Congruencia (geometría)
En matemáticas, dos figuras geométricas son congruentes si tienen las mismas dimensiones y la misma forma sin importar su posición u orientación,[1] es decir, si existe una isometría que los relaciona: una transformación que puede ser de traslación, rotación o reflexión. Las partes relacionadas entre las figuras congruentes se llaman homólogas o correspondientes.
Definición de congruencia en geometría analítica
En la geometría euclidiana, la congruencia es equivalente a igualdad matemática en aritmética y álgebra. En geometría analítica, la congruencia puede ser definida así: dos figuras determinadas por puntos sobre un sistema y por de coordenadas cartesianas son congruentes si y solo si, la distancia euclidiana entre cualquier par de puntos de la primera figura es igual a la distancia euclidiana entre los puntos correspondientes de la segunda figura
Definición formal: Dos subconjuntos A y B de un espacio euclídeo son llamados congruentes si existe una isometría con .
Ángulos congruentes
Los ángulos opuestos son congruentes debido a que una rotación de 180° sobre su vértice hace coincidir uno y el otro.
-
Los ángulos y son congruentes y opuestos por el vértice.
-
Una recta que corta dos paralelas generan ángulos congruentes.
-
Los ángulos opuestos de un paralelogramo son congruentes.
Congruencia de triángulos
Dos triángulos son congruentes cuando sus lados correspondientes tienen la misma longitud y sus ángulos correspondientes tienen la misma medida.
Notación: Si dos triángulos y son congruentes, esto se notará como:
Criterios de congruencia de triángulos
Criterios para establecer que dos triángulos sean congruentes con un mínimo de condiciones, a veces llamado de forma genérica postulados o teoremas de
-
ALA
-
AAL
2. Caso LAL: Dos triángulos son congruentes si tienen dos lados iguales y el mismo ángulo comprendido entre ellos.
-
LAL
3. Caso LLL: Dos triángulos son congruentes si tienen los tres lados iguales.
4. Caso LLA: Dos triángulos son congruentes si tienen dos lados y el ángulo sobre uno de ellos iguales. Este caso no es de congruencia si no damos más información sobre el triángulo, como la de ser triángulo rectángulo o si tiene o no ángulos obtusos.
Véase también
Relaciones aritméticas entre ángulos:
Relaciones posicionales entre ángulos:
- Ángulos adyacentes
- Ángulos consecutivos
- Ángulos opuestos por el vértice
- Ángulos interiores y exteriores
Determinados por dos paralelas y una transversal
Referencias
Enlaces externos
- Wikimedia Commons alberga una categoría multimedia sobre Congruencia.
- https://web.archive.org/web/20110905041903/http://www.uv.es/ivorra/Libros/Geometria.pdf
- The SSA en Cut-the-Knot.
- Esta obra contiene una traducción derivada de «Congruence (geometry)» de Wikipedia en inglés, concretamente de esta versión, publicada por sus editores bajo la Licencia de documentación libre de GNU y la Licencia Creative Commons Atribución-CompartirIgual 4.0 Internacional.