Интегральная показательная функция: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
м оформление: формулы в заголовках разделов приводят к некорректному формированию содержания
 
(не показаны 3 промежуточные версии 3 участников)
Строка 8: Строка 8:
=\gamma+\operatorname{ln}|x|+\sum\limits_{n\ge1}\frac{x^n}{n!\cdot n}, \; x\in\mathbb R,\; (1)</math>
=\gamma+\operatorname{ln}|x|+\sum\limits_{n\ge1}\frac{x^n}{n!\cdot n}, \; x\in\mathbb R,\; (1)</math>


где <math>\gamma</math> есть [[постоянная Эйлера — Маскерони|постоянная Эйлера]].
где <math>\gamma</math> есть [[постоянная Эйлера — Маскерони|постоянная Эйлера-Маскерони]].
Интеграл в смысле главного значения в (1) имеет различные разложения в ряд при положительных и
Интеграл в смысле главного значения в (1) имеет различные разложения в ряд при положительных и
отрицательных x, что затрудняет его аналитическое продолжение на комплексную плоскость [то есть обобщение (1) на случай комплексных значений x].
отрицательных x, что затрудняет его аналитическое продолжение на комплексную плоскость [то есть обобщение (1) на случай комплексных значений x].
Строка 31: Строка 31:
Фиксируем также и главную ветвь аргумента: <math>-\pi<\operatorname{arg}z\le\pi</math> и далее будем считать, что <math>\operatorname{Ei}</math> — однозначная [[аналитическая функция]], определённая на всей комплексной плоскости за исключением разреза вдоль положительной вещественной оси.
Фиксируем также и главную ветвь аргумента: <math>-\pi<\operatorname{arg}z\le\pi</math> и далее будем считать, что <math>\operatorname{Ei}</math> — однозначная [[аналитическая функция]], определённая на всей комплексной плоскости за исключением разреза вдоль положительной вещественной оси.


== Возникновение <math>\operatorname{Ei}</math> при вычислении интегралов ==
== Возникновение Ei при вычислении интегралов ==
Интеграл от произвольной рациональной функции, помноженной на экспоненту, выражается в конечном виде через функцию <math>\operatorname{Ei}</math> и элементарные функции.<ref name="Lebedev" />
Интеграл от произвольной рациональной функции, помноженной на экспоненту, выражается в конечном виде через функцию <math>\operatorname{Ei}</math> и элементарные функции.<ref name="Lebedev" />


Строка 89: Строка 89:
Следует заметить, что вычисление подобных интегралов (в особенности при комплексных значениях параметров) опасно доверять
Следует заметить, что вычисление подобных интегралов (в особенности при комплексных значениях параметров) опасно доверять
коммерческим системам компьютерной алгебры. Из-за неразберихи с обозначениями (использования символа
коммерческим системам компьютерной алгебры. Из-за неразберихи с обозначениями (использования символа
<math>\operatorname{Ei}</math> вместо <math>\operatorname{Ei}_1</math>) нельзя полностью доверять также и справочникам.
<math>\operatorname{Ei}</math> вместо <math>\operatorname{Ei}_1</math>) нельзя полностью доверять также и справочникам.{{Нет АИ|21|9|2021}}


== См. также ==
== См. также ==
Строка 100: Строка 100:


{{Внешние ссылки}}
{{Внешние ссылки}}

[[Категория:Специальные функции]]
[[Категория:Специальные функции]]

Текущая версия от 19:21, 3 апреля 2024

График функции

Интегральная показательная функция — специальная функция, обозначаемая символом .

Определение на множестве вещественных чисел

[править | править код]

Наиболее распространено следующее определение (см. график):

где есть постоянная Эйлера-Маскерони. Интеграл в смысле главного значения в (1) имеет различные разложения в ряд при положительных и отрицательных x, что затрудняет его аналитическое продолжение на комплексную плоскость [то есть обобщение (1) на случай комплексных значений x]. По этой причине определение (1) представляется ущербным; вместо него более уместно использовать [несовместимое с (1)]

Основное определение

[править | править код]

Интегральная показательная функция — специальная функция, определяемая интегралом[1]

Подобно ряду для экспоненциальной функции, бесконечная сумма в (2) сходится в любой точке комплексной плоскости. Результат интегрирования в (2) зависит не только от , но и от пути интегрирования, а именно, определяется тем, сколько раз путь интегрирования огибает точку , в окрестности которой подынтегральное выражение в (2) приближённо равно . Таким образом, функция является многозначной, а особая точка является логарифмической точкой ветвления. Как и в случае с логарифмической функцией , различие в значениях различных ветвей функции (при фиксированном ) кратно .

Ниже будем рассматривать только главную ветвь (значение) , соответствующую главной ветви в (2). Общепринятый разрез комплексной плоскости для (вдоль отрицательной вещественной оси) соответствует разрезу вдоль положительной вещественной оси для функции . Фиксируем также и главную ветвь аргумента: и далее будем считать, что  — однозначная аналитическая функция, определённая на всей комплексной плоскости за исключением разреза вдоль положительной вещественной оси.

Возникновение Ei при вычислении интегралов

[править | править код]

Интеграл от произвольной рациональной функции, помноженной на экспоненту, выражается в конечном виде через функцию и элементарные функции.[1]

В качестве простого примера интеграла, сводящегося к интегральной показательной функции рассмотрим (предполагая, что )

Из (2) следует, что при вещественных значениях и

где есть т. н. модифицированная интегральная показательная функция[1]:

Фактически (4) совпадает с функцией, определённой в (1), и нередко функцию обозначают символом , что может приводить к ошибкам.

При получении результата (3) было использовано значение интеграла

Интеграл (3) можно рассматривать как вещественную функцию вещественных аргументов и . Логично потребовать, чтобы такая функция выражалась только через вещественные величины. Это требование оправдывает введение дополнительного [вдобавок к уже определённому в (2) ] символа .

Результат (3) несложно обобщить на произвольные (за исключением чисто мнимых) комплексные значения параметра :

Формулу (3) для и можно получить, положив в (5).

Интеграл (5) можно найти на стр. 320 справочника Прудникова[2], однако же приведённое там выражение верно только для действительных значений и при условии, что для функции используется определение (1).

Следует заметить, что вычисление подобных интегралов (в особенности при комплексных значениях параметров) опасно доверять коммерческим системам компьютерной алгебры. Из-за неразберихи с обозначениями (использования символа вместо ) нельзя полностью доверять также и справочникам.[источник не указан 1179 дней]

Примечания

[править | править код]
  1. 1 2 3 Лебедев, Н. Н. Специальные функции и их приложения. — 2. — 1963.
  2. Прудников А. П., Брычков Ю. А., Маричев О. И. Интегралы и ряды. — Изд. 2-е. — М.: ФИЗМАТЛИТ, 2003. — Т. 1. — С. 320,561,622. — ISBN 5-9221-0323-7.