Атлас (топология): различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Преамбула: стилевые правки
 
(не показано 16 промежуточных версий 12 участников)
Строка 1: Строка 1:
{{другие значения|Атлас}}
'''Карта''' и '''атлас''' — понятия [[дифференциальная геометрия|дифференциальной геометрии]], позволяющие в частности ввести на многообразии гладкую структуру.
'''Атлас''' — понятие [[дифференциальная геометрия|дифференциальной геометрии]], позволяющее вводить на [[многообразие|многообразии]] дополнительные структуры;
например, гладкую структуру или комплексную структуру.

Атлас состоит из отдельных карт, которые описывают отдельные области многообразия.
Если под многообразием понимать поверхность Земли, то слова «карта» и «атлас» приобретают свои обычные значения.


== Определения ==
== Определения ==
Строка 9: Строка 14:
: <math>f</math> — [[гомеоморфизм]] из <math>U</math> в [[открытое множество]] в <math>K^n</math>
: <math>f</math> — [[гомеоморфизм]] из <math>U</math> в [[открытое множество]] в <math>K^n</math>


* Если области определения двух карт <math>(U_1,f_1)</math> и <math>(U_2,f_2)</math> пересекаются (<math>U_1 \cap U_2 \neq \emptyset</math>), то между множествами <math>f_1^{-1}(U_2)</math> и <math>f_2^{-1}(U_1)</math> имеются взаимно обратные отображения (гомоморфизмы), называемые '''функциями сличения''' или '''отображением склейки''' :
* Локальная карта вводит в <math>U</math> криволинейные координаты, сопоставляя точке <math>x=f^{-1}(t)</math> набор чисел <math>t=(t^1,...,t^n) </math>
* Если области определения двух карт <math>(U_1,f_1)</math> и <math>(U_2,f_2)</math> пересекаются (<math>U_1 \cap U_2 \neq \emptyset</math>), то между множествами <math>f_1(U_2)</math> и <math>f_2(U_1)</math> имеются взаимно обратные отображения (гомеоморфизмы), называемые '''функциями сличения''' или '''отображением склейки''' :
*: <math>
*: <math>
\begin{matrix}
\begin{matrix}
Строка 21: Строка 28:
== Связанные определения ==
== Связанные определения ==
* Два гладких (аналитических) атласа называются ''согласованными'', если их объединение также является гладким (аналитическим) атласом.
* Два гладких (аналитических) атласа называются ''согласованными'', если их объединение также является гладким (аналитическим) атласом.

{{нет ссылок|дата=7 июня 2019}}


[[Категория:Многообразия]]
[[Категория:Многообразия]]
[[Категория:Дифференциальная геометрия и топология]]
[[Категория:Дифференциальная геометрия и топология]]


[[ca:Atles (topologia)]]
[[de:Atlas (Mathematik)]]
[[en:Atlas (topology)]]
[[es:Atlas (matemáticas)]]
[[it:Atlante (topologia)]]
[[nl:Atlas (topologie)]]
[[pl:Atlas (matematyka)]]
[[pt:Atlas (topologia)]]
[[sl:Atlas (topologija)]]
[[uk:Атлас (математика)]]
[[zh:图册 (拓扑学)]]

Текущая версия от 13:45, 1 ноября 2021

Атлас — понятие дифференциальной геометрии, позволяющее вводить на многообразии дополнительные структуры; например, гладкую структуру или комплексную структуру.

Атлас состоит из отдельных карт, которые описывают отдельные области многообразия. Если под многообразием понимать поверхность Земли, то слова «карта» и «атлас» приобретают свои обычные значения.

Определения

[править | править код]

Пусть — числовое поле (например или ), топологическое пространство.

  • Карта — это пара , где
открытое множество в
гомеоморфизм из в открытое множество в
  • Локальная карта вводит в криволинейные координаты, сопоставляя точке набор чисел
  • Если области определения двух карт и пересекаются (), то между множествами и имеются взаимно обратные отображения (гомеоморфизмы), называемые функциями сличения или отображением склейки :
  • Атлас — это множество согласованных карт , , такое, что образует покрытие пространства . Здесь — некоторое множество индексов. При этом атлас называется гладким (класса ) или аналитическим, если функции замены координат для всех карт гладкие (класса ) или аналитические.

Связанные определения

[править | править код]
  • Два гладких (аналитических) атласа называются согласованными, если их объединение также является гладким (аналитическим) атласом.