Формула Остроградского — Гаусса: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Формулировка: Исправлена опечатка в формуле Остроградского-Гаусса
Формулировка: Дополнено условие, при котором поток векторного поля, исходящий от источника, обхватываемого замкнутой поверхностью, не зависит от формы этой поверхности.
Метки: с мобильного устройства из мобильной версии
 
(не показано 5 промежуточных версий 4 участников)
Строка 1: Строка 1:
{{дзт|Формула Гаусса}}
{{другие значения|Список объектов, названных в честь Гаусса}}
'''Фо́рмула Гаусса —Остроградского ''' связывает [[поток векторного поля|поток непрерывно-дифференцируемого векторного поля]] через замкнутую [[поверхность]] и [[интеграл]] от [[дивергенция|дивергенции]] этого поля по [[объём]]у, ограниченному этой поверхностью.
'''Фо́рмула Остроградского — Гаусса '''связывает [[поток векторного поля|поток непрерывно-дифференцируемого векторного поля]] через замкнутую [[поверхность]] и [[интеграл]] от [[дивергенция|дивергенции]] этого поля по [[объём]]у, ограниченному этой поверхностью.


Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.
Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.


== Формулировка ==
== Формулировка ==
Поток вектора <math>\mathbf{a}</math> через замкнутую поверхность <math>S</math> равен интегралу от <math>\operatorname{div}\mathbf a,</math> взятому по объему <math>V</math>, ограниченному поверхностью <math>S</math><ref>{{книга|автор=Воднев В. Г., Наумович А. Ф., Наумович Н. Ф.|часть=Теорема Остроградского|заглавие=Математический словарь высшей школы|оригинал= |ссылка=|издание=|ответственный=|место=|издательство=Издательство МПИ|год=|том=|страницы=437|страниц=|isbn=|тираж=|язык=ru}}</ref>
Поток вектора <math>\mathbf{a}
</math> через замкнутую поверхность <math>S
</math> равен интегралу от <math>\operatorname{div}\mathbf a
</math> , взятому по объему <math>V
</math>, ограниченному поверхностью <math>S
</math><ref>"Математический словарь высшей школы" В.Г.Воднев, А.Ф.Наумович, Н.Ф.Наумович. Издательство МПИ. статья "теорема Остроградского" страница 437.</ref>


: <math>\iint\limits_S\mathbf{a}\cdot d\mathbf{s}=
: <math>\iint\limits_S\mathbf{a}\cdot d\mathbf{s}=
Строка 16: Строка 11:
</math>
</math>


В координатной записи формула Остроградского-Гаусса принимает вид:
В координатной записи формула ОстроградскогоГаусса принимает вид:


: <math>\iint\limits_S a_x\,dy\,dz + a_y\,dz\,dx + a_z\,dx\,dy=
: <math>\iint\limits_S a_x\,dy\,dz + a_y\,dz\,dx + a_z\,dx\,dy=
Строка 22: Строка 17:
: <math>a_x, a_y, a_z</math> - проекции вектора <math>\mathbf{a}
: <math>a_x, a_y, a_z</math> - проекции вектора <math>\mathbf{a}
</math>
</math>
: Следствия из теоремы Остроградского-Гаусса:
: Следствия из теоремы ОстроградскогоГаусса:
: 1) в бездивергентном поле (<math>\operatorname{div}\mathbf a=0</math>) поток вектора <math>\mathbf{a}</math> через любую замкнутую поверхность <math>S</math>, являющуюся полной границей некоторого тела <math>V</math>, равен нулю.
: 1) в соленоидальном поле (<math>\operatorname{div}\mathbf a=0
: 2) если внутри замкнутой поверхности <math>S</math> имеется источник или сток, то поток вектора <math>\mathbf{a}</math> через эту поверхность, убывающий с расстоянием как <math>1/r^2</math>, не зависит от её формы.
</math>) поток вектора <math>\mathbf{a}
</math> через любую замкнутую поверхность равен нулю.
: 2) если внутри замкнутой поверхности <math>S
</math> имеется источник или сток, то поток вектора <math>\mathbf{a}
</math> через эту поверхность не зависит от ее формы.


