Anexo:Poliedros uniformes
En geometría, un poliedro uniforme es un poliedro que tiene polígonos regulares como caras y es una figura isogonal (es decir, que es transitiva respecto a sus vértices, de forma que existe una isometría que permite aplicar un vértice cualquiera sobre cualquier otro). De ello se deduce que todos los vértices son congruentes y el poliedro tiene un alto grado de simetría rotacional y especular.[1]
Los poliedros uniformes se pueden dividir entre formas convexas con caras formadas por polígonos regurales convexos y aquellos cuyas caras tienen forma de estrella. Los poliedros estrellados tienen caras con forma de estrella o figras de vértice regulares o ambos tipos de elementos.
El listado incluye los siguientes poliedros:
- Los 75 poliedros uniformes no prismáticos
- Algunos representantes de los conjuntos infinitos de prisma y antiprismas
- Un poliedro degenerado, la figura de Skilling con aristas superpuestas
Se comprobó en Plantilla:Harvard citation text que solo existen 75 poliedros uniformes además de las infinitas familias de prismas y antiprismas. John Skilling descubrió un ejemplo degenerado pasado por alto, al relajar la condición de que solo dos caras pueden encontrarse en un borde. Este es un poliedro uniforme degenerado en lugar de un poliedro uniforme, porque algunos pares de aristas coinciden.
No se incluyen:
- Los compuestos poliédricos uniformes
- Los 40 poliedros uniformes degenerados con figuras de vértice potenciales que tienen aristas superpuestas (no contabilizados por Harold Scott MacDonald Coxeter)
- Las teselaciones uniformes (poliedros infinitos)
- 11 teselados uniformes convexos euclídeos
- 28 teselados uniformes no convexos o apeirogonales
- Un número infinito de teselados uniformes en el plano hiperbólico
- Cualquier polígono o polícoro
Indexación
Son de uso común cuatro esquemas de numeración para los poliedros uniformes, que se distinguen por letras:
- ['C] Coxeter et al., 1954, mostró las formas convexas como figuras 15 a 32; tres formas prismáticas, figuras 33–35; y las formas no convexas, figuras 36–92.
- [W] Wenninger, 1974, tiene 119 figuras: 1–5 para los sólidos platónicos, 6–18 para los sólidos de Arquímedes, 19–66 para las formas estrelladas, incluidos los 4 poliedros regulares no convexos, y terminó con 67-119 para los poliedros uniformes no convexos.
- [K] Kaleido, 1993: Las 80 figuras se agruparon por simetría: 1–5 como representantes de las infinitas familias de formas prismáticas con simetría diedral, 6–9 con simetría tetraédrica, 10–26 con simetría octaédrica, 27–80 con simetría icosaédrica.
- [U] Mathematica, 1993, sigue la serie Kaleido con las 5 formas prismáticas movidas al final, de modo que las formas no prismáticas se convierten en 1–75.
Nombres de poliedros por el número de lados
Hay nombres geométricos genéricos para los poliedros más comunes. Por ejemplo, los cinco sólidos platónicos se denominan tetraedro, hexaedro, octaedro, dodecaedro e icosaedro, con 4, 6, 8, 12 y 20 lados respectivamente.
Tabla de poliedros
Las formas convexas se enumeran en orden de grado de configuración de vértices desde 3 caras/vértice en adelante, y en lados crecientes por cara. Este ordenamiento permite mostrar similitudes topológicas.
