante pequeño: existen productos disponibles de forma comercial que pueden ser insertados bajo la piel. Las etiquetas pasivas, en la práctica tienen distancias de lectura que varían entre unos 10 milímetros hasta cerca de 6 metros dependiendo del tamaño de la antena de la etiqueta y de la potencia y frecuencia en la que opera el lector. Estando en 2007, el dispositivo disponible comercialmente más pequeño de este tipo medía 0.05 milímetros × 0.05 milímetros, y más fino que una hoja de papel; estos dispositivos son prácticamente invisibles.
Tags activos
A diferencia de los tags pasivos, los activos poseen su propia fuente autónoma de energía, que utilizan para dar corriente a sus circuitos integrados y propagar su señal al lector. Estos tags son mucho más fiables (tienen menos errores) que los pasivos debido a su capacidad de establecer sesiones con el reader. Gracias a su fuente de energía son capaces de transmitir señales más potentes que las de los tags pasivos, lo que les lleva a ser más eficientes en entornos dificultosos para la radiofrecuencia como el agua (incluyendo humanos y ganado, formados en su mayoría por agua), metal (contenedores, vehículos). También son efectivos a distancias mayores pudiendo generar respuestas claras a partir de recepciones débiles (lo contrario que los tags pasivos). Por contra, suelen ser mayores y más caros, y su vida útil es en general mucho más corta.
Muchos tags activos tienen rangos efectivos de cientos de metros y una vida útil de sus baterías de hasta 10 años. Algunos de ellos integran sensores de registro de temperatura y otras variables que pueden usarse para monitorizar entornos de alimentación o productos farmacéuticos. Otros sensores asociados con ARFID incluyen humedad, vibración, luz, radiación, temperatura y componentes atmosféricos como el etileno. Los tags, además de mucho más rango (500 m), tiene capacidades de almacenamiento mayores y la habilidad de guardar información adicional enviada por el transceptor.
Actualmente, las etiquetas activas más pequeñas tienen un tamaño aproximado de una moneda. Muchas etiquetas activas tienen rangos prácticos de diez metros, y una duración de batería de hasta varios años.
Tags semipasivos
Los tags semipasivos se parecen a los activos en que poseen una fuente de alimentación propia, aunque en este caso se utiliza principalmente para alimentar el microchip y no para transmitir una señal. La energía contenida en la radiofrecuencia se refleja hacia el reader como en un tag pasivo. Un uso alternativo para la batería es almacenar información propagada desde el lector para emitir una respuesta en el futuro, típicamente usando backscatter. Los tags sin batería deben responder reflejando energía de la portadora del lector al vuelo.
La batería puede permitir al circuito integrado de la etiqueta estar constantemente alimentado y eliminar la necesidad de diseñar una antena para recoger potencia de una señal entrante. Por ello, las antenas pueden ser optimizadas para utilizar métodos de backscattering. Las etiquetas RFID semipasivas responden más rápidamente, por lo que son más fuertes en el ratio de lectura que las pasivas.
Este tipo de tags tienen una fiabilidad comparable a la de los tags activos a la vez que pueden mantener el rango operativo de un tag pasivo. También suelen durar más que los tags activos.
Tipos de antena
El tipo de antena utilizado en un tag depende de la aplicación objetivo y la frecuencia de operación. Los tags de baja frecuencia (LF) normalmente se sirven de la inducción electromagnética. Como el voltaje inducido es proporcional a la frecuencia, se puede producir el necesario para alimentar un circuito integrado dado un número suficiente de espiras. Existen tags LF compactos (como los utilizados para identificación humana y animal, encapsulados en vidrio) que utilizan una antena en varios niveles (tres de 100-150 espiras cada uno) alrededor de un núcleo de ferrita.
En alta frecuencia (HF, 13,56 MHz) se utiliza una espiral plana con 5-7 vueltas y un factor de forma parecido al de una tarjeta de crédito para lograr distancias de decenas de centímetros. Estas antenas son más baratas que las LF ya que pueden producirse por medio de litografía en lugar de espiración, aunque son necesarias dos superficies de metal y una aislante para realizar la conexión cruzada del nivel exterior al interior de la espiral, donde se encuentran el condensador de resonancia y el circuito integrado.
