Полимерные солнечные батареи: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Внесена новая секция, отдельные правки устаревших сведений, добавлены ссылки
Нет описания правки
Метки: через визуальный редактор с мобильного устройства из мобильной версии
 
(не показано 28 промежуточных версий 17 участников)
Строка 1: Строка 1:
'''Полимерные солнечные батареи''' — разновидность [[солнечные батареи|солнечных батарей]], которые производят [[электричество]] из солнечного света. Берет свое начало с 1992 года, когда впервые были опубликованы данные о переносе заряда с полпроводникового полимера на [[акцептор (физика)|акцептор]]. <ref> N.S. Sariciftci, L. Smilowitz, A.J. Heeger,F. Wudl, Photoinduced Electron Transfer from Conducting Polymers onto Buckminsterfullerene, Science 258, (1992) 1474</ref> Относительно новая технология, активно исследуемая в университетах, национальных лабораториях и нескольких компаниях по всему миру. Демонстрируются устройства-прототипы с [[Солнечная батарея#Эффективность фотоэлементов и модулей|эффективностью]] конверсии энергии 11,5 %.<ref>[http://www.nrel.gov/ncpv/ NREL Таблица эффективности солнечных батарей]</ref>
'''Полимерные солнечные батареи''' — разновидность [[солнечные батареи|солнечных батарей]], которые производят [[электричество]] из солнечного света. Берёт своё начало с 1992 года, когда впервые были опубликованы данные о переносе заряда с полупроводникового полимера на [[акцептор (физика)|акцептор]].<ref>N.S. Sariciftci, L. Smilowitz, A.J. Heeger,F. Wudl, Photoinduced Electron Transfer from Conducting Polymers onto Buckminsterfullerene, Science 258, (1992) 1474</ref> Относительно новая технология, активно исследуемая в университетах, национальных лабораториях и нескольких компаниях по всему миру. Демонстрируются устройства-прототипы с [[Солнечная батарея#Эффективность фотоэлементов и модулей|эффективностью]] конверсии энергии 17,4 %.<ref>{{Cite web |url=https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20191106.pdf|title=Best Research-Cell Efficiencies|lang=en|access-date=2019-11-16 |archive-date=2019-11-16 |archive-url=https://web.archive.org/web/20191116002055/https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20191106.pdf |deadlink=yes}}</ref> [[Файл:Belectric cell.jpg|thumb|Функциональный прототип производства Beletric OPV]]


== Устройство полимерной солнечной батареи ==
== Устройство полимерной солнечной батареи ==
Полимерные солнечные батареи обычно представляют собой послойно наложенные друг на друга [[тонкие пленки]] из [[полимер]]ных материалов, выполянющие различные функции.<ref>[http://www.energy.dtu.dk/english/Research/Polymer-Solar-Cells Polymer-Solar-Cells]</ref> В зависимости от субстрата, толщина одной батареи может быть от 500 нанометров. <ref>[http://phys.org/news/2012-04-scientists-ultra-thin-solar-cells.html Scientists develop ultra-thin solar cells]</ref> Так, на прозрачную полимерную основу (субстрат), покрытую проводящим слоем [[Оксид индия-олова| оксида индия-олова]], служащую [[электрод]]ом, наносят фотоактивный слой, состоящий из [[Акцептор (физика)|электрон-акцептора]] и [[донор (физика)|электрон-донора]].<ref>[http://plasticphotovoltaics.org/lc/lc-polymersolarcells/lc-layer.html The layer stack]</ref>
Полимерные солнечные батареи обычно представляют собой послойно наложенные друг на друга [[тонкие плёнки]] из [[полимер]]ных материалов, выполняющие различные функции.<ref>{{Cite web |url=http://www.energy.dtu.dk/english/Research/Polymer-Solar-Cells |title=Polymer-Solar-Cells |lang=en|accessdate=2015-09-10 |archiveurl=https://web.archive.org/web/20150919033513/http://www.energy.dtu.dk/english/Research/Polymer-Solar-Cells |archivedate=2015-09-19 |deadlink=yes }}</ref> В зависимости от субстрата, толщина одной батареи может быть от 500 нанометров.<ref>{{Cite web |url=http://phys.org/news/2012-04-scientists-ultra-thin-solar-cells.html |title=Scientists develop ultra-thin solar cells |access-date=2015-09-10 |lang=en|archive-date=2015-04-24 |archive-url=https://web.archive.org/web/20150424201814/http://phys.org/news/2012-04-scientists-ultra-thin-solar-cells.html |deadlink=no }}</ref> Так, на прозрачную полимерную основу (субстрат), покрытую проводящим слоем [[Оксид индия-олова|оксида индия-олова]], служащую [[электрод]]ом, наносят фотоактивный слой, состоящий из [[Акцептор (физика)|электрон-акцептора]] и [[донор (физика)|электрон-донора]].<ref>{{Cite web |url=http://plasticphotovoltaics.org/lc/lc-polymersolarcells/lc-layer.html |title=The layer stack |lang=en|access-date=2015-09-10 |archive-date=2015-09-20 |archive-url=https://web.archive.org/web/20150920084121/http://plasticphotovoltaics.org/lc/lc-polymersolarcells/lc-layer.html |deadlink=no }}</ref>


