Внутренняя метрика: различия между версиями
Перейти к навигации
Перейти к поиску
[отпатрулированная версия] | [отпатрулированная версия] |
Содержимое удалено Содержимое добавлено
Tosha (обсуждение | вклад) |
Tosha (обсуждение | вклад) |
||
(не показаны 2 промежуточные версии этого же участника) | |||
Строка 10: | Строка 10: | ||
== Свойства == |
== Свойства == |
||
* Если <math>(X,\rho)</math> — пространство с внутренней метрикой, то для любых двух точек <math>x,y\in X</math> и любого <math>\varepsilon>0</math> существует их ''<math>\varepsilon</math>-середина''. В случае, когда [[метрическое пространство]] <math>(X,\rho)</math> [[Полное метрическое пространство|полное]], имеет место и обратное утверждение: если для любых двух точек <math>x,y\in X</math> и любого <math>\varepsilon>0</math> существует их ''<math>\varepsilon</math>-середина'', то эта метрика внутренняя. |
* Если <math>(X,\rho)</math> — пространство с внутренней метрикой, то для любых двух точек <math>x,y\in X</math> и любого <math>\varepsilon>0</math> существует их ''<math>\varepsilon</math>-середина''. |
||
**Лемма Менгера: В случае, когда [[метрическое пространство]] <math>(X,\rho)</math> [[Полное метрическое пространство|полное]], имеет место и обратное утверждение: если для любых двух точек <math>x,y\in X</math> и любого <math>\varepsilon>0</math> существует их ''<math>\varepsilon</math>-середина'', то эта метрика внутренняя. |
|||
* Полное метрическое пространство <math>(X,\rho)</math> с внутренней метрикой обладает следующим свойством: для любых двух точек <math>x,y\in X</math> и <math>\varepsilon>0</math> найдётся кривая длины <math><\rho(x,y)+\varepsilon,</math> соединяющая точки <math>x</math> и <math>y</math>. |
* Полное метрическое пространство <math>(X,\rho)</math> с внутренней метрикой обладает следующим свойством: для любых двух точек <math>x,y\in X</math> и <math>\varepsilon>0</math> найдётся кривая длины <math><\rho(x,y)+\varepsilon,</math> соединяющая точки <math>x</math> и <math>y</math>. |
||
*В полном метрическом пространстве с внутренней метрикой длина кратчайшей совпадает с расстоянием между её концами. |
|||
* [[Теорема Хопфа — Ринова]]: Если <math>(X,\rho)</math> — [[локально компактное пространство|локально компактное]] [[Полное метрическое пространство|полное]] [[метрическое пространство]] с внутренней метрикой, то любые две точки <math>X</math> можно соединить кратчайшей. Более того, пространство <math>X</math> является [[ограниченно компактное пространство|ограниченно компактным]] (то есть все [[ограниченное множество|ограниченные]] [[замкнутое подмножество|замкнутые подмножества]] <math>X</math> являются [[компактное пространство|компактными]]). |
* [[Теорема Хопфа — Ринова]]: Если <math>(X,\rho)</math> — [[локально компактное пространство|локально компактное]] [[Полное метрическое пространство|полное]] [[метрическое пространство]] с внутренней метрикой, то любые две точки <math>X</math> можно соединить кратчайшей. Более того, пространство <math>X</math> является [[ограниченно компактное пространство|ограниченно компактным]] (то есть все [[ограниченное множество|ограниченные]] [[замкнутое подмножество|замкнутые подмножества]] <math>X</math> являются [[компактное пространство|компактными]]). |
||
*Локально компактное пространство с внутренней метрикой является геодезическим. |
|||
* Лемма Менгера: Полное метрическое пространство в котором для любого <math>\varepsilon>0</math> и любых точек <math>x</math> и <math>y</math> существует их ''<math>\varepsilon</math>-середина'' (то есть точка <math>z</math> такая, что <math>|x-z|< \tfrac12\cdot |x-y|+\varepsilon</math> и <math>|y-z|< \tfrac12\cdot |x-y|+\varepsilon</math>) имеет внутреннюю метрику. |
|||
== |
== Примеры == |
||
* [[Риманово многообразие]] |
* [[Риманово многообразие]] |
||
* [[Субриманово многообразие]] |
* [[Субриманово многообразие]] |
Текущая версия от 04:00, 30 декабря 2023
Внутренняя метрика — метрика в пространстве, определяемая с помощью функционала длины, как инфимум длин всех путей (кривых), соединяющих данную пару точек.
Определения
[править | править код]Метрика на пространстве называется внутренней, если для любых двух точек расстояние между ними определяется формулой где обозначает длину пути и точная нижняя грань берётся по всем путям , соединяющим точки .
Связанные определения
[править | править код]- Пусть — две произвольные точки метрического пространства и — произвольное положительное число. Точка называется их -серединой, если
- Метрическое пространство называется геодезическим, если любые две точки можно соединить кратчайшей.
Свойства
[править | править код]- Если — пространство с внутренней метрикой, то для любых двух точек и любого существует их -середина.
- Лемма Менгера: В случае, когда метрическое пространство полное, имеет место и обратное утверждение: если для любых двух точек и любого существует их -середина, то эта метрика внутренняя.
- Полное метрическое пространство с внутренней метрикой обладает следующим свойством: для любых двух точек и найдётся кривая длины соединяющая точки и .
- В полном метрическом пространстве с внутренней метрикой длина кратчайшей совпадает с расстоянием между её концами.
- Теорема Хопфа — Ринова: Если — локально компактное полное метрическое пространство с внутренней метрикой, то любые две точки можно соединить кратчайшей. Более того, пространство является ограниченно компактным (то есть все ограниченные замкнутые подмножества являются компактными).
- Локально компактное пространство с внутренней метрикой является геодезическим.
Примеры
[править | править код]Литература
[править | править код]- Бураго Д.Ю., Бураго Ю.Д., Иванов С.В., Курс метрической геометрии. — Москва-Ижевск, Институт компьютерных исследований, 2004. ISBN 5-93972-300-4