Los tags pasivos en frecuencias ultraalta (UHF) y de microondas suelen acoplarse por radio a la antena del lector y utilizar antenas clásicas de dipolo. Sólo es necesaria una capa de metal, lo que reduce el coste. Las antenas de dipolo, no obstante, no se ajustan muy bien a las características de los circuitos integrados típicos (con alta impedancia de entrada, ligeramente capacitiva). Se pueden utilizar dipolos plegados o bucles cortos como estructuras inductivas complementarias para mejorar la alimentación. Los dipolos de media onda (16 cm a 900 MHz) son demasiado grandes para la mayoría de aplicaciones (por ejemplo los tags para uso en etiquetas no pueden medir más de 10 cm), por lo que hay que doblar las antenas para satisfacer las necesidades de tamaño. También pueden usarse estructuras de banda ancha. La ganancia de las antenas compactas suele ser menor que la de un dipolo (menos de 2 dBi) y pueden considerarse isótropas en el plano perpendicular a su eje.
Los dipolos experimentan acoplamiento con la radiación que se polariza en sus ejes, por lo que la visibilidad de un tag con una antena de dipolo simple depende de su orientación. Los tags con dos antenas ortogonales (tags de doble dipolo) dependen mucho menos de ella y de la polarización de la antena del lector, pero suelen ser más grandes y caras que sus contrapartidas simples.
Pueden usarse antenas de parche (patch) para dar servicio en las cercanías de superficies metálicas, aunque es necesario un grosor de 3-6 mm para lograr un buen ancho de banda, además de que es necesario tener una conexión a tierra que incrementa el coste comparado con estructuras de una capa más sencillas.
Las antenas HF y UHF suelen ser de cobre o aluminio. Se han probado tintas conductoras en algunas antenas encontrando problemas con la adhesión al circuito integrado y la estabilidad del entorno.
Asociación de tags
Existen tres tipos básicos de tags en base a su relación con los objetos que identifican: asociable, implantable e insertable (attachable, implantable, insertion). [5] Además de estos tipos de tags Eastman Kodak ha presentado dos solicitudes de patente que tratan de la monitorización del consumo de medicina en forma de un tag “digerible”.[6].
Posicionamiento de los tags
La orientación de un tag puede afectar al desempeño de tags UHF a través del aire en función de la posición en la que se encuentran los tags. En general, no es necesaria una recepción óptima de la energía del lector para operar sobre los tags pasivos. No obstante, puede haber casos en los que se fija la distancia entre ambas partes así como la potencia efectiva emitida. En este caso, es necesario saber en qué casos se puede trabajar de forma óptima con ellos.
Se definen los puntos denominados R (de resonancia, resonance spot), L (vivo, live spot) y D (muerto, dead spot) para especificar la localización de los tags en un objeto marcado, de forma que los tags aún puedan recibir la energía necesaria en base a unos niveles determinados de potencia emitida y distancia. [7].
Entornos de tags
El concepto de tag RFID va asociado al de su ubicuidad. Esto supone que los lectores pueden requerir la selección de tags a explorar de entre muchos candidatos posibles. También podrían desear realizar una exploración de los tags de su entorno para realizar inventarios o, si los tags se asocian a sensores y pueden mantener sus valores, identificar condiciones del entorno. Si un reader intenta trabajar con un conjunto de tags debe conocer los dispositivos que se encuentran en su área de acción para después recorrerlos uno a uno, o bien hacer uso de protocolos de evitación de colisiones.
Para leer los datos de los tags, los readers utilizan un algoritmo de singulación basado en el recorrido de árboles, resolviendo las colisiones que puedan darse y procesando secuencialmente las respuestas. Existen tags bloqueantes (blocker tags) que pueden usarse para evitar que haya lectores que accedan a las tags de un área sin necesidad de recurrir a comandos de suicidio para inhabilitar los tags. Estos tags se hacen pasar por tags normales pero poseen ciertas características específicas; en concreto, pueden tomar cualquier código de identificación como propio, y pueden responder a toda pregunta que escuchen, asegurando el entorno al anular la utilidad de estas preguntas.
En general, puede emitirse una señal espuria si se detecta actividad de tags para bloquear las transmisiones débiles producidas por éstos. En caso de que los tags sean prescindibles o no sean necesarios de nuevo, pueden inutilizarse induciendo en ellos corrientes elevadas que inutilicen sus circuitos.
Aparte de esto, un tag puede ser promiscuo, si responde a todas las peticiones sin excepción, o seguro, si requiere autentificación (esto conlleva los aspectos típicos de gestión de claves criptográficas y de acceso). Un tag puede estar preparado para activarse o desactivarse como respuesta a comandos del lector.
Los lectores encargados de un grupo de tags en un área pueden operar en modo autónomo en contraposición al modo interactivo. Si trabajan de esta forma, realizan una identificación periódica de todos los tags en su entorno y mantienen una lista de presencia con tiempos de persistencia (timeouts) e información de control. Si una entrada expora, se elimina de la tabla.
