Ir al contenido

Diferencia entre revisiones de «Congruencia (geometría)»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
m Revertidos los cambios de 189.188.12.152 (disc.) a la última edición de SeroBOT
Etiqueta: Reversión
Línea 6: Línea 6:
Las partes coincidentes de las figuras congruentes<ref>{{Cita web|url=https://www.geogebra.org/m/MXWFRH8J|título=Criterios de Congruencia: LLL, ALA, LAL.}}</ref> se llaman homólogas o correspondientes.[[Archivo:Geom shodnost translace.svg|thumb|Figuras congruentes relacionadas mediante traslación.]]
Las partes coincidentes de las figuras congruentes<ref>{{Cita web|url=https://www.geogebra.org/m/MXWFRH8J|título=Criterios de Congruencia: LLL, ALA, LAL.}}</ref> se llaman homólogas o correspondientes.[[Archivo:Geom shodnost translace.svg|thumb|Figuras congruentes relacionadas mediante traslación.]]
[[Archivo: Hatch marks.svg|thumb|Figuras congruentes relacionadas mediante reflexión y rotación.]]
[[Archivo: Hatch marks.svg|thumb|Figuras congruentes relacionadas mediante reflexión y rotación.]]
En [[matemáticas]], dos figuras geométricas son '''congruentes''' si tienen las mismas dimensiones y la misma forma sin importar su posición u orientación,<ref>{{cita libro|título=CK-12|autor=CK-12|editorial=CK-12 Foundation|url=https://books.google.es/books?id=RE-klVrTSsIC&pg=PA192#v=onepage&q&f=false|página= 192|fechaacceso= 17 de diciembre de 2019}}</ref> es decir, si existe una [[isometría]] que los relaciona: una transformación que puede ser de [[traslación]], [[Movimiento de rotación#Transformaciones de rotación|rotación]] o [[reflexión (geometría)|reflexión]]. Las partes relacionadas entre las figuras congruentes se llaman '''homólogas''' o correspondientes.
En [[matemáticas]], dos figuras geométricas son '''congruentes''' si tienen las mismas dimensiones y la misma forma sin importar su posición u orientación,<ref>{{cita libro|título=CK-12|autor=CK-12|editorial=CK-12 Foundation|url=https://books.google.es/books?id=RE-klVrTSsIC&pg=PA192#v=onepage&q&f=false|página= 192|fechaacceso= 17 de diciembre de 2019}}</ref> es decir, si existe una [[isometría]] que los relaciona: una transformación que puede ser de [[Traslación (geometría)|traslación]], [[Movimiento de rotación#Transformaciones de rotación|rotación]] o [[reflexión (geometría)|reflexión]]. Las partes relacionadas entre las figuras congruentes se llaman '''homólogas''' o correspondientes.


== Definición de congruencia en geometría analítica ==
== Definición de congruencia en geometría analítica ==

Revisión del 15:26 9 dic 2022

Concepto

Dos o más figuras son congruentes si se cumple que son equivalentes tanto en forma como en tamaño, es decir si sus lados y sus ángulos respectivos tienen la correspondiencia en la medida, aunque su posición y orientación sean distintas.

El símbolo de congruencia es ( ≅ ).

Las partes coincidentes de las figuras congruentes[1]​ se llaman homólogas o correspondientes.

Figuras congruentes relacionadas mediante traslación.
Figuras congruentes relacionadas mediante reflexión y rotación.

En matemáticas, dos figuras geométricas son congruentes si tienen las mismas dimensiones y la misma forma sin importar su posición u orientación,[2]​ es decir, si existe una isometría que los relaciona: una transformación que puede ser de traslación, rotación o reflexión. Las partes relacionadas entre las figuras congruentes se llaman homólogas o correspondientes.

Definición de congruencia en geometría analítica

En la geometría euclidiana, la congruencia es equivalente a igualdad matemática en aritmética y álgebra. En geometría analítica, la congruencia puede ser definida así: dos figuras determinadas por puntos sobre un sistema y por de coordenadas cartesianas son congruentes si y solo si, la distancia euclidiana entre cualquier par de puntos de la primera figura es igual a la distancia euclidiana entre los puntos correspondientes de la segunda figura

Definición formal: Dos subconjuntos A y B de un espacio euclídeo son llamados congruentes si existe una isometría con .

Ángulos congruentes

Los ángulos opuestos son congruentes debido a que una rotación de 180° sobre su vértice hace coincidir uno y el otro.

Congruencia de triángulos

Dos triángulos son congruentes cuando sus lados correspondientes tienen la misma longitud y sus ángulos correspondientes tienen la misma medida.

Notación: Si dos triángulos y son congruentes, esto se notará como:

Criterios de congruencia de triángulos

Criterios para establecer que dos triángulos sean congruentes con un mínimo de condiciones, a veces llamado de forma genérica postulados o teoremas de congruencia ya que aunque triviales se tienen que demostrar.[3][4][5]​ En principio se busca construir triángulos congruentes con el mínimo de información sobre este.

1. Caso AAL o ALA: Dos triángulos son congruentes si tienen iguales dos de sus ángulos respectivos y el lado entre ellos. En un triángulo si conocemos dos de sus ángulos el tercer ángulo queda unívocamente determinado.

2. Caso LAL: Dos triángulos son congruentes si tienen dos lados iguales y el mismo ángulo comprendido entre ellos.

3. Caso LLL: Dos triángulos son congruentes si tienen los tres lados iguales.

4. Caso LLA: Dos triángulos son congruentes si tienen dos lados y el ángulo sobre uno de ellos iguales. Este caso no es de congruencia si no damos más información sobre el triángulo, como la de ser triángulo rectángulo o si tiene o no ángulos obtusos.

Véase también

Relaciones aritméticas entre ángulos:

Relaciones posicionales entre ángulos:

Determinados por dos paralelas y una transversal

Referencias

  1. «Criterios de Congruencia: LLL, ALA, LAL.». 
  2. CK-12. CK-12. CK-12 Foundation. p. 192. Consultado el 17 de diciembre de 2019. 
  3. Clemens y otros. Geometría con aplicaciones y solución de problemas. ISBN 0-201-64407-X
  4. Dolciani y otros: Geometría Moderna-
  5. CK-12 Geometría, página 222

Enlaces externos