Ir al contenido

Diferencia entre revisiones de «Desviación típica»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Sin resumen de edición
Línea 1: Línea 1:
La '''desviación estándar''' o '''desviación típica''' (denotada con el símbolo σ) es una [[Medidas de dispersión|medida de centralización o dispersión]] para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la [[estadística descriptiva]].
La '''desviación estándar''' o '''desviación típica''' (denotada con el símbolo σ o s, dependiendo de la procedencia del conjunto de datos) es una [[Medidas de dispersión|medida de centralización o dispersión]] para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la [[estadística descriptiva]].


Se define como la raíz cuadrada de la [[varianza]]. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su [[media aritmética]], expresada en las mismas unidades que la [[variable]].
Se define como la raíz cuadrada de la [[varianza]]. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su [[media aritmética]], expresada en las mismas unidades que la [[variable]].

Revisión del 14:24 13 jun 2012

La desviación estándar o desviación típica (denotada con el símbolo σ o s, dependiendo de la procedencia del conjunto de datos) es una medida de centralización o dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva.

Se define como la raíz cuadrada de la varianza. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.

Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la desviación que presentan los datos en su distribución respecto de la media aritmética de dicha distribución, con objeto de tener una visión de los mismos más acorde con la realidad al momento de describirlos e interpretarlos para la toma de decisiones.

Formulación Muestral

La varianza representa la media aritmética de las desviaciones con respecto a la media que son elevadas al cuadrado.

Si atendemos a la colección completa de datos (la población en su totalidad) obtenemos la varianza poblacional; y si por el contrario prestamos atención sólo a una muestra de la población, obtenemos en su lugar la varianza muestral. Las expresiones de estas medidas son las que aparecen a continuación donde nos explican mejor el texto.

Expresión de la varianza muestral:

Segunda forma de calcular la varianza muestral:

demostración:

podemos observar que como

(sumamos n veces 1 y luego dividimos por n)

y como

obtenemos

Expresión de la cuasivarianza muestral (estimador insesgado de la varianza poblacional):

Expresión de la varianza poblacional:

donde es el valor medio de

Expresión de la desviación estándar poblacional:

El término desviación estándar fue incorporado a la estadística por Karl Pearson en 1894.

Por la formulación de la varianza podemos pasar a obtener la desviación estándar, tomando la raíz cuadrada positiva de la varianza. Así, si efectuamos la raíz de la varianza muestral, obtenemos la desviación típica muestral; y si por el contrario, efectuamos la raíz sobre la varianza poblacional, obtendremos la desviación típica poblacional.

Desviaciones estándar en una distribución normal.

Expresión de la desviación estándar muestral:

También puede ser tomada como

con a como y s como

Además se puede tener una mejor tendencia de medida al desarrollar las fórmulas indicadas pero se tiene que tener en cuenta la media, mediana y moda.

Interpretación y aplicación

La desviación estándar es una medida del grado de dispersión de los datos con respecto al valor promedio. Dicho de otra manera, la desviación estándar es simplemente el "promedio" o variación esperada con respecto a la media aritmética.

Por ejemplo, las tres muestras (0, 0, 14, 14), (0, 6, 8, 14) y (6, 6, 8, 8) cada una tiene una media de 7. Sus desviaciones estándar muestrales son 8,08; 5,77 y 1,15 respectivamente. La tercera muestra tiene una desviación mucho menor que las otras dos porque sus valores están más cerca de 7.

La desviación estándar puede ser interpretada como una medida de incertidumbre. La desviación estándar de un grupo repetido de medidas nos da la precisión de éstas. Cuando se va a determinar si un grupo de medidas está de acuerdo con el modelo teórico, la desviación estándar de esas medidas es de vital importancia: si la media de las medidas está demasiado alejada de la predicción (con la distancia medida en desviaciones estándar), entonces consideramos que las medidas contradicen la teoría. Esto es coherente, ya que las mediciones caen fuera del rango de valores en el cual sería razonable esperar que ocurrieran si el modelo teórico fuera correcto. La desviación estándar es uno de tres parámetros de ubicación central; muestra la agrupación de los datos alrededor de un valor central (la media o promedio).

Desglose

La desviación estándar (DS/DE), también llamada desviación típica, es una medida de dispersión usada en estadística que nos dice cuánto tienden a alejarse los valores concretos del promedio en una distribución. De hecho, específicamente, la desviación estándar es "el promedio del cuadrado de la distancia de cada punto respecto del promedio". Se suele representar por una S o con la letra sigma, .

La desviación estándar de un conjunto de datos es una medida de cuánto se desvían los datos de su media. Esta medida es más estable que el recorrido y toma en consideración el valor de cada dato.

Distribución de probabilidad continua

Es posible calcular la desviación estándar de una variable aleatoria continua como la raíz cuadrada de la integral

donde

Distribución de probabilidad discreta

La DS es la raíz cuadrada de la varianza de la distribución de probabilidad discreta

Así la varianza es la media de los cuadrados de las diferencias entre cada valor de la variable y la media aritmética de la distribución.

Aunque esta fórmula es correcta, en la práctica interesa realizar inferencias poblacionales, por lo que en el denominador en vez de n, se usa n-1 (Corrección de Bessel)

También hay otra función más sencilla de realizar y con menos riesgo de tener equivocaciones :

Ejemplo

Aquí se muestra cómo calcular la desviación estándar de un conjunto de datos. Los datos representan la edad de los miembros de un grupo de niños: { 4, 1, 11, 13, 2, 7 }

1. Calcular el promedio o media aritmética .

.

En este caso, N = 6 porque hay seis datos:

i = número de datos para sacar desviación estándar

      Sustituyendo N por 6
  Este es el promedio.


2. Calcular la desviación estándar

      Sustituyendo N - 1 por 5; ( 6 - 1 )
      Sustituyendo por 6,33


  Éste es el valor de la desviación estándar.

Véase también

Enlaces externos