Ir al contenido

Diferencia entre revisiones de «Gran colisionador de hadrones»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
TXiKiBoT (discusión · contribs.)
Línea 69: Línea 69:
El nuevo acelerador usa el túnel de 27 [[kilómetro|km]] de circunferencia creado para el Gran Colisionador de Electrones y Positrones ([[LEP]] en inglés).
El nuevo acelerador usa el túnel de 27 [[kilómetro|km]] de circunferencia creado para el Gran Colisionador de Electrones y Positrones ([[LEP]] en inglés).


nepe
== Experimentos ==
Los protones se acelerarán hasta tener una [[energía]] de 7 [[Tera|T]][[Electronvoltio|eV]] cada uno (siendo el total de energía de la colisión de 14 TeV). Se están construyendo 5 experimentos para el LHC. Dos de ellos, [[ATLAS experimento|ATLAS]] y [[Solenoide compacto de muones|CMS]], son grandes detectores de partículas de propósito general. Los otros tres, [[LHCb]], [[ALICE]] y [[TOTEM]], son más pequeños y especializados. El LHC también puede emplearse para hacer colisionar iones pesados tales como [[plomo]] (la colisión tendrá una energía de 1150 TeV). Los físicos confían en que el LHC proporcione respuestas a las siguientes cuestiones:
Los protones se acelerarán hasta tener una [[energía]] de 7 [[Tera|T]][[Electronvoltio|eV]] cada uno (siendo el total de energía de la colisión de 14 TeV). Se están construyendo 5 experimentos para el LHC. Dos de ellos, [[ATLAS experimento|ATLAS]] y [[Solenoide compacto de muones|CMS]], son grandes detectores de partículas de propósito general. Los otros tres, [[LHCb]], [[ALICE]] y [[TOTEM]], son más pequeños y especializados. El LHC también puede emplearse para hacer colisionar iones pesados tales como [[plomo]] (la colisión tendrá una energía de 1150 TeV). Los físicos confían en que el LHC proporcione respuestas a las siguientes cuestiones:



Revisión del 18:17 12 sep 2008


Cadena de aceleradores
del Gran colisionador de hadrones (LHC)
Experimentos
ATLAS Aparato Toroidal del LHC
CMS Solenoide de Muones Compacto
LHCb LHC-beauty
ALICE Gran Colisionador de Iones
TOTEM Sección de Cruce total, diseminación
elástica y disociación por difracción
LHCf LHC-delantero
Preaceleradores
p y Pb Acelerador lineal
de protones y Plomo
(no marcado) Lanzador de Protones del Sincrotrón
PS Sincrotrón de protones
SPS Supersincrotrón de protones

El Gran Colisionador de Hadrones (en inglés Large Hadron Collider o LHC, siglas por las que es generalmente conocido) es un acelerador de partículas (o acelerador y colisionador de partículas) ubicado en la actualmente denominada Organización Europea para la Investigación Nuclear (la sigla es la del nombre en francés de tal institución: Conseil Européen pour la Recherche Nucléaire, CERN), cerca de Ginebra, en la frontera franco-suiza.

El LHC se diseñó para colisionar haces de hadrones, más exactamente de protones de 7 Tev de energía, siendo su propósito principal examinar la validez y límites del Modelo Estándar, el cual es actualmente el marco teórico de la física de partículas, del que se conoce su ruptura a niveles de energía altos.
Los protones acelerados a velocidades del 99% de c y chocando entre sí en direcciones diametralmente opuestas producirían altísimas energías (aunque a escalas subatómicas) que permitirían simular algunos eventos ocurridos durante o inmediatamente después del big bang.

El LHC se convertirá en el acelerador de partículas más grande y energético del mundo.[1]​ Más de 2000 físicos de 34 países y cientos de universidades y laboratorios han participado en su construcción.

Hoy en día el colisionador se encuentra enfriándose hasta que alcance su temperatura de funcionamiento, que es de 1,9 K (menos de 2 grados sobre el cero absoluto o −271,25 °C). Los primeros haces de partículas fueron inyectados el 1 de agosto de 2008, [2]​ el primer intento para hacer circular los haces por toda la trayectoria del colisionador se produjo el 10 de septiembre de 2008 [3]​ mientras que las primeras colisiones a alta energía tendrán lugar después de que el LHC se inaugure de forma oficial el 21 de octubre de 2008.[4]

