Matriz (matemática)
En matemáticas, una matriz es un arreglo bidimensional de números, y en su mayor generalidad de elementos de un anillo. Las matrices se usan generalmente para describir sistemas de ecuaciones lineales, sistemas de ecuaciones diferenciales o representar una aplicación lineal (dada una base). Las matrices se describen en el campo de la teoría de matrices.
Las matrices se utilizan para múltiples aplicaciones y sirven, en particular, para representar los coeficientes de los sistemas de ecuaciones lineales o para representar las aplicaciones lineales; en este último caso las matrices desempeñan el mismo papel que los datos de un vector para las aplicaciones lineales.
Pueden sumarse, multiplicarse y descomponerse de varias formas, lo que también las hace un concepto clave en el campo del álgebra lineal.
Historia
Año | Acontecimiento |
---|---|
200 a.C. | En China los matemáticos usan series de números. |
1848 d.C. | J. J. Sylvester introduce el término "matriz". |
1858 | Cayley publica Memorias sobre la teoría de matrices. |
1878 | Frobenius demuestra resultados fundamentales en álgebra matricial. |
1925 | Werner Heisenberg utiliza la teoría matricial en la mecánica cuántica |
El origen de las matrices es muy antiguo. Los cuadrados latinos y los cuadrados mágicos se estudiaron desde hace mucho tiempo. Un cuadrado mágico, 3 por 3, se registra en la literatura china hacia el 650 a. C.[2]
Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un importante texto matemático chino que proviene del año 300 a. C. a 200 a. C., Nueve capítulos sobre el Arte de las matemáticas (Jiu Zhang Suan Shu), es el primer ejemplo conocido de uso del método de matrices para resolver un sistema de ecuaciones simultáneas.[3] En el capítulo séptimo, "Ni mucho ni poco", el concepto de determinante apareció por primera vez, dos mil años antes de su publicación por el matemático japonés Seki Kōwa en 1683 y el matemático alemán Gottfried Leibniz en 1693.
Los "cuadrados mágicos" eran conocidos por los matemáticos árabes, posiblemente desde comienzos del siglo VII, quienes a su vez pudieron tomarlos de los matemáticos y astrónomos de la India, junto con otros aspectos de las matemáticas combinatorias. Todo esto sugiere que la idea provino de China. Los primeros "cuadrados mágicos" de orden 5 y 6 aparecieron en Bagdad en el 983, en la Enciclopedia de la Hermandad de Pureza (Rasa'il Ihkwan al-Safa).[2]
Después del desarrollo de la teoría de determinantes por Seki Kowa y Leibniz, a finales del siglo XVII, Cramer presentó en 1750 la ahora denominada regla de Cramer. Carl Friedrich Gauss y Wilhelm Jordan desarrollaron la eliminación de Gauss-Jordan en el siglo XIX.
Leibniz(1646-1716), uno de los dos fundadores del análisis, desarrolló la teoría de los determinantes en 1693 para facilitar la Resolución de las ecuaciones lineales. Gabriel Cramer tuvo que profundizar esta teoría, presentando el método de Cramer en 1750. En los años 1800, el método de eliminación de Gauss-Jordan se puso a punto.
Fue James Joseph Sylvester quien utilizó por primera vez el término « matriz » en1848/1850.
En 1853, Hamilton hizo algunos aportes a la teoría de matrices. Cayley introdujo en 1858 la notación matricial, como forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas.
Cayley, Hamilton, Hermann Grassmann, Frobenius, Olga Taussky-Todd y John von Neumann cuentan entre los matemáticos famosos que trabajaron sobre la teoría de las matrices. En 1925, Werner Heisenberg redescubre el cálculo matricial fundando una primera formulación de lo que iba a pasar a ser la mecánica cuántica. Se le considera a este respecto como uno de los padres de la mecánica cuántica.
Olga Taussky-Todd (1906-1995), durante la II Guerra Mundial, usó la teoría de matrices para investigar el fenómeno de aeroelasticidad llamado fluttering.
Definiciones y notaciones
Una matriz es una arreglo bidimensional de números (llamados entradas de la matriz) ordenados en filas (o renglones) y columnas, donde una fila es cada una de las líneas horizontales de la matriz y una columna es cada una de las líneas verticales. A una matriz con n filas y m columnas se le denomina matriz n-por-m (escrito ) donde . El conjunto de las matrices de tamaño se representa como , donde es el campo al cual pertenecen las entradas. El tamaño de una matriz siempre se da con el número de filas primero y el número de columnas después. Dos matrices se dice que son iguales si tienen el mismo tamaño y las mismas entradas.