Poliedros uniformes convexos
Nombre | Imagen | Tipo de Vértices |
Símbolo de Wythoff |
Simet. | C# | W# | U# | K# | Vert. | Aristas | Caras | Tipo de caras |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tetraedro | 3.3.3 |
3 | 2 3 | Td | C15 | W001 | U01 | K06 | 4 | 6 | 4 | 4{3} | |
Prisma triangular | 3.4.4 |
2 3 | 2 | D3h | C33a | — | U76a | K01a | 6 | 9 | 5 | 2{3} +3{4} | |
Tetraedro truncado | 3.6.6 |
2 3 | 3 | Td | C16 | W006 | U02 | K07 | 12 | 18 | 8 | 4{3} +4{6} | |
Cubo truncado | 3.8.8 |
2 3 | 4 | Oh | C21 | W008 | U09 | K14 | 24 | 36 | 14 | 8{3} +6{8} | |
Dodecaedro truncado | 3.10.10 |
2 3 | 5 | Ih | C29 | W010 | U26 | K31 | 60 | 90 | 32 | 20{3} +12{10} | |
Cubo | 4.4.4 |
3 | 2 4 | Oh | C18 | W003 | U06 | K11 | 8 | 12 | 6 | 6{4} | |
Prisma pentagonal | 4.4.5 |
2 5 | 2 | D5h | C33b | — | U76b | K01b | 10 | 15 | 7 | 5{4} +2{5} | |
Prisma hexagonal | 4.4.6 |
2 6 | 2 | D6h | C33c | — | U76c | K01c | 12 | 18 | 8 | 6{4} +2{6} | |
Octagonal prism | 4.4.8 |
2 8 | 2 | D8h | C33e | — | U76e | K01e | 16 | 24 | 10 | 8{4} +2{8} | |
Decagonal prism | 4.4.10 |
2 10 | 2 | D10h | C33g | — | U76g | K01g | 20 | 30 | 12 | 10{4} +2{10} | |
Dodecagonal prism | 4.4.12 |
2 12 | 2 | D12h | C33i | — | U76i | K01i | 24 | 36 | 14 | 12{4} +2{12} | |
Octaedro truncado | 4.6.6 |
2 4 | 3 | Oh | C20 | W007 | U08 | K13 | 24 | 36 | 14 | 6{4} +8{6} | |
Cuboctaedro truncado | 4.6.8 |
2 3 4 | | Oh | C23 | W015 | U11 | K16 | 48 | 72 | 26 | 12{4} +8{6} +6{8} | |
Icosidodecaedro truncado | 4.6.10 |
2 3 5 | | Ih | C31 | W016 | U28 | K33 | 120 | 180 | 62 | 30{4} +20{6} +12{10} | |
Dodecaedro | 5.5.5 |
3 | 2 5 | Ih | C26 | W005 | U23 | K28 | 20 | 30 | 12 | 12{5} | |
Icosaedro truncado | 5.6.6 |
2 5 | 3 | Ih | C27 | W009 | U25 | K30 | 60 | 90 | 32 | 12{5} +20{6} | |
Octaedro | 3.3.3.3 |
4 | 2 3 | Oh | C17 | W002 | U05 | K10 | 6 | 12 | 8 | 8{3} | |
Antiprisma cuadrado | 3.3.3.4 |
| 2 2 4 | D4d | C34a | — | U77a | K02a | 8 | 16 | 10 | 8{3} +2{4} | |
Antiprisma pentagonal | 3.3.3.5 |
| 2 2 5 | D5d | C34b | — | U77b | K02b | 10 | 20 | 12 | 10{3} +2{5} | |
Antiprisma hexagonal | 3.3.3.6 |
| 2 2 6 | D6d | C34c | — | U77c | K02c | 12 | 24 | 14 | 12{3} +2{6} | |
Antiprisma octogonal | 3.3.3.8 |
| 2 2 8 | D8d | C34e | — | U77e | K02e | 16 | 32 | 18 | 16{3} +2{8} | |
Decagonal antiprism | 3.3.3.10 |
| 2 2 10 | D10d | C34g | — | U77g | K02g | 20 | 40 | 22 | 20{3} +2{10} | |
Dodecagonal antiprism | 3.3.3.12 |
| 2 2 12 | D12d | C34i | — | U77i | K02i | 24 | 48 | 26 | 24{3} +2{12} | |
Cuboctaedro | 3.4.3.4 |
2 | 3 4 | Oh | C19 | W011 | U07 | K12 | 12 | 24 | 14 | 8{3} +6{4} | |
Rombicuboctaedro | 3.4.4.4 |
3 4 | 2 | Oh | C22 | W013 | U10 | K15 | 24 | 48 | 26 | 8{3} +(6+12){4} | |
Rombicosidodecaedro | 3.4.5.4 |
3 5 | 2 | Ih | C30 | W014 | U27 | K32 | 60 | 120 | 62 | 20{3} +30{4} +12{5} | |
Icosidodecaedro | 3.5.3.5 |
2 | 3 5 | Ih | C28 | W012 | U24 | K29 | 30 | 60 | 32 | 20{3} +12{5} | |
Icosaedro | 3.3.3.3.3 |
5 | 2 3 | Ih | C25 | W004 | U22 | K27 | 12 | 30 | 20 | 20{3} | |
Cubo romo | 3.3.3.3.4 |
| 2 3 4 | O | C24 | W017 | U12 | K17 | 24 | 60 | 38 | (8+24){3} +6{4} | |
Dodecaedro romo | 3.3.3.3.5 |
| 2 3 5 | I | C32 | W018 | U29 | K34 | 60 | 150 | 92 | (20+60){3} +12{5} |
Poliedros estrella uniformes
Los formularios que contienen solo caras convexas se enumeran primero, seguidos de los formularios con caras de estrella.