=== Замечания ===
=== Замечания ===
Строка 38: Строка 29:
Современная запись формулы:
Современная запись формулы:
: <math>\int\left(\frac{dP}{dx}+\frac{dQ}{dy}+\frac{dR}{dz}\right)d\Omega=\int(P\cos\alpha+Q\cos\beta+R\cos\gamma)dS,</math>
: <math>\int\left(\frac{dP}{dx}+\frac{dQ}{dy}+\frac{dR}{dz}\right)d\Omega=\int(P\cos\alpha+Q\cos\beta+R\cos\gamma)dS,</math>
где <math>\cos\alpha\,{dS}={dy}{dz}</math>, <math>\cos\beta\,{dS}={dz}{dx}</math> и <math>\cos\gamma\,{dS}={dx}{dy}</math>. В современной записи <math>\omega=d\Omega</math> — элемент объёма, <math>s=dS</math> — элемент поверхности<ref name=Ilin>Ильин В. А. и др. Математический анализ. Продолжение курса / В. А. Ильин, В. А. Садовничий, Бл. X. Сендов. Под ред. А. Н. Тихонова. — М.: Изд-во МГУ, 1987.— 358 с.</ref>.
где <math>\cos\alpha\,{dS}={dy}{dz}</math>, <math>\cos\beta\,{dS}={dz}{dx}</math> и <math>\cos\gamma\,{dS}={dx}{dy}</math>. В современной записи <math>\omega=d\Omega</math> — элемент объёма, <math>s=dS</math> — элемент поверхности<ref name=Ilin>{{книга|автор=Ильин В. А., Садовничий В. А., Сендов Бл. X. |часть=|заглавие=Математический анализ. Продолжение курса|оригинал= |ссылка=|издание=|ответственный=Под ред. А. Н. Тихонова|место=М.|издательство=Изд-во МГУ|год=1987|том=|страницы=|страниц=358|isbn=|тираж=|язык=ru}}</ref>.


Обобщением формулы Остроградского является [[теорема Стокса|формула Стокса]] для [[многообразие|многообразий]] с краем.
Обобщением формулы Остроградского является [[теорема Стокса|формула Стокса]] для [[многообразие|многообразий]] с краем.
Строка 45: Строка 36:
Впервые теорема была установлена [[Лагранж, Жозеф Луи|Лагранжем]] в 1762<ref>В работе по теории звука в 1762 г. Лагранж рассматривает частный случай теоремы: Lagrange (1762) «Nouvelles recherches sur la nature et la propagation du son» (Новые исследования о природе и распространении звука), ''Miscellanea Taurinensia'' (''Mélanges de Turin''), '''2''': 11 — 172. Репринтное издание: [https://books.google.com/books?id=3TA4DeQw1NoC&pg=PA151#v=onepage&q&f=false «Nouvelles recherches sur la nature et la propagation du son»] {{Wayback|url=https://books.google.com/books?id=3TA4DeQw1NoC&pg=PA151#v=onepage&q&f=false |date=20160515225306 }} в кн.: J.A. Serret, ed., ''Oeuvres de Lagrange'', (Paris, France: Gauthier-Villars, 1867), vol. 1, pages 151—316; [https://books.google.com/books?id=3TA4DeQw1NoC&pg=PA263#v=onepage&q&f=false на страницах 263—265] {{Wayback|url=https://books.google.com/books?id=3TA4DeQw1NoC&pg=PA263#v=onepage&q&f=false |date=20160513222830 }} Лагранж преобразовывает тройные интегралы в двойные с помощью [[Интегрирование по частям|интегрирования по частям]].</ref>.
Впервые теорема была установлена [[Лагранж, Жозеф Луи|Лагранжем]] в 1762<ref>В работе по теории звука в 1762 г. Лагранж рассматривает частный случай теоремы: Lagrange (1762) «Nouvelles recherches sur la nature et la propagation du son» (Новые исследования о природе и распространении звука), ''Miscellanea Taurinensia'' (''Mélanges de Turin''), '''2''': 11 — 172. Репринтное издание: [https://books.google.com/books?id=3TA4DeQw1NoC&pg=PA151#v=onepage&q&f=false «Nouvelles recherches sur la nature et la propagation du son»] {{Wayback|url=https://books.google.com/books?id=3TA4DeQw1NoC&pg=PA151#v=onepage&q&f=false |date=20160515225306 }} в кн.: J.A. Serret, ed., ''Oeuvres de Lagrange'', (Paris, France: Gauthier-Villars, 1867), vol. 1, pages 151—316; [https://books.google.com/books?id=3TA4DeQw1NoC&pg=PA263#v=onepage&q&f=false на страницах 263—265] {{Wayback|url=https://books.google.com/books?id=3TA4DeQw1NoC&pg=PA263#v=onepage&q&f=false |date=20160513222830 }} Лагранж преобразовывает тройные интегралы в двойные с помощью [[Интегрирование по частям|интегрирования по частям]].</ref>.


Общий метод преобразования тройного интеграла к поверхностному впервые показал [[Гаусс, Карл Фридрих|Карл Фридрих Гаусс]] ([[1813]], [[1830]]) на примере задач [[Электродинамика|электродинамики]]<ref name=A>''Александрова Н. В.'' Математические термины.(справочник). М.: Высшая школа, 1978, стр. 150—151.</ref>.
Общий метод преобразования тройного интеграла к поверхностному впервые показал [[Гаусс, Карл Фридрих|Карл Фридрих Гаусс]] (1813, 1830) на примере задач [[Электродинамика|электродинамики]]<ref name=A>''Александрова Н. В.'' Математические термины.(справочник). М.: Высшая школа, 1978, стр. 150—151.</ref>.