A la entrada de una matriz que se encuentra en la fila ésima y la columna ésima se le llama entrada o entrada -ésimo de la matriz. En estas expresiones también se consideran primero las filas y después las columnas.
Casi siempre se denotan a las matrices con letras mayúsculas mientras que se utilizan las correspondientes letras en minúsculas para denotar las entradas de las mismas. Por ejemplo, al elemento de una matriz que se encuentra en la fila ésima y la columna ésima se le denota como , donde y . Cuando se va a representar explícitamente una entrada la cuál está indexada con un o un con dos cifras se introduce una coma entre el índice de filas y de columnas. Así por ejemplo, la entrada que está en la primera fila y la segunda columna de la matriz de tamaño se representa como mientras que la entrada que está en la fila número 23 y la columna 100 se representa como .
Además de utilizar letras mayúsculas para representar matrices, numerosos autores representan a las matrices con fuentes en negrita para distinguirlas de otros objetos matemáticos. Así es una matriz, mientras que es un escalar en esa notación. Sin embargo ésta notación generalmente se deja para libros y publicaciones, donde es posible hacer ésta distinción tipográfica con facilidad. En otras notaciones se considera que el contexto es lo suficientemente claro como para no usar negritas.
Otra notación, en si un abuso de notación, representa a la matriz por sus entradas, i.e. o incluso .
Otra definición, muy usada en la solución de sistemas de ecuaciones lineales, es la de vectores fila y vectores columna. Un vector fila o vector renglón es cualquier matriz de tamaño mientras que un vector columna es cualquier matriz de tamaño .
Finalmente a las matrices que tienen el mismo número de filas que de columnas, i.e. , se les llama matrices cuadradas y el conjunto se denota o alternativamente .
Las matrices actualmente estan en un periodo de prueva por los estudiantes de ingenieria oceanografica Juan Carlos Guevara y Robert Stiven Ramires de nacionalidad peruana pero devido a sus estudios son residentes en colombia
Ejemplo
Dada la matriz
es una matriz de tamaño . La entrada es 7.
La matriz
es una matriz de tamaño : un vector fila con 9 entradas.
Operaciones básicas
Las operaciones que se pueden hacer con matrices provienen de sus aplicaciones, sobre todo de las aplicaciones en álgebra lineal. De ese modo las operaciones, o su forma muy particular de ser implementadas, no son únicas.
Suma o adición
Sean . Se define la operación de suma o adición de matrices como una operación binaria tal que y donde en el que la operación de suma en la última expresión es la operación binaria correspondiente pero en el campo . Por ejemplo, la entrada es igual a la suma de los elementos y lo cual es .
Veamos un ejemplo más explícito. Sea
No es necesario que las matrices sean cuadradas:
A la luz de éstos ejemplos es inmediato ver que dos matrices se pueden sumar solamente si ambas tienen el mismo tamaño. La suma de matrices en el caso de que las entradas estén en un campo serán la asociatividad, la conmutatividad, existencia de elemento neutro aditivo y existencia de inverso aditivo. Ésto es así ya que éstas son propiedades de los campos en los que están las entradas de la matriz. A continuación se presentan las propiedades.
Propiedades
Sean , donde es un campo entonces se cumplen las siguientes propiedades para la operación binaria
- Asociatividad
Demostración. Dada la definición de la operación binaria se sigue el resultado ya que debido a que para todo .
- Conmutatividad
Demostración Dada la definición de la operación binaria se sigue el resultado ya que debido a que para todo .
- Existencia del elemento neutro aditivo
Existe tal que
Demostración Tómese tal que para cualquier (dónde este último es el elemento neutro aditivo en el campo, el cual existe necesariamente). Entonces para cualquier se sigue que ya que para cualquier , dado que las entradas están en un campo.
- Existencia del inverso aditivo
Existe tal que
a esta matriz se le denota por .
Demostración Dada tómese tal que . Entonces ; luego, por las propiedades de campo donde es el inverso aditivo de en el campo para cualquier .
En efecto, éstas propiedades dependen el conjunto en el que estén las entradas, como se ha dicho antes, aunque en las aplicaciones generalmente los campos usados son (los números reales) y (los números complejos).