Los poliedros uniformes | 52 3 3, | 52 32 32, | 53 52 3, | 32 53 3 52 y | (32) 53 (3) 52 tienen algunas caras que ocurren como pares coplanares. (Coxeter et al. 1954, págs. 423, 425, 426; Skilling 1975, pág. 123)
Nombre | Imagen | Simb Wyth |
Figura vértices |
Simetría | C# | W# | U# | K# | Vért. | Aristas | Caras | Chi | ¿Orien- table? |
Dens. | Tipo caras |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octahemioctahedron | 32 3 | 3 | 6.32.6.3 |
Oh | C37 | W068 | U03 | K08 | 12 | 24 | 12 | 0 | Yes | 8{3}+4{6} | ||
Tetrahemihexaedro | 32 3 | 2 | 4.32.4.3 |
Td | C36 | W067 | U04 | K09 | 6 | 12 | 7 | 1 | No | 4{3}+3{4} | ||
Cubohemioctaedro | 43 4 | 3 | 6.43.6.4 |
Oh | C51 | W078 | U15 | K20 | 12 | 24 | 10 | −2 | No | 6{4}+4{6} | ||
Great dodecahedron |
52 | 2 5 | (5.5.5.5.5)/2 |
Ih | C44 | W021 | U35 | K40 | 12 | 30 | 12 | −6 | Yes | 3 | 12{5} | |
Great icosahedron |
52 | 2 3 | (3.3.3.3.3)/2 |
Ih | C69 | W041 | U53 | K58 | 12 | 30 | 20 | 2 | Yes | 7 | 20{3} | |
Great ditrigonal icosidodecahedron |
32 | 3 5 | (5.3.5.3.5.3)/2 |
Ih | C61 | W087 | U47 | K52 | 20 | 60 | 32 | −8 | Yes | 6 | 20{3}+12{5} | |
Small rhombihexahedron |
2 4 (32 42) | | 4.8.43.87 |
Oh | C60 | W086 | U18 | K23 | 24 | 48 | 18 | −6 | No | 12{4}+6{8} | ||
Small cubicuboctahedron |
32 4 | 4 | 8.32.8.4 |
Oh | C38 | W069 | U13 | K18 | 24 | 48 | 20 | −4 | Yes | 2 | 8{3}+6{4}+6{8} | |
Great rhombicuboctahedron |
32 4 | 2 | 4.32.4.4 |
Oh | C59 | W085 | U17 | K22 | 24 | 48 | 26 | 2 | Yes | 5 | 8{3}+(6+12){4} | |
Small dodecahemi- dodecahedron |
54 5 | 5 | 10.54.10.5 |
Ih | C65 | W091 | U51 | K56 | 30 | 60 | 18 | −12 | No | 12{5}+6{10} | ||
Great dodecahem- icosahedron |
54 5 | 3 | 6.54.6.5 |
Ih | C81 | W102 | U65 | K70 | 30 | 60 | 22 | −8 | No | 12{5}+10{6} | ||
Small icosihemi- dodecahedron |
32 3 | 5 | 10.32.10.3 |
Ih | C63 | W089 | U49 | K54 | 30 | 60 | 26 | −4 | No | 20{3}+6{10} | ||
Small dodecicosahedron |
3 5 (32 54) | | 10.6.109.65 |
Ih | C64 | W090 | U50 | K55 | 60 | 120 | 32 | −28 | No | 20{6}+12{10} | ||
Small rhombidodecahedron |
2 5 (32 52) | | 10.4.109.43 |
Ih | C46 | W074 | U39 | K44 | 60 | 120 | 42 | −18 | No | 30{4}+12{10} | ||
Small dodecicosi- dodecahedron |
32 5 | 5 | 10.32.10.5 |
Ih | C42 | W072 | U33 | K38 | 60 | 120 | 44 | −16 | Yes | 2 | 20{3}+12{5}+12{10} | |
Rhombicosahedron | 2 3 (54 52) | | 6.4.65.43 |
Ih | C72 | W096 | U56 | K61 | 60 | 120 | 50 | −10 | No | 30{4}+20{6} | ||
Great icosicosi- dodecahedron |
32 5 | 3 | 6.32.6.5 |