Con frecuencia una aplicación distribuida requiere el uso de ambos tipos extremos de tags. Los tags pasivos no pueden realizar labores de monitorización continua sino que realizan tareas bajo demanda cuando los readers se las solicitan. Son útiles para realizar actividades regulares y bien definidas con necesidades de almacenamiento y seguridad acotadas. Si hay accesos frecuentes, continuos o impredecibles, o bien existen requerimientos de tiempo real o procesamiento de datos (como búsqueda en tablas internas) suele ser conveniente utilizar tags activos.
Clasificación
Los sistemas RFID se clasifican dependiendo del rango de frecuencias que usan. Existen cuatro tipos de sistemas: de frecuencia baja (entre 125 ó 134,2 kilohercios); de alta frecuencia (13,56 megahercios); UHF o de frecuencia ultraelevada (868 a 956 megahercios); y de microondas (2,45 gigahercios). Los sistemas UHF no pueden ser utilizados en todo el mundo porque no existen regulaciones globales para su uso.
Estandarización
Los estándares de RFID abordan cuatro áreas fundamentales:
- Protocolo en el interfaz aéreo: especifica el modo en el que etiquetas RFID y lectores se comunican mediante radiofrecuencia.
- Contenido de los datos: especifica el formato y semántica de los datos que se comunican entre etiquetas y lectores.
- Certificación: pruebas que los productos deben cumplir para garantizar que cumplen los estándares y pueden interoperar con otros dispositivos de distintos fabricantes.
- Aplicaciones: usos de los sistemas RFID.
Como en otras áreas tecnológicas, la estandarización en el campo de RFID se caracteriza por la existencia de varios grupos de especificaciones competidoras. Por una parte está ISO, y por otra Auto-ID Centre (conocida desde octubre de 2003 como EPCglobal[8], de EPC, Electronic Product Code). Ambas comparten el objetivo de conseguir etiquetas de bajo coste que operen en UHF.
Los estándares EPC para etiquetas son de dos clases:
- Clase 1: etiqueta simple, pasiva, de sólo lectura con una memoria no volátil programable una sola vez.
- Clase 2: etiqueta de sólo lectura que se programa en el momento de fabricación del chip (no reprogramable posteriormente).
Las clases no son ínteroperables y además son incompatibles con los estándares de ISO. Aunque EPCglobal está desarrollando una nueva generación de estándares EPC está (denominada Gen2), con el objetivo de conseguir interoperabilidad con los estándares de ISO, aún se está en discusión sobre el AFI (Application Family Identifier) de 8 bits.
Por su parte, ISO ha desarrollado estándares de RFID para la identificación automática y la gestión de objetos. Existen varios estándares relacionados, como ISO 10536, ISO 14443 y ISO 15693, pero la serie de estándares estrictamente relacionada con las RFID y las frecuencias empleadas en dichos sistemas es la serie 18000.
Regulación de frecuencias
No hay ninguna corporación pública global que gobierne las frecuencias usadas para RFID. En principio, cada país puede fijar sus propias reglas.
Las principales corporaciones que gobiernan la asignación de las frecuencias para RFID son:
- EE.UU.: FCC (Federal Communications Commission)
- Canadá: DOC (Departamento de la Comunicación)
- Europa: ERO, CEPT, ETSI y administraciones nacionales. Obsérvese que las administraciones nacionales tienen que ratificar el uso de una frecuencia específica antes de que pueda ser utilizada en ese país
- Japón: MPHPT (Ministry of Public Management, Home Affairs, Post and Telecommunication)
- China: Ministerio de la Industria de Información
- Australia: Autoridad Australiana de la Comunicación (Australian Communication Authority)
- Nueva Zelanda: Ministerio de desarrollo económico de Nueva Zelanda (New Zealand Ministry of Economic Development.
- Argentina: CNC (Comisión Nacional de Comunicaciones).
- Chile: Ministerio de Transportes y Telecomunicaciones.
Las etiquetas RFID de baja frecuencia (LF: 125 - 134 kHz y 140 - 148.5 kHz) y de alta frecuencia (HF: 13.56 MHz) se pueden utilizar de forma global sin necesidad de licencia. La frecuencia ultraalta (UHF: 868 - 928 MHz) no puede ser utilizada de forma global, ya que no hay un único estándar global. En Norteamérica, la frecuencia ultraelevada se puede utilizar sin licencia para frecuencias entre 908 - 928 MHz, pero hay restricciones en la energía de transmisión. En Europa la frecuencia ultraelevada está bajo consideración para 865.6 - 867.6 MHz. Su uso es sin licencia sólo para el rango de 869.40 - 869.65 MHz, pero existen restricciones en la energía de transmisión. El estándar UHF norteamericano (908-928 MHz) no es aceptado en Francia y Italia ya que interfiere con sus bandas militares. En China y Japón no hay regulación para el uso de la frecuencia ultraelevada. Cada aplicación de frecuencia ultraelevada en estos países necesita de una licencia, que debe ser solicitada a las autoridades locales, y puede ser revocada. En Australia y Nueva Zelanda, el rango es de 918 - 926 MHz para uso sin licencia, pero hay restricciones en la energía de transmisión.