Por como se definió la operación binaria adición se dice que ésta operación es una operación interna por lo que se cumple intrinsecamente la propiedad de que es cerrado bajo adición. Con éstas propiedades se tiene que es un grupo abeliano.
En el caso en que el conjunto al que pertenecen las entradas de la matriz sea un anillo , la operación de adición de matrices continúa dotando de estructura de grupo abeliano a , ya que bajo un anillo se tiene que es un grupo abeliano. En el caso de que las entradas estén en un grupo , éste necesita ser un grupo abeliano para que la adición de matrices siga dotando de estructura de grupo abeliano a .
Producto por un escalar
Sean y . Se define la operación de producto por un escalar como una función tal que y donde en donde el producto es la operación binaria correspondiente pero en el campo . Por ejemplo, la entrada es igual al producto .
Veamos un ejemplo más explícito. Sea y
También es inmediato observar que el producto por un escalar da como resultado una matriz del mismo tamaño que la original. También el producto por un escalar dependerá de la estructura algebraica en la que las entradas están. En el caso de que estén en un campo serán dos distributividades (una respecto de suma de matrices y otra respecto de suma en el campo), asociatividad y una propiedad concerniente al producto por el elemento neutro multiplicativo del campo. A continuación se presentan las propiedades.
Propiedades
Sean y , donde es un campo, entonces se cumplen las siguientes propiedades para la operación producto por un escalar
- Asociatividad
Demostración. Dada la definición de la operación se sigue el resultado ya que debido a que para todo .
- Distributividad respecto de la suma de matrices
Demostración Dada la definición de la operación se sigue el resultado ya que debido a que para todo .
- Distributividad respecto de la suma en el campo
Demostración Dada la definición de la operación se sigue el resultado ya que debido a que para todo .
- Producto por el neutro multiplicativo del campo
Demostración Dada la definición de la operación se sigue el resultado ya que debido a que para todo .
Por como se definió la operación de producto por escalares se dice que es cerrado bajo producto por escalares. Con éstas propiedades y las de la adición se tiene que es un espacio vectorial con las operaciones de suma y producto por escalares definidas antes.
En el caso de que las entradas y los escalares no estén en un campo sino en un anillo entonces no necesariamente existe el neutro multiplicativo. En caso de que exista, con lo cual el anillo es un anillo con uno, se dice que es un módulo sobre .
Ahora, a partir de las propiedades básicas se puede demostrar inmediatamente que
Demostración Dada la definición de la operación se sigue el resultado ya que para todo .
Demostración Dada la definición de la operación se sigue el resultado ya que para todo debido a que para todo .
Demostración Dada la definición de la operación se sigue el resultado ya que como en un campo no hay divisores de cero entonces para todo implica que o para todo , i.e. . No es posible un caso en el que sólo algunas entradas de la matriz sean cero y el escalar sea no nulo ya que en esos casos estaríamos diciendo que hay divisores de cero y llegaríamos a una contradicción, ya que la suposición es que las entradas y los escalares están en un campo.
Demostración Dada la definición de la operación se sigue el resultado ya que debido a que para todo .
Este último resultado permite usar la notación sin riesgo de ambigüedad.
Producto
El producto de matrices se define de una manera muy peculiar y hasta caprichosa cuando no se conoce su origen. El origen proviene del papel de las matrices como representaciones de aplicaciones lineales. Así el producto de matrices, como se define, proviene de la composición de aplicaciones lineales. En este contexto, el tamaño de la matriz corresponde con las dimensiones de los espacios vectoriales entre los cuales se establece la aplicación lineal. De ese modo el producto de matrices, representa la composición de aplicaciones lineales.
En efecto, en ciertas bases tenemos que se puede representar como donde es la representación de un vector de en la base que se ha elegido para en forma de vector columna. Si tenemos dos aplicaciones lineales y entonces y , luego la aplicación se representará como donde es el producto de las representaciones matriciales de . Nótese que la composición no se puede dar entre cualquier aplicación sino entre aplicaciones que vayan de , en particular debe de haber una relación entre las dimensiones de los espacios vectoriales. Una vez dicho ésto podemos definir el producto de la siguiente manera.
Sean y . Se define el producto de matrices como una función tal que y donde para toda , es decir . Por ejemplo, la entrada .
Veamos un ejemplo más explícito. Sean y
dónde la matriz producto es como habíamos establecido en la definición: una matriz .
