Ir al contenido

Monóxido de torio

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 21:19 21 oct 2021 por Hê de tekhnê makrê (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
(difs.) ← Revisión anterior · Ver revisión actual (difs.) · Revisión siguiente → (difs.)

 

El monóxido de torio (óxido de torio (II)) es el óxido binario de torio que tiene la fórmula química ThO. El enlace covalente en esta molécula diatómica es polar. La electricidad efectiva entre los dos átomos se ha calculado en aproximadamente 80 gigavoltios por centímetro, uno de los mayores campos eléctricos efectivos internos conocidos.[1][2][3][4]

La combustión simple de torio en presencia de aire produce dióxido de torio. Sin embargo, la ablación láser al torio en presencia de oxígeno da monóxido.[5]​ Además, la exposición de una película delgada de torio al oxígeno a baja presión y a temperatura media forma una capa de monóxido de torio que crece rápidamente bajo un recubrimiento superficial más estable del dióxido.[6]

A temperaturas extremadamente altas, el dióxido de torio puede convertirse en monóxido ya sea por una reacción de conmutación (equilibrio con torio metálico líquido) por encima de 1850 K (1580ºC) o por simple disociación (desprendimiento de oxígeno) por encima de 2500 K (2230ºC).[7]

ThO2 + Th(l) <=> 2 ThO(s)
ThO2 -> ThO(s) + 1/2 O2

Referencias

  1. Skripnikov, L. V. (7 de diciembre de 2016). «Combined 4-component and relativistic pseudopotential study of ThO for the electron electric dipole moment search». The Journal of Chemical Physics (en inglés) 145 (21): 214301. ISSN 0021-9606. PMID 28799403. arXiv:1610.00994. doi:10.1063/1.4968229. 
  2. Denis, Malika; Fleig, Timo (7 de diciembre de 2016). «In search of discrete symmetry violations beyond the standard model: Thorium monoxide reloaded». The Journal of Chemical Physics (en inglés) 145 (21): 214307. ISSN 0021-9606. PMID 28799357. doi:10.1063/1.4968597. 
  3. Skripnikov, L. V.; Petrov, A. N.; Titov, A. V. (14 de diciembre de 2013). «Communication: Theoretical study of ThO for the electron electric dipole moment search». The Journal of Chemical Physics (en inglés) 139 (22): 221103. ISSN 0021-9606. PMID 24329049. arXiv:1308.0414. doi:10.1063/1.4843955. 
  4. «The ACME EDM Experiment». electronedm.org. Consultado el 16 de agosto de 2018. 
  5. Dewberry, Christopher T.; Etchison, Kerry C.; Cooke, Stephen A. (2007). «The pure rotational spectrum of the actinide-containing compound thorium monoxide». Physical Chemistry Chemical Physics 9 (35): 4895-4897. Bibcode:2007PCCP....9.4895D. PMID 17912418. doi:10.1039/B709343H. 
  6. He, Heming; Majewski, Jaroslaw; Allred, David D.; Wang, Peng; Wen, Xiaodong; Rector, Kirk D. (2017). «Formation of solid thorium monoxide at near-ambient conditions as observed by neutron reflectometry and interpreted by screened hybrid functional calculations». Journal of Nuclear Materials 487: 288-296. Bibcode:2017JNuM..487..288H. doi:10.1016/j.jnucmat.2016.12.046. 
  7. Hoch, Michael; Johnston, Herrick L. (1954). «The Reaction Occurring on Thoriated Cathodes». J. Am. Chem. Soc. 76 (19): 4833-4835. doi:10.1021/ja01648a018.