Existen regulaciones adicionales relacionadas con la salud y y condiciones ambientales. Por ejemplo, en Europa, la regulación Waste Electrical and Electronic Equipment ("Equipos eléctricos y electrónicos inútiles"), no permite que se desechen las etiquetas RFID. Esto significa que las etiquetas RFID que estén en cajas de cartón deber de ser quitadas antes de deshacerse de ellas. También hay regulaciones adicionales relativas a la salud; véase campo electromagnético.
Uso actual
Dependiendo de las frecuencias utilizadas en los sistemas RFID, el coste, el alcance y las aplicaciones son diferentes. Los sistemas que emplean frecuencias bajas tienen igualmente costes bajos, pero también baja distancia de uso. Los que emplean frecuencias más altas proporcionan distancias mayores de lectura y velocidades de lectura más rápidas. Así, las de baja frecuencia se utilizan comúnmente para la identificación de animales, seguimiento de barricas de cerveza, o como llave de automóviles con sistema antirrobo. En ocasiones se insertan en pequeños chips en mascotas, para que puedan ser devueltas a su dueño en caso de pérdida. En los Estados Unidos se utilizan dos frecuencias para RFID: 125 kHz (el estándar original) y 134,5 kHz (el estándar internacional). Las etiquetas RFID de alta frecuencia se utilizan en bibliotecas y seguimiento de libros, seguimiento de palés, control de acceso en edificios, seguimiento de equipaje en aerolíneas, seguimiento de artículos de ropa y ahora último en pacientes de centros hospitalarios para hacer un seguimiento de su historia clínica. Un uso extendido de las etiquetas de alta frecuencia como identificación de acreditaciones, substituyendo a las anteriores tarjetas de banda magnética. Sólo es necesario acercar estas insignias a un lector para autenticar al portador.
Las etiquetas RFID de UHF se utilizan comúnmente de forma comercial en seguimiento de palé y envases, y seguimiento de camiones y remolques en envíos.
Las etiquetas RFID de microondas se utilizan en el control de acceso en vehículos de gama alta.
Algunas autopistas, como por ejemplo la FasTrak de California, el sistema I-Pass de Illinois, el telepeaje TAG en las autopistas urbanas en Santiago de Chile, la totalidad de las autopistas pagas argentinas y la Philippines South Luzon Expressway E-Pass utilizan etiquetas RFID para recaudación con peaje electrónico. Las tarjetas son leídas mientras los vehículos pasan; la información se utiliza para cobrar el peaje en una cuenta periódica o descontarla de una cuenta prepago. El sistema ayuda a disminuir el entorpecimiento del tráfico causado por las cabinas de peaje.
Sensores como los sísmicos pueden ser leídos empleando transmisores-receptores RFID, simplificando enormemente la recolección de datos remotos.
En enero de 2003, Michelin anunció que había comenzado a probar transmisores-receptores RFID insertados en neumáticos. Después de un período de prueba estimado de 18 meses, el fabricante ofrecerá neumáticos con RFID a los fabricantes de automóviles. Su principal objetivo es el seguimiento de neumáticos en cumplimiento con la United States Transportation, Recall, Enhancement, Accountability and Documentation Act (TREAD Act).
Las tarjetas con chips RFID integrados se usan ampliamente como dinero electrónico, como por ejemplo la tarjeta Octopus en Hong-Kong, tarjeta bip! en Santiago de Chile para el transporte publico (transantiago), la tarjeta SubteCard para el subterráneo de Buenos Aires, la tarjeta Cívica en Medellín, y en los Países Bajos como forma de pago en transporte público y ventas menores.
Comenzando con el modelo de 2004, está disponible una "llave inteligente" como opción en el Toyota Prius y algunos modelos de Lexus. La llave emplea un circuito de RFID activo que permite que el automóvil reconozca la presencia de la llave a un metro del sensor. El conductor puede abrir las puertas y arrancar el automóvil mientras la llave sigue estando en la cartera o en el bolsillo.
En agosto de 2004, el Departamento de Rehabilitación y Corrección de Ohio (ODRH) aprobó un contrato de 415.000 dólares para ensayar la tecnología de seguimiento con Alanco Technologies. Los internos tienen unos transmisores del tamaño de un reloj de muñeca que pueden detectar si los presos han estado intentando quitárselas y enviar una alarma a los ordenadores de la prisión. Este proyecto no es el primero que trabaja en el desarrollo de chips de seguimiento en prisiones estadounidenses. Instalaciones en Michigan, California e Illinois emplean ya esta tecnología.