Ih | C62 | W088 | U48 | K53 | 60 | 120 | 52 | −8 | Yes | 6 | 20{3}+12{5}+20{6} | |
Pentagrammic prism |
2 52 | 2 | 52.4.4 |
D5h | C33b | — | U78a | K03a | 10 | 15 | 7 | 2 | Yes | 2 | 5{4}+2{52} | |
Heptagrammic prism (7/2) |
2 72 | 2 | 72.4.4 |
D7h | C33d | — | U78b | K03b | 14 | 21 | 9 | 2 | Yes | 2 | 7{4}+2{72} | |
Heptagrammic prism (7/3) |
2 73 | 2 | 73.4.4 |
D7h | C33d | — | U78c | K03c | 14 | 21 | 9 | 2 | Yes | 3 | 7{4}+2{73} | |
Octagrammic prism |
2 83 | 2 | 83.4.4 |
D8h | C33e | — | U78d | K03d | 16 | 24 | 10 | 2 | Yes | 3 | 8{4}+2{83} | |
Pentagrammic antiprism | | 2 2 52 | 52.3.3.3 |
D5h | C34b | — | U79a | K04a | 10 | 20 | 12 | 2 | Yes | 2 | 10{3}+2{52} | |
Pentagrammic crossed-antiprism |
| 2 2 53 | 53.3.3.3 |
D5d | C35a | — | U80a | K05a | 10 | 20 | 12 | 2 | Yes | 3 | 10{3}+2{52} | |
Heptagrammic antiprism (7/2) |
| 2 2 72 | 72.3.3.3 |
D7h | C34d | — | U79b | K04b | 14 | 28 | 16 | 2 | Yes | 3 | 14{3}+2{72} | |
Heptagrammic antiprism (7/3) |
| 2 2 73 | 73.3.3.3 |
D7d | C34d | — | U79c | K04c | 14 | 28 | 16 | 2 | Yes | 3 | 14{3}+2{73} | |
Heptagrammic crossed-antiprism |
| 2 2 74 | 74.3.3.3 |
D7h | C35b | — | U80b | K05b | 14 | 28 | 16 | 2 | Yes | 4 | 14{3}+2{73} | |
Octagrammic antiprism |
| 2 2 83 | 83.3.3.3 |
D8d | C34e | — | U79d | K04d | 16 | 32 | 18 | 2 | Yes | 3 | 16{3}+2{83} | |
Octagrammic crossed-antiprism |
| 2 2 85 | 85.3.3.3 |
D8d | C35c | — | U80c | K05c | 16 | 32 | 18 | 2 | Yes | 5 | 16{3}+2{83} | |
Small stellated dodecahedron |
5 | 2 52 | (52)5 |
Ih | C43 | W020 | U34 | K39 | 12 | 30 | 12 | −6 | Yes | 3 | 12{52} | |
Great stellated dodecahedron |
3 | 2 52 | (52)3 |
Ih | C68 | W022 | U52 | K57 | 20 | 30 | 12 | 2 | Yes | 7 | 12{52} | |
Ditrigonal dodeca- dodecahedron |
3 | 53 5 | (53.5)3 |
Ih | C53 | W080 | U41 | K46 | 20 | 60 | 24 | −16 | Yes | 4 | 12{5}+12{52} | |
Small ditrigonal icosidodecahedron |
3 | 52 3 | (52.3)3 |
Ih | C39 | W070 | U30 | K35 | 20 | 60 | 32 | −8 | Yes | 2 | 20{3}+12{52} | |
Stellated truncated hexahedron |
2 3 | 43 | 83.83.3 |
Oh | C66 | W092 | U19 | K24 | 24 | 36 | 14 | 2 | Yes | 7 | 8{3}+6{83} | |
Great rhombihexahedron |
2 43 (32 42) | | 4.83.43.85 |
Oh | C82 | W103 | U21 | K26 | 24 | 48 | 18 | −6 | No | 12{4}+6{83} | ||
Great cubicuboctahedron |
3 4 | 43 | 83.3.83.4 |
Oh | C50 | W077 | U14 | K19 | 24 | 48 | 20 | −4 | Yes | 4 | 8{3}+6{4}+6{83} | |
Great dodecahemi- dodecahedron |
53 52 | 53 | 103.53.103.52 |
Ih | C86 | W107 | U70 | K75 | 30 | 60 | 18 | −12 | No | 12{52}+6{103} | ||
Small dodecahemi- cosahedron |