Есть два типа фотоактивных слоев:
Есть два типа фотоактивных слоев:
* Объемный гетеропереход (Твердофазная [[смесь (химия)|смесь]] двух материалов);<ref>Yu, G.; Pakbaz, K.; Heeger, A. J. Appl. Phys. Lett. 1994, 64 (25), 3422–3424.</ref> [[Файл:Solar cell Russian.png|thumb|Полимерная солнечная батарея стандартной архитектуры]]
* Объемный гетеропереход (Твердофазная [[смесь (химия)|смесь]] двух материалов);<ref>Yu, G.; Pakbaz, K.; Heeger, A. J. Appl. Phys. Lett. 1994, 64 (25), 3422–3424.</ref><ref>{{Cite web|url=http://worldofmaterials.ru/233-perspektivnaya-alternativa-polimernye-solnechnye-batarei |title=Мир современных материалов - Перспективная альтернатива: полимерные солнечные батареи|lang=ru|access-date=2015-09-13|archive-date=2016-06-11 |archive-url=https://web.archive.org/web/20160611130606/http://worldofmaterials.ru/233-perspektivnaya-alternativa-polimernye-solnechnye-batarei |deadlink=no }}</ref>
* Два отдельных слоя [[Акцептор (физика)|электрон-ацептора]] и [[донор (физика)|электрон-донора]], нанесенные последовательно.
* Два отдельных слоя [[Акцептор (физика)|электрон-акцептора]] и [[донор (физика)|электрон-донора]], нанесённые последовательно.


Поверх фотоактивного слоя раполагается металлический [[электрод]], [[кальций|кальциевый]], [[алюминий|алюминиевый]] или [[серебро|серебряный]], в зависимости от архитектуры батареи. В современных образцах между фотоактивных слоем и электродами помещают дополнительные слои: [[электрон]]-проводящие или [[дырка|дырко]]-проводящие, или соответственно [[электрон]]-блокирующие и [[дырка|дырко]]-блокирующие. Расположение этих слоев относительно фотоактивного слоя определяется архитектурой батареи.<ref>Litzov I., Brabec C.Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces. Materials 2013, 6, 5796-5820</ref>
Поверх фотоактивного слоя располагается металлический [[электрод]], [[кальций|кальциевый]], [[алюминий|алюминиевый]] или [[серебро|серебряный]], в зависимости от архитектуры батареи. В современных образцах между фотоактивных слоем и электродами помещают дополнительные слои: [[электрон]]-проводящие или [[дырка|дырко]]-проводящие, или соответственно [[электрон]]-блокирующие и [[дырка|дырко]]-блокирующие. Расположение этих слоев относительно фотоактивного слоя определяется архитектурой батареи.<ref>Litzov I., Brabec C.Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces. Materials 2013, 6, 5796-5820</ref>