Logística
Actualmente, la aplicación más importante de RFID es la logística. El uso de esta tecnología permitiría tener localizado cualquier producto dentro de la cadena de suministro.
Requisitos sobre RFID para su uso en logística
Debido al tamaño de estas dos organizaciones, sus mandatos sobre RFID han causado un impacto en miles de compañías de todo el mundo. La fecha límite se ha extendido varias veces porque muchos fabricantes se enfrentan a grandes dificultades para implementar sistemas RFID. En la práctica, las cifras de lecturas exitosas están actualmente en un 80%, debido a la atenuación de la onda de radio causada por los productos y el empaquetado. Dentro de un tiempo está previsto que incluso las compañías más pequeñas sean capaces de poner etiquetas RFID en sus transportes.
Desde enero de 2005, Wal-Mart ha puesto como requisito a sus 100 principales proveedores que apliquen etiquetas RFID en todos sus envíos. Para poder cumplir el requisito, los fabricantes usan codificadores/impresoras RFID para etiquetar las cajas y palés que requieren etiquetas EPC para Wal-Mart. Estas etiquetas inteligentes son producidas integrando el RFID dentro del material de la etiqueta, e imprimiendo el código de barras y otra información visible en la superficie de la etiqueta.
Implantes humanos
Los chips RFID implantables, diseñados originalmente para el etiquetado de animales se está utilizando y se está contemplando también para los seres humanos. Applied Digital Solutions propone su chip "unique under-the-skin format" (formato bajo-la-piel único) como solución a la usurpación de la identidad, al acceso seguro a un edificio, al acceso a un ordenador, al almacenamiento de expedientes médicos, a iniciativas de anti-secuestro y a una variedad de aplicaciones. Combinado con los sensores para supervisar diversas funciones del cuerpo, el dispositivo Digital Angel podría proporcionar supervisión de los pacientes. El Baja Beach Club en Barcelona (España) utiliza un Verichip implantable para identificar a sus clientes VIP, que lo utilizan para pagar las bebidas [2]. El departamento de policía de Ciudad de México ha implantado el Verichip a unos 170 de sus oficiales de policía, para permitir el acceso a las bases de datos de la policía y para poder seguirlos en caso de ser secuestrados. Sin embargo, el implante de los chips supone un elevado riesgo para la salud, ya que resultan altamente cancerígenos [3].
Amal Graafstra, un empresario del estado de Washington, en Estados Unidos, tenía un chip RFID implantado en su mano izquierda a principios de 2005. El chip medía 12 mm de largo por 2 milímetros de diámetro y tenía un radio de acción para su lectura de dos pulgadas (50 milímetros). La implantación fue realizada por un cirujano plástico, aunque el nombre del doctor no fue desvelado. Cuando le preguntaron qué pretendía hacer con el implante, Graafstra respondió: "estoy escribiendo mi propio software y estoy soldando sobre mi propia materia, prácticamente esto es lo que deseo. Bueno, de forma más precisa, algo que tengo el tiempo y la inspiración para poder hacerlo. En última instancia sin embargo, pienso que el verdadero acceso sin llave requerirá un chip implantable con un sistema muy fuerte de cifrado; ahora tan sólo veo este tipo de cosas en un contexto personal. "1
Aplicaciones potenciales
Las etiquetas RFID se ven como una alternativa que reemplazará a los códigos de barras UPC o EAN, puesto que tiene un número de ventajas importantes sobre la arcaica tecnología de código de barras. Quizás no logren sustituir en su totalidad a los códigos de barras, debidos en parte a su coste relativamente más alto. Para algunos artículos con un coste más bajo la capacidad de cada etiqueta de ser única se puede considerar exagerado, aunque tendría algunas ventajas tales como una mayor facilidad para llevar a cabo inventarios.
También se debe reconocer que el almacenamiento de los datos asociados al seguimiento de las mercancías a nivel de artículo ocuparía muchos terabytes. Es mucho más probable que las mercancías sean seguidas a nivel de palés usando etiquetas RFID, y a nivel de artículo con producto único, en lugar de códigos de barras únicos por artículo.
Los códigos RFID son tan largos que cada etiqueta RFID puede tener un código único, mientras que los códigos UPC actuales se limitan a un solo código para todos los casos de un producto particular. La unicidad de las etiquetas RFID significa que un producto puede ser seguido individualmente mientras se mueve de lugar en lugar, terminando finalmente en manos del consumidor. Esto puede ayudar a las compañías a combatir el hurto y otras formas de pérdida del producto. También se ha propuesto utilizar RFID para comprobación de almacén desde el punto de venta, y sustituir así al encargado de la caja por un sistema automático que no necesite ninguna captación de códigos de barras. Sin embargo no es probable que esto sea posible sin una reducción significativa en el coste de las etiquetas actuales. Se está llevando a cabo una investigación sobre la tinta que se puede utilizar como etiqueta RFID, que reduciría costes de forma significativa. Sin embargo, faltan todavía algunos años para que esto dé sus frutos.