53 52 | 3 | 6.53.6.52 |
Ih | C78 | W100 | U62 | K67 | 30 | 60 | 22 | −8 | No | 12{52}+10{6} | ||
Dodeca- dodecahedron |
2 | 5 52 | (52.5)2 |
Ih | C45 | W073 | U36 | K41 | 30 | 60 | 24 | −6 | Yes | 3 | 12{5}+12{52} | |
Great icosihemi- dodecahedron |
32 3 | 53 | 103.32.103.3 |
Ih | C85 | W106 | U71 | K76 | 30 | 60 | 26 | −4 | No | 20{3}+6{103} | ||
Great icosidodecahedron |
2 | 3 52 | (52.3)2 |
Ih | C70 | W094 | U54 | K59 | 30 | 60 | 32 | 2 | Yes | 7 | 20{3}+12{52} | |
Cubitruncated cuboctahedron |
43 3 4 | | 83.6.8 |
Oh | C52 | W079 | U16 | K21 | 48 | 72 | 20 | −4 | Yes | 4 | 8{6}+6{8}+6{83} | |
Great truncated cuboctahedron |
43 2 3 | | 83.4.65 |
Oh | C67 | W093 | U20 | K25 | 48 | 72 | 26 | 2 | Yes | 1 | 12{4}+8{6}+6{83} | |
Truncated great dodecahedron |
2 52 | 5 | 10.10.52 |
Ih | C47 | W075 | U37 | K42 | 60 | 90 | 24 | −6 | Yes | 3 | 12{52}+12{10} | |
Small stellated truncated dodecahedron |
2 5 | 53 | 103.103.5 |
Ih | C74 | W097 | U58 | K63 | 60 | 90 | 24 | −6 | Yes | 9 | 12{5}+12{103} | |
Great stellated truncated dodecahedron |
2 3 | 53 | 103.103.3 |
Ih | C83 | W104 | U66 | K71 | 60 | 90 | 32 | 2 | Yes | 13 | 20{3}+12{103} | |
Truncated great icosahedron |
2 52 | 3 | 6.6.52 |
Ih | C71 | W095 | U55 | K60 | 60 | 90 | 32 | 2 | Yes | 7 | 12{52}+20{6} | |
Great dodecicosahedron |
3 53(32 52) | | 6.103.65.107 |
Ih | C79 | W101 | U63 | K68 | 60 | 120 | 32 | −28 | No | 20{6}+12{103} | ||
Great rhombidodecahedron |
2 53 (32 54) | | 4.103.43.107 |
Ih | C89 | W109 | U73 | K78 | 60 | 120 | 42 | −18 | No | 30{4}+12{103} | ||
Icosidodeca- dodecahedron |
53 5 | 3 | 6.53.6.5 |
Ih | C56 | W083 | U44 | K49 | 60 | 120 | 44 | −16 | Yes | 4 | 12{5}+12{52}+20{6} | |
Small ditrigonal dodecicosi- dodecahedron |
53 3 | 5 | 10.53.10.3 |
Ih | C55 | W082 | U43 | K48 | 60 | 120 | 44 | −16 | Yes | 4 | 20{3}+12{52}+12{10} | |
Great ditrigonal dodecicosi- dodecahedron |
3 5 | 53 | 103.3.103.5 |
Ih | C54 | W081 | U42 | K47 | 60 | 120 | 44 | −16 | Yes | 4 | 20{3}+12{5}+12{103} | |
Great dodecicosi- dodecahedron |
52 3 | 53 | 103.52.103.3 |
Ih | C77 | W099 | U61 | K66 | 60 | 120 | 44 | −16 | Yes | 10 | 20{3}+12{52}+12{103} | |
Small icosicosi- dodecahedron |
52 3 | 3 | 6.52.6.3 |
Ih | C40 | W071 | U31 | K36 | 60 | 120 | 52 | −8 | Yes | 2 | 20{3}+12{52}+20{6} | |
Rhombidodeca- dodecahedron |
52 5 | 2 | 4.52.4.5 |
Ih | C48 | W076 | U38 | K43 | 60 | 120 | 54 | −6 | Yes | 3 | 30{4}+12{5}+12{52} | |
Great rhombicosi- dodecahedron |
53 3 | 2 | 4.53.4.3 |