Архитектура батареи бывает двух типов: прямая (стандартная) или обратная (перевернутая). В перевернутой, как следует из названия, [[электрический заряд|электрические заряды]] экстрагируются противоположными электродами. Так, исследования показали, что у батарей стандартной архитектуры [[Солнечная батарея#Эффективность фотоэлементов и модулей|эффективность]] выше, чем у перевернутых, однако стабильность ниже. Низкая стабильность обусловлена тем фактом, что в стандартных батареях в качестве электрода используется [[кальций]], который быстро [[окисление|окисляется]] на воздухе до [[кальция оксид]]а, который имеет худшую [[проводимость]]. В свою очередь, обратная архитектура позволяет использовать в качестве электродов [[серебро]] и [[золото]], более устойчивые к окислению.<ref>[http://plasticphotovoltaics.org/lc/lc-degradation/lc-spe/lc-spec-elec.html Electrodes]</ref>
Архитектура батареи бывает двух типов: прямая (стандартная) или обратная (перевернутая). В перевернутой, как следует из названия, [[электрический заряд|электрические заряды]] экстрагируются противоположными электродами. Так, исследования показали, что у батарей стандартной архитектуры [[Солнечная батарея#Эффективность фотоэлементов и модулей|эффективность]] выше, чем у перевернутых, однако стабильность ниже.[[Файл:Solar cell Russian.png|thumb|Полимерная солнечная батарея стандартной архитектуры]] Низкая стабильность обусловлена тем фактом, что в стандартных батареях в качестве электрода используется [[кальций]], который быстро [[окисление|окисляется]] на воздухе до [[кальция оксид]]а, который имеет худшую [[проводимость]]. В свою очередь, обратная архитектура позволяет использовать в качестве электродов [[серебро]] и [[золото]], более устойчивые к окислению.<ref>{{Cite web |url=http://plasticphotovoltaics.org/lc/lc-degradation/lc-spe/lc-spec-elec.html |title=Electrodes|lang=en|access-date=2015-09-10 |archive-date=2015-09-20 |archive-url=https://web.archive.org/web/20150920031134/http://plasticphotovoltaics.org/lc/lc-degradation/lc-spe/lc-spec-elec.html |deadlink=no }}</ref>


Для улучшения экстракции электронов в перевернутых батареях часто используют прозрачные проводящие оксиды, такие как [[Оксид титана(IV)|титана оксид]] и [[цинка оксид]], часто в виде [[наночастица|наночастиц]] или наноструктурированных пленок. В последнее время больше внимания уделяется исследованиям других слоев, способных улучшать экстракцию электронов, в том числе полимерных.
Для улучшения экстракции электронов в перевернутых батареях часто используют прозрачные проводящие оксиды, такие как [[Оксид титана(IV)|титана оксид]] и [[цинка оксид]], часто в виде [[наночастица|наночастиц]] или наноструктурированных плёнок. В последнее время больше внимания уделяется исследованиям других слоев, способных улучшать экстракцию электронов, в том числе полимерных.


Для улучшения экстракции дырок применяются прозрачные проводящие [[полимеры]], например смесь поли(3,4-этилендиокситиофена) и полистиролсульфоната (PEDOT:PSS) или другие проводящие оксиды с более подходящими для жтого электронными уровнями, такие как [[Оксид ванадия(V)|ванадия оксид]], [[молибдена оксид]]. В последнее время все больший интерес вызывают полупроводники на основе [[графен]]а и графена оксида.
Для улучшения экстракции дырок применяются прозрачные проводящие [[полимеры]], например смесь поли(3,4-этилендиокситиофена) и полистиролсульфоната (PEDOT:PSS) или другие проводящие оксиды с более подходящими для этого электронными уровнями, такие как [[Оксид ванадия(V)|ванадия оксид]], [[Оксид молибдена(VI)|молибдена оксид]]. В последнее время все больший интерес вызывают полупроводники на основе [[графен]]а и графена оксида.