Teóricamente se espera que, una vez en funcionamiento, se produzca la partícula másica conocida como el bosón de Higgs (a veces llamada "la partícula de Dios"[5]​). La observación de esta partícula confirmaría las predicciones y "enlaces perdidos" del Modelo estándar de la física, pudiéndose explicar cómo adquieren las otras partículas elementales propiedades como su masa.[6]​ Verificar la existencia del bosón de Higgs sería un paso significativo en la búsqueda de una Teoría de la gran unificación, teoría que pretende unificar tres de las cuatro fuerzas fundamentales conocidas, quedando fuera de ella únicamente la gravedad. Además este bosón podría explicar por qué la gravedad es tan débil comparada con las otras tres fuerzas. Junto al bosón de Higgs también podrían producirse otras nuevas partículas que fueron predichas teóricamente, y para las que se ha planificado su búsqueda,[7]​ como los strangelets, los micro agujeros negros, el monopolo magnético o las partículas supersimétricas.[8]

El nuevo acelerador usa el túnel de 27 km de circunferencia creado para el Gran Colisionador de Electrones y Positrones (LEP en inglés).

nepe Los protones se acelerarán hasta tener una energía de 7 TeV cada uno (siendo el total de energía de la colisión de 14 TeV). Se están construyendo 5 experimentos para el LHC. Dos de ellos, ATLAS y CMS, son grandes detectores de partículas de propósito general. Los otros tres, LHCb, ALICE y TOTEM, son más pequeños y especializados. El LHC también puede emplearse para hacer colisionar iones pesados tales como plomo (la colisión tendrá una energía de 1150 TeV). Los físicos confían en que el LHC proporcione respuestas a las siguientes cuestiones:

  • Qué es la masa (se sabe cómo medirla pero no se sabe qué es realmente)
  • El origen de la masa de las partículas (en particular, si existe el bosón de Higgs)
  • El origen de la masa de los bariones
  • Cuántas son las partículas totales del átomo
  • Por qué tienen las partículas elementales diferentes masas (es decir, si interactúan las partículas con un campo de Higgs)
  • El 95% de la masa del universo no está hecho de la materia que se conoce y se espera saber qué es la materia oscura
  • La existencia o no de las partículas supersimétricas
  • Si hay dimensiones extras, tal como predicen varios modelos inspirados por la Teoría de cuerdas, y, en caso afirmativo, por qué no se han podido percibir
  • Si hay más violaciones de simetría entre la materia y la antimateria

El LHC es un proyecto de tamaño inmenso y una enorme tarea de ingeniería. Mientras esté encendido, la energía total almacenada en los imanes es 10 gigaJoules y en el haz 725 megaJoules. La pérdida de sólo un 10-7 en el haz es suficiente para iniciar un 'quench' (un fenómeno cuántico en el que una parte del superconductor puede perder la superconductividad). En este momento, toda la energía del haz puede disiparse en ese punto, lo que es equivalente a una explosión.

El detector CMS del LHC
Tanques de helio

Red de computación (Computing Grid)

La red de computación (o Computing Grid en inglés) del LHC es una red de distribución diseñada por el CERN para manejar la enorme cantidad de datos que serán producidos por el Gran Colisionador de Hadrones (LHC). Incorpora tanto enlaces propios de fibra óptica como partes de Internet de alta velocidad.

El flujo de datos provisto desde los detectores se estima aproximadamente en 300 Gb/s, que es filtrado buscando "eventos interesantes", resultando un flujo de 300 Mb/s. El centro de cómputo del CERN, considerado "Fila 0" de la red, ha dedicado una conexión de 10 Gb/s.

Se espera que el proyecto genere 27 Terabytes de datos por día, más 10 TB de "resumen". Estos datos son enviados fuera del CERN a once instituciones académicas de Europa, Asia y Norteamérica, que constituyen la "fila 1" de procesamiento. Otras 150 instituciones constituyen la "fila 2".

Se espera que el LHC produzca entre 10 a 15 Petabytes de datos por año.

Coste

La construcción del LHC fue aprobada en 1995 con un presupuesto de 2600 millones de Francos suizos (alrededor de 1700 millones de euros), junto con otros 210 millones de francos (140 millones €) destinados a los experimentos. Sin embargo, este coste fue superado en la revisión de 2001 en 480 millones de francos (300 millones de €) en el acelerador, y 50 millones de francos (30m €) más en el apartado para experimentos.[9]​ Otros 180 millones de francos (120m €) más se han tenido que destinar al incremento de costes de las bobinas magnéticas superconductoras. Y todavía persisten problemas técnicos en la construcción del último tunel bajo tierra donde se emplazará el Solenoide compacto de muones (CMS).
El presupuesto de la institución aprobado para 2008, es de 660.515.000 euros de los que España aportará el 8,3%, un total de 53.929.422 euros.