Gen 2
Una organización llamada EPCglobal está trabajando en un estándar internacional para el uso de RFID y EPC en la identificación de cualquier artículo en la cadena de suministro para las compañías de cualquier tipo de industria, en cualquier lugar del mundo. El consejo superior de la organización incluye representantes de EAN International, Uniform Code Council, The Gillette Company, Procter & Gamble, Wal-Mart, Hewlett-Packard, Johnson & Johnson, SATO and Auto-ID Labs. Algunos sistemas RFID utilizan estándares alternativos basados en la clasificación ISO 18000-6.
El estándar gen 2 de EPCglobal fue aprobado en diciembre de 2004, y es probable que llegue a formar la espina dorsal de los estándares en etiquetas RFID de ahora en adelante. Esto fue aprobado después de una contención de Intermec por la posibilidad de que el estándar pudiera infringir varias patentes suyas relacionadas con RFID. Se decidió que el estándar en sí mismo no infringía sus patentes, sino que puede ser necesario pagar derechos a Intermec si la etiqueta se leyera de un modo particular. EPC Gen2 es la abreviatura de "EPCglobal UHF Generation 2".
Identificación de pacientes
En julio de 2004, la Food and Drug Administration (Administración de Alimentos y Medicamentos) hizo pública la decisión de comenzar un proceso de estudio que determinará si los hospitales pueden utilizar sistemas RFID para identificar a pacientes o para permitir el acceso por parte del personal relevante del hospital a los expedientes médicos. El uso de RFID para prevenir mezclas entre esperma y óvulos en las clínicas de fecundación in vitro también está siendo considerado [4]. Además, la FDA aprobó recientemente los primeros chips RFID de EE.UU. que se pueden implantar en seres humanos. Los chips RFID de 134,2kHz, de VeriChip Corp., una subsidiaria de Applied Digital Solutions Inc., pueden incorporar información médica personal y podrían salvar vidas y limitar lesiones causadas por errores en tratamientos médicos, según la compañía. La aprobación por parte de la FDA fue divulgada durante una conferencia telefónica con los inversionistas. También se ha propuesto su aplicación en el hogar, para permitir, por ejemplo, que un frigorífico pueda conocer las fechas de caducidad de los alimentos que contiene, pero ha habido pocos avances más allá de simples prototipos.
Tráfico y posicionamiento
Otra aplicación propuesta es el uso de RFID para señales de tráfico inteligentes en la carretera (Road Beacon System o RBS) [5]. Se basa en el uso de transpondedores RFID enterrados bajo el pavimento (radiobalizas) que son leídos por una unidad que lleva el vehículo (OBU, de onboard unit) que filtra las diversas señales de tráfico y las traduce a mensajes de voz o da una proyección virtual usando un HUD (Heads-Up Display). Su principal ventaja comparadas con los sistemas basados en satélite es que las radiobalizas no necesitan de mapeado digital ya que proporcionan el símbolo de la señal de tráfico y la información de su posición por sí mismas. Las radiobalizas RFID también son útiles para complementar sistemas de posicionamiento de satélite en lugares como los túneles o interiores, o en el guiado de personas ciegas.
Polémica
¿Cómo se sentiría usted si, por ejemplo, un día se diera cuenta de que su ropa interior permite revelar su paradero?La senadora del estado de California Debra Bowen, en una audiencia en 2003 [6]
El uso de la tecnología RFID ha causado una considerable polémica e incluso boicots de productos. Las cuatro razones principales por las que RFID resulta preocupante en lo que a privacidad se refiere son:
- El comprador de un artículo no tiene por qué saber de la presencia de la etiqueta o ser capaz de eliminarla.
- La etiqueta puede ser leída a cierta distancia sin conocimiento por parte del individuo.
- Si un artículo etiquetado es pagado mediante tarjeta de crédito o conjuntamente con el uso de una tarjeta de fidelidad, entonces sería posible enlazar la ID única de ese artículo con la identidad del comprador.
- El sistema de etiquetas EPCGlobal crea, o pretende crear, números de serie globales únicos para todos los productos, aunque esto cree problemas de privacidad y sea totalmente innecesario en la mayoría de las aplicaciones.
