Wikipedia:Zona de pruebas/8
Las pruebas en esta sección
eata es una seccion del articulo matematicas sin enlaces wiki que a mi criterio son demaciados en el texto original que copiare a continuacion de este en un instante.
Ramas de estudio de las matemáticas
La Sociedad Americana de Matemáticas distingue unas 5.000 ramas distintas de matemáticas.26 Dichas ramas están muy interrelacionadas. En una subdivisión amplia de las matemáticas, se distinguen cuatro objetos de estudio básicos: la cantidad, la estructura, el espacio y el cambio. Los diferentes tipos de cantidades (números) han jugado un papel obvio e importante en todos los aspectos cuantitativos y cualitativos del desarrollo de la cultura, la ciencia y la tecnología. El estudio de la estructura comienza al considerar las diferentes propiedades de los números, inicialmente los números naturales y los números enteros. Las reglas que dirigen las operaciones aritméticas se estudian en el álgebra elemental, y las propiedades más profundas de los números enteros se estudian en la teoría de números. Después, la organización de conocimientos elementales produjo los sistemas axiomáticos (teorías), permitiendo el descubrimiento de conceptos estructurales que en la actualidad dominan esta ciencia (e.g. estructuras categóricas). La investigación de métodos para resolver ecuaciones lleva al campo del álgebra abstracta. El importante concepto de vector, generalizado a espacio vectorial, es estudiado en el álgebra lineal y pertenece a las dos ramas de la estructura y el espacio. El estudio del espacio origina la geometría, primero la geometría euclídea y luego la trigonometría. En su faceta avanzada el surgimiento de la topología da la necesaria y correcta manera de pensar acerca de las nociones de cercanía y continuidad de nuestras concepciones espaciales.
Derivada.
La comprensión y descripción del cambio en variables mensurables es el tema central de las ciencias naturales y del cálculo. Para resolver problemas que se dirigen en forma natural a relaciones entre una cantidad y su tasa de cambio, se estudian las ecuaciones diferenciales y de sus soluciones. Los números usados para representar las cantidades continuas son los números reales. Para estudiar los procesos de cambio se utiliza el concepto de función matemática. Los conceptos de derivada e integral, introducidos por Newton y Leibniz, representan un papel clave en este estudio, que se denomina Análisis. Es conveniente para muchos fines introducir los números complejos, lo que da lugar al análisis complejo. El análisis funcional consiste en estudiar problemas cuya incógnita es una función, pensándola como un punto de un espacio funcional abstracto.
Un campo importante en matemática aplicada es el de la estadística, que permite la descripción, el análisis de probabilidad y la predicción de fenómenos que tienen variables aleatorias y que se usan en todas las ciencias.
El análisis numérico investiga los métodos para realizar los cálculos en computadoras.
A continuación se muestra una lista de las ramas interrelacionadas de las matemáticas:
Fundamentos y métodos
Teoría de conjuntos, lógica matemática, teoría de categorías.
Investigación operativa
Teoría de grafos, teoría de juegos, programación entera, programación lineal, Simulación, optimización, método simplex, programación dinámica.
Números
Números naturales, números enteros, números racionales, números irracionales, número reales, números complejos, cuaterniones, octoniones, sedeniones, números hiperreales, números infinitos, dígito, sistema de numeración, número p-ádico.
Análisis, continuidad y cambio
Cálculo, cálculo vectorial, análisis, ecuaciones diferenciales, sistemas dinámicos y teoría del caos, funciones, logaritmo, sucesiones, series, análisis real, Análisis complejo, análisis funcional, álgebra de operadores.
Estructuras
Algebra abstracta, teoría de números, álgebra conmutativa, geometría algebraica, teoría de grupos, monoides, análisis, topología, álgebra lineal, teoría de grafos, teoría de categorías.
Espacios
Topología, geometría, teoría de haces, geometría algebraica - Geometría diferencial - Topología diferencial - Topología algebraica - Álgebra lineal - Cuaterniones y rotación en el espacio
Matemática discreta
Combinatoria, Teoría de conjuntos numerables - Probabilidad discreta - Estadística - Teoría de la computación - Criptografía - Teoría de grafos - Teoría de juegos
Matemática aplicada
Estadística, física matemática, matemática financiera, teoría de juegos, optimización, análisis numérico, Lógica difusa.
[editar]