В [[1826 год]]у [[Остроградский, Михаил Васильевич|М. В. Остроградский]] вывел формулу в общем виде, представив её в виде теоремы (опубликовано в [[1831 год]]у). Многомерное обобщение формулы М. В. Остроградский опубликовал в [[1834 год]]у<ref name=A/>. С помощью данной формулы Остроградский нашёл выражение производной по параметру от <math>n</math>-кратного интеграла с переменными пределами и получил формулу для вариации <math>n</math>-кратного интеграла.
В [[1826 год]]у [[Остроградский, Михаил Васильевич|М. В. Остроградский]] вывел формулу в общем виде, представив её в виде теоремы (опубликовано в 1831 году). Многомерное обобщение формулы М. В. Остроградский опубликовал в 1834 году<ref name=A/>. С помощью данной формулы Остроградский нашёл выражение производной по параметру от <math>n</math>-кратного интеграла с переменными пределами и получил формулу для вариации <math>n</math>-кратного интеграла.


За рубежом формула как правило называется «теоремой о дивергенции» ({{lang-en|divergence theorem}}), иногда — '''формулой Гаусса''' или «формулой (теоремой) Гаусса—Остроградского».
За рубежом формула, как правило, называется «теоремой о дивергенции» ({{lang-en|divergence theorem}}), иногда — '''формулой Гаусса''' или «формулой (теоремой) Гаусса — Остроградского».


== См. также ==
== См. также ==

Текущая версия от 19:11, 23 января 2024

Фо́рмула Остроградского — Гаусса связывает поток непрерывно-дифференцируемого векторного поля через замкнутую поверхность и интеграл от дивергенции этого поля по объёму, ограниченному этой поверхностью.

Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.

Формулировка

[править | править код]

Поток вектора через замкнутую поверхность равен интегралу от взятому по объему , ограниченному поверхностью [1]

В координатной записи формула Остроградского — Гаусса принимает вид:

- проекции вектора
Следствия из теоремы Остроградского — Гаусса:
1) в бездивергентном поле () поток вектора через любую замкнутую поверхность , являющуюся полной границей некоторого тела , равен нулю.
2) если внутри замкнутой поверхности имеется источник или сток, то поток вектора через эту поверхность, убывающий с расстоянием как , не зависит от её формы.

В работе Остроградского формула записана в следующем виде:

где и  — дифференциалы объёма и поверхности соответственно.  — функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью[2].

Современная запись формулы:

где , и . В современной записи  — элемент объёма,  — элемент поверхности[2].

Обобщением формулы Остроградского является формула Стокса для многообразий с краем.

Впервые теорема была установлена Лагранжем в 1762[3].

Общий метод преобразования тройного интеграла к поверхностному впервые показал Карл Фридрих Гаусс (1813, 1830) на примере задач электродинамики[4].

В 1826 году М. В. Остроградский вывел формулу в общем виде, представив её в виде теоремы (опубликовано в 1831 году). Многомерное обобщение формулы М. В. Остроградский опубликовал в 1834 году[4]. С помощью данной формулы Остроградский нашёл выражение производной по параметру от -кратного интеграла с переменными пределами и получил формулу для вариации -кратного интеграла.

За рубежом формула, как правило, называется «теоремой о дивергенции» (англ. divergence theorem), иногда — формулой Гаусса или «формулой (теоремой) Гаусса — Остроградского».

Примечания

[править | править код]
  1. Воднев В. Г., Наумович А. Ф., Наумович Н. Ф. Теорема Остроградского // Математический словарь высшей школы. — Издательство МПИ. — С. 437.
  2. 1 2 Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Продолжение курса / Под ред. А. Н. Тихонова. — М.: Изд-во МГУ, 1987. — 358 с.
  3. В работе по теории звука в 1762 г. Лагранж рассматривает частный случай теоремы: Lagrange (1762) «Nouvelles recherches sur la nature et la propagation du son» (Новые исследования о природе и распространении звука), Miscellanea Taurinensia (Mélanges de Turin), 2: 11 — 172. Репринтное издание: «Nouvelles recherches sur la nature et la propagation du son» Архивная копия от 15 мая 2016 на Wayback Machine в кн.: J.A. Serret, ed., Oeuvres de Lagrange, (Paris, France: Gauthier-Villars, 1867), vol. 1, pages 151—316; на страницах 263—265 Архивная копия от 13 мая 2016 на Wayback Machine Лагранж преобразовывает тройные интегралы в двойные с помощью интегрирования по частям.
  4. 1 2 Александрова Н. В. Математические термины.(справочник). М.: Высшая школа, 1978, стр. 150—151.

Литература

[править | править код]
  • Остроградский М. В. Note sur les integrales definies. // Mem. l’Acad. (VI), 1, стр. 117—122, 29/Х 1828 (1831).
  • Остроградский М. В. Memoire sur le calcul des variations des integrales multiples. // Mem. l’Acad., 1, стр. 35—58, 24/1 1834 (1838).