Sin tomar en cuenta la motivación que viene desde las aplicaciones lineales, es evidente ver que si ignoramos la definición de la función de producto de matrices y sólo se toma en cuenta la definición de las entradas, el producto no estará bien definido, ya que si no tiene el mismo número de columnas que de filas entonces no podremos establecer en donde acaba la suma: si la acabamos en el mayor de éstos números habrá sumandos que no están definidos ya que una de las matrices no tendrá mas entradas, mientras que si tomamos el menor habrá entradas de alguna de las matrices que no se tomen en cuenta. Así es necesario que tenga el mismo número de columnas que de filas para que exista.
Como se puede suponer también, las propiedades de ésta operación serán más limitadas en la generalidad ya que además de las limitaciones impuestas por la naturaleza de las entradas está esta limitación respecto a tamaño. Es claro, además, que el producto de matrices no siempre es una operación interna.
Propiedades
Sean matrices con entradas en , donde es un campo, entonces se cumplen las siguientes propiedades para el producto de matrices (considerando que los productos existan)
- Asociatividad
Demostración. Dada la definición de la operación se sigue el resultado ya que, si , y por lo que donde debido a que para todo . Aquí estamos considerando que es , es y es .
- Distributividad respecto de la suma de matrices por la derecha
Demostración Dada la definición de la operación se sigue el resultado ya que debido a que para todo . Aquí estamos considerando que es , es y es .
- Distributividad respecto de la suma de matrices por la izquierda
Demostración Dada la definición de la operación se sigue el resultado ya que debido a que para todo . Aquí estamos considerando que es , es y es .
El producto de matrices no es conmutativo, si lo fuera la composición de funciones lineales sería conmutativa y eso en general no sucede. Obviamente existen casos particulares de algunos tipos de matrices en los que si hay conmutatividad. En el caso en que tengamos tendremos que el producto entre matrices en también está en . En ese caso además de espacio vectorial es un álgebra sobre un campo. En el caso de que el conjunto al que pertenecen las entradas sea un anillo conmutativo con uno entonces además de módulo es un álgebra sobre un anillo. Mas aún con el producto de matrices es un anillo.
Rango
El rango de una matriz es la dimensión de la imagen de la aplicación lineal representada por , que coincide con la dimensión de los espacios vectoriales generados por las filas o columnas de .
Traspuesta
La traspuesta de una matriz , donde no es necesariamente un campo, es una matriz tal que . Por ejemplo la entrada .
Veamos un ejemplo más explícito. Sea
entonces su traspuesta es
Así, informalmente podríamos decir que la traspuesta es aquella matriz que se obtiene de la original cambiando filas por columnas. Las notaciones usuales para denotar la traspuesta de una matriz son .
La trasposición de matrices tiene las siguientes propiedades (donde ahora si el conjunto de entradas debe ser al menos un anillo conmutativo):
Si representa una aplicación lineal, entonces la matriz describe la traspuesta de la aplicación lineal.
Matrices cuadradas y definiciones relacionadas
Una matriz cuadrada es una matriz que tiene el mismo número de filas que de columnas. El conjunto de todas las matrices cuadradas n-por-n junto a la suma y la multiplicación de matrices, es un anillo que generalmente no es conmutativo.
M(n,R), el anillo de las matrices cuadradas reales, es un álgebra asociativa real unitaria. M(n,C), el anillo de las matrices cuadradas complejas, es un álgebra asociativa compleja.
La matriz identidad In de orden n es la matriz n por n en la cual todos los elementos de la diagonal principal son iguales a 1 y todos los demás elementos son iguales a 0. La matriz identidad se denomina así porque satisface las ecuaciones MIn = M y InN = N para cualquier matriz M m por n y N n por k. Por ejemplo, si n = 3:
La matriz identidad es el elemento unitario en el anillo de matrices cuadradas.
Los elementos invertibles de este anillo se llaman matrices invertibles o matrices no singulares. Una matriz A n por n es invertible si y sólo si existe una matriz B tal que
- AB = In = BA.
En este caso, B es la matriz inversa de A, identificada por A-1 . El conjunto de todas las matrices invertibles n por n forma un grupo (concretamente un grupo de Lie) bajo la multiplicación de matrices, el grupo lineal general.