Alarmas sobre posibles catástrofes

Desde que se proyectó el Gran Colisionador Relativista de Iones (RHIC), el estadounidense Walter Wagner y el español Luis Sancho [10]​denunciaron ante un tribunal de Hawaii al CERN y al Gobierno de Estados Unidos, afirmando que existe la posibilidad de que su funcionamiento desencadene procesos que, según ellos, serían capaces de provocar la destrucción no solo de la Tierra sino incluso del Universo entero. Sin embargo su postura es rechazada por la comunidad científica, ya que carece de cualquier respaldo matemático que la apoye.

Los procesos catastróficos que denuncian son:

A este respecto, el CERN ha realizado estudios sobre la posibilidad de que se produzcan acontecimientos desastrosos como microagujeros negros[11]​ inestables, redes, o disfunciones magnéticas.[12]​ La conclusión de estos estudios es que "No se encuentran bases fundadas que conduzcan a estas amenazas".[13][14]

Resumiendo:

  • El planeta Tierra lleva expuesto a fenómenos naturales similares o peores a los que serán producidos en el LHC.
  • Los rayos cósmicos que alcanzan continuamente la Tierra han producido ya el equivalente a un millón de LHC.
  • El Sol, debido a su tamaño, ha recibido 10,000 veces más y también sigue existiendo.
  • Considerando que todas las estrellas del universo visible reciben un número equivalente, se alcanzan unos 1031 experimentos como el LHC y aún no se ha observado ningún evento como el postulado por Wagner y Sancho.
  • Durante la operación del colisionador de iones pesados relativistas (RHIC) en Brookhaven (EE.UU.) no se ha observado ni un solo strangelet. La producción de strangelets en el LHC es menos probable que el RHIC, y la experiencia en este acelerador ha validado el argumento de que no se pueden producir strangelets.
Archivo:LHC usa kde linux.png
El LHC se controla con KDE

Curiosidades

  • Para controlar la configuración primaria para las máquinas de la red de ordenadores del LHC se utiliza una distribución científica del SO Linux muy optimizada llamada CernVM, bajo KDE. Esta red se utiliza para recibir y distribuir los 15 Petabytes de datos a 100.000 CPU de todo el mundo.[15]

Véase también

Referencias

  1. Achenbach, Joel (1 de marzo de 2008). «The God Particle». National Geographic Magazine (National Geographic Society). ISSN 0027-9358. Consultado el 25 de febrero de 2008. 
  2. Dennis Overbye (29 de julio de 2008). "¡Que comience la ruptura de protones! (El rap ya se ha escrito)". The New York Times.
  3. http://lhc-first-beam.web.cern.ch/lhc-first-beam/Welcome.htmlNota de prensa del CERN, 7 de agosto de 2008
  4. El LHC será presentado el 21 de octubre. Científico ruso. RIA Novosti.
  5. The God Particle: If the Universe Is the Answer, What Is the Question?, by Leon Lederman, Dick Teresi, hardcover ISBN 0-395-55849-2, paperback ISBN 0-385-31211-3, Houghton Mifflin Co; (January 1993)
  6. Ellis, John (19 July 2007). «Más allá del modelo estándar con el LHC». Nature 448: 297-301. doi:10.1038/nature06079. Consultado el 24 de noviembre de 2007. «Hay buenas razones, pero no hay garantías, para esperar que el LHC encuentre física nueva más allá del modelo estándar. Lo máximo que puede afirmarse por ahora es que el LHC tiene el potencial de revolucionar la física de partículas y que en algunos años podremos conocer el curso que tomará esta revolución». 
  7. I.F. Ginzburg, A. Schiller, “Search for a heavy magnetic monopole at the Fermilab Tevatron and CERN LHC”, Phys. Rev. D57 (1998) 6599-6603, arXiv:hep-ph/9802310; A. Angelis et al., "Formation of Centauro and Strangelets in Nucleus-Nucleus Collisions at the LHC and their Identification by the ALICE Experiment”, arXiv:hep-ph/9908210; G. L. Alberghi, et al., “Searching for micro black holes at LHC”, IFAE 2006, Incontri di Fisica delle Alte Energie (Italian Meeting on High Energy Physics)
  8. T. Lari, "La búsqueda de la supersimetría con los primeros datos de ATLAS".
  9. LHC Cost Review to Completion
  10. www.adn.es, "El laboratorio LHC tiene un 75% de probabilidad de extinguir la Tierra" (PDF)
  11. Dimopoulos, S. and Landsberg, G. Black Holes at the Large Hadron Collider. Phys. Rev. Lett. 87 (2001).
  12. Blaizot, J.-P. et al. Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC. (PDF)
  13. Grupo de análisis de seguridad del LHC. Revisión de la seguridad de las colisiones en el LHC. (en inglés)
  14. Resumen en castellano
  15. Large Hadron Collider - powered by Linux. consultado el 12 de septiembre de 2008. (En inglés).

Enlaces externos