4-тензор: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
м Cleaning up redundant parameters added by prior faulty versions.) #IABot (v2.0.8.8
м орфография
 
(не показаны 2 промежуточные версии 2 участников)
Строка 24: Строка 24:
== Примеры ==
== Примеры ==
=== 4-тензоры в [[ОТО]] ===
=== 4-тензоры в [[ОТО]] ===
* [[метрический тензор]] (играет определённую техническую роль и в отсутствии гравитационных полей, то есть часто применяется и за рамками [[ОТО]], однако в этом случае он - обычно - имеет очень частный вид [[лоренцева метрика|лоренцевой метрики]]).
* [[метрический тензор]] (играет определённую техническую роль и в отсутствие гравитационных полей, то есть часто применяется и за рамками [[ОТО]], однако в этом случае он, обычно, имеет очень частный вид [[лоренцева метрика|лоренцевой метрики]]).
* [[тензор кривизны]]
* [[тензор кривизны]]
* [[тензор Риччи]]
* [[тензор Риччи]]

Текущая версия от 04:39, 15 марта 2023

4-тензоры, четырёхте́нзоры — класс математических объектов, используемый для описания некоторых физических полей в релятивистской физике, тензор, определённый на четырёхмерном пространстве-времени[1].

  • Замечание: в литературе 4-тензоры часто называются просто тензорами, а размерность и природа векторного пространства (многообразия), на котором они заданы в этом случае оговариваются явно или очевидны из контекста.

В общем случае 4-тензор является объектом с набором индексов:

причём каждый из индексов принимает четыре значения (обычно от нуля до трёх или от одного до четырёх, то есть итд.

При смене системы отсчёта компоненты этого объекта преобразуются так[2]:

,

где матрица поворота в четырёхмерном пространстве-времени (матрица группы Лоренца), а — обратная ей.

Верхние индексы называются контравариантными, а нижние — ковариантными. Суммарное число индексов задаёт ранг тензора. 4-вектор является 4-тензором первого ранга.

Обычно в физике тензоры одинаковой природы с разным числом ковариантных и контравариантных индексов считаются различными представлениями одного и того же объекта. Опускание или поднимание индекса проводится с помощью метрического тензора , например для 4-тензора второго ранга

Алгебра внешнего произведения позволяет также вводить для антисимметричных тензоров родственные им дуальные тензоры.

Преимущества четырёхмерной записи

[править | править код]

Уравнения теории относительности, электродинамики, и многих современных фундаментальных теорий, включающих их, особенно удобно записывать, используя 4-векторы и 4-тензоры. Главным преимуществом такой записи есть то, что в этой форме уравнения автоматически лоренц-инвариантны, то есть не изменяются при переходе от одной инерциальной системы координат к другой.

4-тензор электромагнитного поля

[править | править код]

Соответствующий 4-тензор существует также и для описания электромагнитного поля. Это 4-тензор второго ранга. При его использовании основные уравнения для электромагнитного поля: уравнение Максвелла и уравнение движения заряженной частицы в поле имеют особенно простую и элегантную форму.

Определение через 4-потенциал

[править | править код]

4-тензор определяется через производные от 4-потенциала[3]:

.

Определение через трёхмерные векторы

[править | править код]

4-тензор определяется через обычные трёхмерные составные векторов напряжённости следующим образом:

Первая форма — это ковариантный тензор, а вторая форма — это контравариантный тензор.

Сила Лоренца

[править | править код]

Записанное в 4-векторной форме уравнение движения заряженной частицы в электромагнитном поле приобретает вид

,

где 4-скорость, q — электрический заряд частицы, c — скорость света, m — масса. Правая часть этого уравнения — это сила Лоренца.

Примечания

[править | править код]
  1. повороты системы отсчёта в котором включают как обычные повороты в трёхмерном пространстве, так и переходы между системами отсчёта, которые движутся с разными скоростями одна относительно другой (преобразования Лоренца).
  2. Здесь, как принято в теории относительности, знак суммы опускается — повторение индекса внизу и вверху значит суммирование; см. Соглашение Эйнштейна о суммировании.
  3. Формулы на этой странице записаны в системе СГСГ

Внешние ссылки

[править | править код]