Ih | C84 | W105 | U67 | K72 | 60 | 120 | 62 | 2 | Yes | 13 | 20{3}+30{4}+12{52} | |
Icositruncated dodeca- dodecahedron |
3 5 53 | | 103.6.10 |
Ih | C57 | W084 | U45 | K50 | 120 | 180 | 44 | −16 | Yes | 4 | 20{6}+12{10}+12{103} | |
Truncated dodeca- dodecahedron |
2 5 53 | | 103.4.109 |
Ih | C75 | W098 | U59 | K64 | 120 | 180 | 54 | −6 | Yes | 3 | 30{4}+12{10}+12{103} | |
Great truncated icosidodecahedron |
2 3 53 | | 103.4.6 |
Ih | C87 | W108 | U68 | K73 | 120 | 180 | 62 | 2 | Yes | 13 | 30{4}+20{6}+12{103} | |
Snub dodeca- dodecahedron |
| 2 52 5 | 3.3.52.3.5 |
I | C49 | W111 | U40 | K45 | 60 | 150 | 84 | −6 | Yes | 3 | 60{3}+12{5}+12{52} | |
Inverted snub dodeca- dodecahedron |
| 53 2 5 | 3.53.3.3.5 |
I | C76 | W114 | U60 | K65 | 60 | 150 | 84 | −6 | Yes | 9 | 60{3}+12{5}+12{52} | |
Great snub icosidodecahedron |
| 2 52 3 | 34.52 |
I | C73 | W113 | U57 | K62 | 60 | 150 | 92 | 2 | Yes | 7 | (20+60){3}+12{52} | |
Great inverted snub icosidodecahedron |
| 53 2 3 | 34.53 |
I | C88 | W116 | U69 | K74 | 60 | 150 | 92 | 2 | Yes | 13 | (20+60){3}+12{52} | |
Great retrosnub icosidodecahedron |
| 2 32 53 | (34.52)/2 |
I | C90 | W117 | U74 | K79 | 60 | 150 | 92 | 2 | Yes | 37 | (20+60){3}+12{52} | |
Great snub dodecicosi- dodecahedron |
| 53 52 3 | 33.53.3.52 |
I | C80 | W115 | U64 | K69 | 60 | 180 | 104 | −16 | Yes | 10 | (20+60){3}+(12+12){52} | |
Snub icosidodeca- dodecahedron |
| 53 3 5 | 33.5.3.53 |
I | C58 | W112 | U46 | K51 | 60 | 180 | 104 | −16 | Yes | 4 | (20+60){3}+12{5}+12{52} | |
Small snub icos- icosidodecahedron |
| 52 3 3 | 35.52 |
Ih | C41 | W110 | U32 | K37 | 60 | 180 | 112 | −8 | Yes | 2 | (40+60){3}+12{52} | |
Small retrosnub icosicosi- dodecahedron |
| 32 32 52 | (35.52)/2 |
Ih | C91 | W118 | U72 | K77 | 60 | 180 | 112 | −8 | Yes | 38 | (40+60){3}+12{52} | |
Great dirhombicosi- dodecahedron |
| 32 53 3 52 | (4.53.4.3. 4.52.4.32)/2 |
Ih | C92 | W119 | U75 | K80 | 60 | 240 | 124 | −56 | No | 40{3}+60{4}+24{52} |
Caso especial
Nombre | Imagen | Simb Wyth |
Figura vértices |
Simetría | C# | W# | U# | K# | Vért. | Aristas | Caras | Chi | ¿Orien- table? |
Dens. | Tipo caras |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Great disnub dirhombidodecahedron |
| (32) 53 (3) 52 | (52.4.3.3.3.4. 53. 4.32.32.32.4)/3 |
Ih | — | — | — | — | 60 | 360 (*) | 204 | −96 | No | 120{3}+60{4}+24{52} |
El gran dirrombidodecaedro birromo tiene 240 de sus 360 aristas coincidiendo en el espacio en 120 pares. Debido a esta degeneración de aristas, no siempre se considera un poliedro uniforme.