== Физические процессы в полимерных батареях ==

=== Поглощение света ===
В полимерных солнечных батареях фотоактивный слой состоит из двух типов материалов: [[донор (физика)|донора]] и [[акцептор (физика)|акцептора]]. При попадании [[свет]]а на поверхность батареи, донор (обычно сопряжённый [[полимер]]) поглощает [[фотон]] света. [[Длина волны]] (т.е. энергия) этого [[фотон]]а зависит напрямую от [[химия|химической]] структуры донора и его организации в [[полимерные плёнки|плёнке слоя]] (например, кристалличности). Поглощённая [[энергия]] [[фотон]]а возбуждает [[электрон]] из [[Энергетический уровень|основного состояния]] в [[Возбуждение (физика)|возбуждённое состояние]], или из верхней занятой [[Теория молекулярных орбиталей|молекулярной орбитали]] (англ. HOMO) до низшей свободной [[Теория молекулярных орбиталей|молекулярной орбитали]] (англ. LUMO).<ref>{{Cite web |url=http://plasticphotovoltaics.org/lc/lc-polymersolarcells/lc-how.html |title=How do polymer solar cells work |lang=en|access-date=2015-09-13 |archive-date=2015-09-20 |archive-url=https://web.archive.org/web/20150920083724/http://plasticphotovoltaics.org/lc/lc-polymersolarcells/lc-how.html |deadlink=no }}</ref>

=== Экситон ===
Полученная в результате такого возбуждения квазичастица называется [[экситон]] Френкеля и состоит из [[дырка|дырки]] (то есть отсутствия электрона, положительного [[Электрический заряд|заряда]]) и возбуждённого электрона (отрицательного [[Электрический заряд|заряда]]).<ref>{{Cite web |url=http://ecoportal.su/news.php?id=62636 |title=Улавливание лучей: органические солнечные батареи делают прыжок вперед |lang=ru|access-date=2015-09-13 |archive-date=2014-07-09 |archive-url=https://web.archive.org/web/20140709040915/http://ecoportal.su/news.php?id=62636 |deadlink=no }}</ref> Экситон не имеет [[Электрический заряд|заряда]] и не может служить носителем, однако может перемещаться по сопряжённой системе донора. В зависимости от [[спин]]ового состояния [[экситон]]ы могут быть [[синглетное состояние|синглетными]] и [[триплетное состояние|триплетными]]. Срок жизни синглетного экситона составляет наносекунды, а триплетного около миллисекунды или больше. При определённых условиях синглетный экситон может перейти в триплет.<ref>[http://sfiz.ru/page.php?al=energiju_mozhno_peredava Энергию можно передавать с помощью триплетных экситонов]</ref>

Экситон перемещается в системе донора не далее 5-20 нм, в зависимости от вида полимера. Далее он имеет две возможности:
*[[Диссоциация (химия)|Диссоциировать]] и разделиться на отдельные положительный и отрицательный заряды, если экситон встретит на своём пути акцептор;
*Распасться с излучением поглощённой энергии (путём [[фосфоресценция|фосфоресценции]] или [[люминесценция|люминесценции]], в зависимости от типа экситона), если ближайшая молекула донора расположена за пределами возможной длины перемещения экситона.