La mayoría de las preocupaciones giran alrededor del hecho de que las etiquetas RFID puestas en los productos siguen siendo funcionales incluso después de que se hayan comprado los productos y se hayan llevado a casa, y esto puede utilizarse para vigilancia, y otros propósitos infames sin relación alguna con sus funciones de inventario en la cadena de suministro. Aunque la intención es emplear etiquetas RFID de corta distancia, éstas pueden ser interrogadas a mayores distancias por cualquier persona con una antena de alta ganancia, permitiendo de forma potencial que el contenido de una casa pueda ser explorado desde una cierta distancia. Incluso un escaneado de rango corto es preocupante si todos los artículos detectados aparecen en una base de datos cada vez que una persona pasa un lector, o si se hace de forma malintencionada (por ejemplo, un robo empleando un escáner de mano portátil para obtener una evaluación instantánea de la cantidad de víctimas potenciales). Con números de serie RFID permanentes, un artículo proporciona información inesperada sobre una persona incluso después de su eliminación; por ejemplo, los artículos que se revenden, o se regalan, pueden permitir trazar la red social de una persona.
Otro problema referente a la privacidad es debido al soporte para un protocolo de singulation (anticolisión). Ésta es la razón por la cual un lector puede enumerar todas las etiquetas que responden a él sin que ellas interfieran entre sí. La estructura de la versión más común de este protocolo es tal que todos los bits del número de serie de la etiqueta salvo el último se pueden deducir por eavesdropping (detección a distancia) pasivo tan sólo en la parte del protocolo que afecta al lector. Por esta razón, si las etiquetas RFID están cerca de algún lector, la distancia en la cual la señal de una etiqueta puede ser escuchada es irrelevante. Lo que importa es la distancia a la que un lector de mucho más alcance puede recibir la señal. Independientemente de que esto dependa de la distancia a la que se encuentre el lector y de qué tipo sea, en un caso extremo algunos lectores tienen una salida de energía máxima (4 W) que se podría recibir a diez kilómetros de distancia.
Pasaportes
Varios países han propuesto la implantación de dispositivos RFID en los nuevos pasaportes, para aumentar la eficiencia en las máquinas de lectura de datos biométricos. El experto en seguridad Bruce Schneier dijo a raíz de estas propuestas: "Es una amenaza clara tanto para la seguridad personal como para la privacidad. Simplemente, es una mala idea." Los pasaportes con RFID integrado únicamente identifican a su portador, y en la propuesta que se está considerando, también incluirían otros datos personales. Esto podría hacer mucho más sencillos algunos de los abusos de la tecnología RFID que se acaban de comentar, y se podría expandir la cantidad de datos para incluir, por ejemplo, abusos basados en la lectura de la nacionalidad de una persona. Por ejemplo, un asalto cerca de un aeropuerto podría tener como objetivo a víctimas que han llegado de países ricos, o un terrorista podría diseñar una bomba que funcionara cuando estuviera cerca de personas de un país en particular.
El Departamento de Estado de los Estados Unidos rechazó en un primer momento estas hipótesis porque pensaban que los chips sólo podrían ser leídos desde una distancia de 10 cm, sin tener en cuenta más de 2.400 comentarios críticos de profesionales de la seguridad, y una demostración clara de que con un equipo especial se pueden leer los pasaportes desde 10 metros. A fecha de mayo de 2005, la propuesta está siendo revisada [7].
La autoridad de los pasaportes de Pakistán ha comenzado a expedir pasaportes con etiquetas RFID.
Carnet de conducir
El estado estadounidense de Virginia ha pensado en poner etiquetas RFID en los carnet de conducción con el objetivo de que los policías y otros oficiales realicen comprobaciones de una forma más rápida. La Asamblea General de Virginia también espera que, al incluir las etiquetas, cueste mucho más obtener documentos de identidad falsos. La propuesta se presentó por primera vez en el Driver's License Modernization Act de 2002, que no fue promulgada, pero en 2004 el concepto todavía estaba considerándose.
La idea fue promovida por el hecho de que varios de los piratas aéreos de los atentados del 11 de septiembre tenían carnets de conducir de Virginia fraudulentos. Sin embargo, la American Civil Liberties Union dijo que además de ser un riesgo para la privacidad y la libertad, la propuesta del RFID no habría entorpecido a los terroristas, dado que la documentación falsa que portaban era válida, pues eran documentos oficiales obtenidos con otra identificación falsa. La debilidad del sistema es que no falla cuando se validan documentos en el momento, sino que falla al verificar la identidad antes de expedirlos.
Bajo la propuesta, no se almacenaría ninguna información en la etiqueta salvo el número correspondiente a la información del portador en una base de datos, sólo accesible por personal autorizado. Además, para disuadir a las falsificaciones de identidad sólo sería necesario envolver un carnet de conducir con papel de aluminio. [8], [9]
¿La señal de la bestia?