Si λ es un número y v es un vector no nulo tal que Av = λv, entonces se dice que v es un vector propio de A y que λ es su valor propio asociado. El número λ es un valor propio de A si y sólo si A−λIn no es invertible, lo que sucede si y sólo si pA(λ) = 0, donde pA(x) es el polinomio característico de A. pA(x) es un polinomio de grado n y por lo tanto, tiene n raíces complejas múltiples raíces si se cuentan de acuerdo a su multiplicidad. Cada matriz cuadrada tiene como mucho n valores propios complejos.
El determinante de una matriz cuadrada A es el producto de sus n valores propios, pero también puede ser definida por la fórmula de Leibniz. Las matrices invertibles son precisamente las matrices cuyo determinante es distinto de cero.
El algoritmo de eliminación gaussiana puede ser usado para calcular el determinante, el rango y la inversa de una matriz y para resolver sistemas de ecuaciones lineales.
La traza de una matriz cuadrada es la suma de los elementos de la diagonal, lo que equivale a la suma de sus n valores propios.
Una matriz de Vandermonde es una matriz cuadrada cuyas filas son las potencias de un número. Su determinante es fácil de calcular.
Las matrices en la Computación
Las matrices son utilizadas ampliamente en la computación, por su facilidad y liviandad para manipular información. En este contexto, son una buena forma para representar grafos, y son muy utilizadas en el cálculo numérico. En la computación gráfica, las matrices son ampliamente usadas para lograr animaciones de objetos y formas.
Teoría de matrices
La teoría de matrices es un rama de las matemáticas que se centra en el estudio de matrices. Inicialmente una rama secundaria del álgebra lineal, ha venido cubriendo los temas relacionados con la teoría de grafos, el álgebra, la combinatoria, y la estadística también.
Matrices relacionadas con otros temas
Una matriz puede identificarse a una aplicación lineal entre dos espacios vectoriales de dimensión finita. Así la teoría de las matrices habitualmente se considera como una rama del álgebra lineal. Las matrices cuadradas desempeñan un papel particular, porque el conjunto de matrices de orden n (n entero natural no nulo dado) posee propiedades de « estabilidad » de operaciones.
Los conceptos de matriz estocástica y matriz doblemente estocástica son herramientas importantes para estudiar los procesos estocásticos, en probabilidad y en estadística.
Las matrices definidas positivas aparecen en la búsqueda de máximos y mínimos de funciones a valores reales, y a varias variables.
Es también importante disponer de una teoría de matrices a coeficientes en un anillo. En particular, las matrices a coeficientes en el anillo de polinomios se utilizan en teoría de mandos.
En matemáticas puras, los anillos de matrices pueden proporcionar un rico campo de contraejemplos para conjeturas matemáticas.
Algunos teoremas
Matriz y grafos
En teoría de los grafos, a todo grafo etiquetado corresponde la matriz de adyacencia. Una matriz de permutación es una matriz que representa una permutación; matriz cuadrada cuyos coeficientes son 0 o 1, con un solo 1 en cada línea y cada columna. Estas matrices se utilizan en combinatorio.
En la teoría de grafos, se llama matriz de un grafo a la matriz que indica en la línea i y la columna j el número de aristas que enlazan el vértice i al vértice j. En un grafo no orientado, la matriz es simétrica. La suma de los elementos de una columna permite determinar el grado de un vértice. La matriz indica en la línea i y la columna j el número de caminos a n aristas que adjuntan el vértice i al vértice j.
Véase también
- Descomposición de Schur
- Descomposición en valores singulares
- Descomposición QR
- Determinante (matemática)
- Eliminación de Gauss-Jordan
- Factorización LU
- Forma canónica de Jordan
- Lema de Schur
- Matlab
- Matriz triangular
Referencias
- Beezer, Rob, Un primer curso en álgebra lineal, licencia bajo GFDL. (En inglés)
- Jim Hefferon: Álgebra lineal (Libros de texto en línea) (En inglés)
Enlaces externos
- Matemáticas/Matrices(En Wikilibros)
Notas
- ↑ Tony Crilly (2011). 50 cosas que hay que saber sobre matemáticas. Ed. Ariel. ISBN 978-987-1496-09-9.
- ↑ a b Swaney, Mark. History of Magic Squares.
- ↑ Shen Kangshen et al. (ed.) (1999). Nine Chapters of the Mathematical Art, Companion and Commentary. Oxford University Press. cited byOtto Bretscher (2005). Linear Algebra with Applications (3rd ed. edición). Prentice-Hall. p. 1.