Для полимерных солнечных батарей последний путь представляет собой потерю эффективности: важны только [[экситон]]ы, которые могут диссоциировать. Энергия сопряжения [[дырка|дырки]] и [[электрон]]а в [[экситон]]е в полимерных системах очень высока, около 0,5-1 [[Электронвольт|эВ]] и поэтому при комнатной температуре [[термодинамика|термодинамической составляющей]] недостаточно, чтобы разделить [[экситон]] на [[Электрический заряд|заряды]].<ref>{{Cite web |url=http://femto.com.ua/articles/part_2/4626.html |title=Экситон |lang=ru|access-date=2015-09-13 |archive-date=2015-03-30 |archive-url=https://web.archive.org/web/20150330071915/http://www.femto.com.ua/articles/part_2/4626.html |deadlink=no }}</ref> Поэтому для разделения экситона важны два аспекта: отсутствие порядка в системе (англ. disorder) и присутствие второго компонента, акцептора.

Низшая свободная молекулярная орбиталь акцептора должна иметь меньшую энергию, чтобы инициировать диссоциацию экситона и облегчить переход электрона на молекулы акцептора. Так, диссоциация экситона происходит на границе двух фаз: донора и акцептора, поэтому эффективность диссоциации экситонов намного выше в системах со смешанными фазами.<ref>{{Cite web |url=http://ko.com.ua/orientaciya_molekul_opredelyaet_jeffektivnost_organicheskih_solnechnyh_batarej_104682 |title=Ориентация молекул определяет эффективность органических солнечных батарей |lang=ru|access-date=2015-09-13 |archive-date=2017-07-05 |archive-url=https://web.archive.org/web/20170705082210/http://ko.com.ua/orientaciya_molekul_opredelyaet_jeffektivnost_organicheskih_solnechnyh_batarej_104682 |deadlink=no }}</ref> Качество границ двух фаз, так называемого интерфейса, во многом определяет эффективность батареи, в особенности [[сила тока|силу генерируемого тока]]. При диссоциации экситона, электрон переходит на акцептор, а дырка остается в фазе донора.

=== Комплекс переноса заряда ===
Однако, после диссоциации дырка и электрон не являются отдельными зарядами. Они пребывают на границе раздела фаз в связанном состоянии в виде так называемого переходного комплекса или комплекса переноса заряда ([[Английский язык|англ]]. charge transfer complex), состоящий из электрона и дырки, все ещё связанных между собой, но с меньшей энергией, чем в экситоне.<ref>[http://ac.els-cdn.com/S0079670013000427/1-s2.0-S0079670013000427-main.pdf?_tid=bb490996-5a56-11e5-b6dc-00000aab0f02&acdnat=1442176606_1d69d82f9dbbffd33cfa1705ab08fce5|Scharber, M. C.; Sariciftci, N. S. Prog. Polym. Sci. 2013, 38 (12), 1929–1940. Open Access]{{Недоступная ссылка|date=Февраль 2020 |bot=InternetArchiveBot }}</ref> Такой комплекс может или разделиться окончательно под действием внутреннего поля (определяемого разницей в энергетических уровнях донора и акцептора) или же [[Рекомбинация (физика полупроводников)|рекомбинировать]] (объединиться в электрон на основном уровне без выделения энергии путём [[Электромагнитное излучение|излучения]]).<ref>{{Cite web |url=http://dssp.petrsu.ru/p/tutorial/ftt/Part11/part11.3.htm |title=11.3. Генерация и рекомбинация в полупроводниках и диэлектриках |lang=ru|accessdate=2015-09-13 |archiveurl=https://web.archive.org/web/20151126232011/http://dssp.petrsu.ru/p/tutorial/ftt/Part11/part11.3.htm |archivedate=2015-11-26 |deadlink=yes }}</ref> Подобная рекомбинация называется сдвоенной (geminate), потому что оба рекомбинирующих партнёра имеют общее происхождение (из одного и того же экситона).