Ha habido polémica por parte de algunos miembros de la comunidad cristiana sobre que el etiquetado RFID podría representar una marca de la bestia mencionada específicamente en el Apocalipsis. Este tema es estudiado por aquellos cristianos interesados en el campo de la escatología y el dispensacionalismo. Previamente se había sugerido que otras formas de identificación tales como tarjetas de crédito y códigos UPC, podrían ser también señales de la bestia. [10] [11] [12]
Blindajes Faraday como una contramedida al RFID
Se puede utilizar una jaula de Faraday para evitar que las señales de radiofrecuencia se escapen o entren en una zona, actuando como un blindaje RF.
Si se rodeara un dispositivo RFID con un blindaje de Faraday tendría señales entrantes y salientes muy atenuadas, hasta el punto de que no podrían ser utilizables. Un blindaje de Faraday muy sencillo, valido para la mayoría de los propósitos, sería un envoltorio de papel de aluminio. Uno más efectivo sería un rectángulo de cobre alrededor del objeto. Un RFID implantado sería más difícil de neutralizar con dicho blindaje, pero incluso una cubierta simple de papel de aluminio atenuaría la componente de campo eléctrico de las señales.
Neutralizar permanentemente el RFID podría necesitar una fuerte corriente eléctrica alterna adyacente al RFID, que sobrecargue la etiqueta y destruya su electrónica. En algunos casos, dependiendo de la composición del RFID, un imán fuerte puede servir para destruir mecánicamente la bobina o la conexión del chip por la fuerza mecánica ejercida en la bobina. Con el desarrollo de la tecnología RFID, pueden ser necesarios otros métodos.
Las etiquetas de 125 kHz, 134 kHz (baja frecuencia), y en varios casos 13.56 MHz (alta frecuencia) están unidas por un campo magnético en lugar de un campo eléctrico,es lo que se denomina acoplamiento inductivo. Como la jaula de Faraday blinda solamente la componente eléctrica del campo electromagnético, el blindaje de papel de aluminio es ineficaz. Cualquier blindaje magnético, como por ejemplo una hoja fina de hierro o acero, encapsulando la bobina de la antena de la etiqueta, será eficaz.
Véase también
Referencias
- Bhattacharya, Shaoni; 2005. "Electronic tags for eggs, sperm and embryos" en New Scientist.com, 2 de abril de 2005
- Roger Smith: RFID: A Brief Technology Analysis, CTO Network Library, 2005.
- Proyectos Logísticos RFID - RGR : http://www.satoeurope.com/
Notas
- ↑ Dargan, Gaurav; Johnson,Brian; Panchalingam, Mukunthan; Stratis, Chris (2004), The Use of Radio Frequency Identification as a Replacement for Traditional Barcoding
- ↑ «News release: World's smallest and thinnest 0.15 × 0.15 mm, 7.5 µm thick RFID IC chip». Hitachi, Ltd. 2006-02-06. Consultado el 26 de enero de 2007.
- ↑ Hara, Yoshiko (2006-02-06). «Hitachi advances paper-thin RFID chip». EETimes. Consultado el 26 de enero de 2007.
- ↑ [1]
- ↑ Tedjasaputra, Adi (2006-12-18). «RFID Tag Attachments». RFID Asia. Consultado el 3 de agosto de 2007.
- ↑ Tedjasaputra, Adi (2007-02-15). «Digestible RFID Tag: an Alternative for Your Internal Body Monitoring». RFID Asia. Consultado el 3 de agosto de 2007.
- ↑ Tedjasaputra, Adi (2006-12-11). «The Art and Science of RFID Tagging». RFID Asia. Consultado el 3 de agosto de 2007.
- ↑ Web de EPCglobal
Enlaces externos
- Wikimedia Commons alberga una categoría multimedia sobre RFID.
- RFID Tool - Herramienta para leer y escribir en etiquetas RFID desde Linux o BDS Plantilla:Es
- RFID y los servicios de proximidad, descripción de la tecnología RFID en el Portal de la Sociedad de la Información de Telefónica de España.
- Etiquetas RFID
Críticos con la tecnología RFID
- Privacy International
- Parar al RFID (http://www.spychips.com/index.html), un sitio web activista especializado en privacidad y RFID.
- Información y opiniones en contra de RFID (http://www.rfidkills.com)
- Informe de los consumidores de RFID (http://www.zombiewire.com/)
- Posición de la EFF en lo que se refiere a RFID (http://www.eff.org/Privacy/Surveillance/RFID/)
- Trabajo de EPIC sobre RFID (http://www.epic.org/privacy/rfid)
- Academic Papers on RFID & inventory problems