Clave de las columnas
- Indexación uniforme: U01–U80 (Tetraedro primero, Prismas en 76+)
- Indexación del software Kaleido: K01–K80 (Kn = Un–5 para n = 6 to 80) (prismas 1–5, tetraedro, etc. 6+)
- Modelos de poliedro Magnus Wenninger: W001-W119
- 1–18: 5 regulares convexos y 13 semirregulares convexos
- 20–22, 41: 4 regulares no convexos
- 19–66: 48 estelaciones/compuestos especiales (no regulares no incluidos en esta lista)
- 67–109: 43 uniforme no convexo no chato
- 110–119: 10 uniforme chato no convexo
- Chi: el Característica de Euler, χ. Los mosaicos uniformes en el plano corresponden a una topología de toro, con característica de Euler de cero.
- Densidad: el Densidad (politopo) representa el número de vueltas de un poliedro alrededor de su centro. Esto se deja en blanco para poliedros que no son orientable y hemipolyhedra (poliedros con caras que pasan por sus centros), para los cuales la densidad no está bien definida.
- Nota sobre las imágenes de figuras de Vertex:
- Las líneas blancas del polígono representan el polígono "figura de vértice". Las caras coloreadas que se incluyen en los vértices de las figuras ayudan a ver sus relaciones. Algunas de las caras que se cruzan se dibujan visualmente de forma incorrecta porque no se intersecan visualmente correctamente para mostrar qué partes están al frente.
Véase también
- Anexo:Poliedros uniformes por figura de vértice
- Anexo:Poliedros uniformes por símbolo de Wythoff
- Anexo:Poliedros uniformes por el triangulo de Schwarz
Referencias
- ↑ Proceedings Of The Conference In Honour Of The 90th Birthday Of Freeman Dyson. World Scientific. 2014. pp. 343 de 500. ISBN 9789814590129. Consultado el 15 de agosto de 2022.
Bibliografía
- Coxeter, Harold Scott MacDonald; Longuet-Higgins, M. S.; Miller, J. C. P. (1954). «Uniform polyhedra». Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences (The Royal Society) 246 (916): 401-450. Bibcode:1954RSPTA.246..401C. ISSN 0080-4614. JSTOR 91532. MR 0062446. S2CID 202575183. doi:10.1098/rsta.1954.0003.
- Skilling, J. (1975). «The complete set of uniform polyhedra». Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences 278 (1278): 111-135. Bibcode:1975RSPTA.278..111S. ISSN 0080-4614. JSTOR 74475. MR 0365333. S2CID 122634260. doi:10.1098/rsta.1975.0022.
- Sopov, S. P. (1970). «A proof of the completeness on the list of elementary homogeneous polyhedra». Ukrainskiui Geometricheskiui Sbornik (8): 139-156. MR 0326550.
- Wenninger, Magnus (1974). Polyhedron Models. Cambridge University Press. ISBN 0-521-09859-9.
- Wenninger, Magnus (1983). Dual Models. Cambridge University Press. ISBN 0-521-54325-8.
Enlaces externos
- Stella: Polyhedron Navigator – Software capaz de generar e imprimir redes para todos los poliedros uniformes. Se utiliza para crear la mayoría de las imágenes de esta página.
- Modelos de papel
- Uniform indexing: U1-U80, (Primer tetraedro)
- Poliedros uniformes (80), Paul Bourke
- Weisstein, Eric W. «Uniform Polyhedron». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research.
- http://www.mathconsult.ch/showroom/unipoly
- https://web.archive.org/web/20171110075259/http://gratrix.net/polyhedra/uniform/summary/
- http://www.it-c.dk/edu/documentation/mathworks/math/math/u/u034.htm
- http://www.buddenbooks.com/jb/uniform/
- Kaleido Indexing: K1-K80 (Primer prisma pentagonal)
- También