=== Транспорт электронов ===
Если же электрону и дырке удалось разделиться, то они перемещаются до [[электрод]]ов, где [[экстракция электронов|экстрагируются]] соответствующими электродами. Электрон перемещается по фазе акцептора до [[катод]]а, а дырка – по фазе донора до [[анод]]а. Если на своём пути отдельные заряды встречают противоположный заряд, который не попал к электроду по каким-то причинам, то они также рекомбинируют.<ref>{{Cite web |url=http://femto.com.ua/articles/part_1/0718.html |title=Генерация носителей заряда.|lang=ru|access-date=2015-09-13 |archive-date=2016-03-11 |archive-url=https://web.archive.org/web/20160311030849/http://femto.com.ua/articles/part_1/0718.html |deadlink=no }}</ref> Такая [[Рекомбинация (физика полупроводников)|рекомбинация]] называется не-сдвоенная, потому что рекомбинирующие электрон и дырка имеют различное происхождения (из разных экситонов). Рекомбинация зарядов является одним из факторов, ограничивающих эффективность солнечных батарей, так как рекомбинированные заряды не могут быть экстрагированы.<ref>{{Cite web |url=http://foez.narod.ru/16.htm|title=Процессы рекомбинации неравновесных носителей тока в полупроводниках|lang=ru|access-date=2015-09-13 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304135243/http://foez.narod.ru/16.htm |deadlink=no }}</ref>
Поскольку для успешного транспорта зарядов каждая фаза должна быть непрерывной во всем фотоактивном слое, чтобы заряд беспрепятственно добрался до электродов, наилучшая экстракция наблюдается в батареях, где слой акцептора нанесен на слой донора без перемешивания. Однако для диссоциации экситонов такой подход неэффективен из-за маленькой границы раздела фаз.

Так, оптимальная морфология фотоактивного слоя представляет собой компромисс между транспортом электронов и диссоциацией экситонов на границе фаз. Оптимальная морфология слоя зависит от большого числа факторов: химической структуры донора и акцептора, их термических свойств, температуры и растворителя, а также метода получения слоя.<ref>{{Cite web |url=http://www.nafigate.com/ru/section/portal/app/news/detail/70376 |title=Более эффективные солнечные батареи |lang=ru |accessdate=2015-09-13 |archiveurl=https://web.archive.org/web/20160304140319/http://www.nafigate.com/ru/section/portal/app/news/detail/70376 |archivedate=2016-03-04 |deadlink=yes }}</ref><ref>{{Cite web |url=http://econet.ru/articles/63106-organicheskie-solnechnye-batarei |title=Органические солнечные батареи|lang=ru|access-date=2015-09-13 |archive-date=2016-07-20 |archive-url=https://web.archive.org/web/20160720140450/http://econet.ru/articles/63106-organicheskie-solnechnye-batarei |deadlink=no }}</ref><ref>{{Cite web |url=http://worldofmaterials.ru/172-raskryt-sekret-povysheniya-effektivnosti-solnechnykh-elementov |title=Раскрыт секрет повышения эффективности солнечных элементов|lang=ru|access-date=2015-09-13 |archive-date=2016-06-11 |archive-url=https://web.archive.org/web/20160611112924/http://worldofmaterials.ru/172-raskryt-sekret-povysheniya-effektivnosti-solnechnykh-elementov |deadlink=no }}</ref>


== Сравнение с кремниевыми батареями ==
== Сравнение с кремниевыми батареями ==
В сравнении с устройствами, основанными на кремниевой технологии, полимерные солнечные батареи легки (что важно для автономных датчиков малых размеров), доступны, недороги в производстве, гибки, оказывают незначительное влияние на окружающую среду, однако энергетический выход едва достигает одной четверти обычных кремниевых солнечных батарей.<ref>[http://electrik.info/main/news/416-polimernye-solnechnye-batarei.html Полимерные солнечные батареи]</ref><ref>[http://altenergiya.ru/sun/mnogoobrazie-vidov-solnechnyx-panelej.html#h2_2 Разбираемся в многообразии видов солнечных панелей]</ref> Полимерные солнечные батареи также страдают значительным эффектом деградации: их эффективность снижается под воздействием окружающей среды. Хорошие защитные покрытия до сих пор не разработаны.
В сравнении с устройствами, основанными на кремниевой технологии, полимерные солнечные батареи легки (что важно для автономных датчиков малых размеров), доступны, недороги в производстве, гибки, оказывают незначительное влияние на окружающую среду, однако энергетический выход едва достигает одной четверти обычных кремниевых солнечных батарей.<ref>[electrik.info/main/news/416-polimernye-solnechnye-batarei.html Полимерные солнечные батареи]</ref><ref>{{Cite web |url=http://altenergiya.ru/sun/mnogoobrazie-vidov-solnechnyx-panelej.html#h2_2 |title=Разбираемся в многообразии видов солнечных панелей |lang=ru|access-date=2015-09-10 |archive-date=2015-10-02 |archive-url=https://web.archive.org/web/20151002032015/http://altenergiya.ru/sun/mnogoobrazie-vidov-solnechnyx-panelej.html#h2_2 |deadlink=no }}</ref> Полимерные солнечные батареи также страдают значительным эффектом деградации: их эффективность снижается под воздействием окружающей среды. Хорошие защитные покрытия до сих пор не разработаны.


Открытым вопросом остаётся степень коммерческой конкуренции с кремниевыми солнечными батареями. Несмотря на то, что полимерные ячейки относительно дёшевы в производстве, индустрия кремниевых солнечных батарей имеет важное промышленное преимущество, будучи способной использовать кремниевую инфраструктуру, развитую для компьютерной индустрии. Однако, производители солнечных батарей находятся в невыгодном положении, поскольку вынуждены конкурировать с более крупной компьютерной индустрией в снабжении высококачественным кремнием.
Открытым вопросом остаётся степень коммерческой конкуренции с кремниевыми солнечными батареями. Несмотря на то, что полимерные ячейки относительно дёшевы в производстве, индустрия кремниевых солнечных батарей имеет важное промышленное преимущество, будучи способной использовать кремниевую инфраструктуру, развитую для компьютерной индустрии. Однако, производители солнечных батарей находятся в невыгодном положении, поскольку вынуждены конкурировать с более крупной компьютерной индустрией в снабжении высококачественным кремнием.
Строка 32: Строка 58:
== Ссылки ==
== Ссылки ==
{{reflist}}
{{reflist}}
*[http://postnauka.ru/video/12085 Органические солнечные батареи (видео)]
*[http://postnauka.ru/video/12085 Органические солнечные батареи (видео)] {{Wayback|url=http://postnauka.ru/video/12085 |date=20150814010144 }}
*
*


[[Категория:Солнечные батареи]]


{{спам-ссылки|1=
[[Категория:Солнечная энергия]]
* electrik.info
}}

Текущая версия от 18:59, 4 июля 2024

Полимерные солнечные батареи — разновидность солнечных батарей, которые производят электричество из солнечного света. Берёт своё начало с 1992 года, когда впервые были опубликованы данные о переносе заряда с полупроводникового полимера на акцептор.[1] Относительно новая технология, активно исследуемая в университетах, национальных лабораториях и нескольких компаниях по всему миру. Демонстрируются устройства-прототипы с эффективностью конверсии энергии 17,4 %.[2]

Функциональный прототип производства Beletric OPV

Устройство полимерной солнечной батареи

[править | править код]

Полимерные солнечные батареи обычно представляют собой послойно наложенные друг на друга тонкие плёнки из полимерных материалов, выполняющие различные функции.[3] В зависимости от субстрата, толщина одной батареи может быть от 500 нанометров.[4] Так, на прозрачную полимерную основу (субстрат), покрытую проводящим слоем оксида индия-олова, служащую электродом, наносят фотоактивный слой, состоящий из электрон-акцептора и электрон-донора.[5]

Есть два типа фотоактивных слоев:

Поверх фотоактивного слоя располагается металлический электрод, кальциевый, алюминиевый или серебряный, в зависимости от архитектуры батареи. В современных образцах между фотоактивных слоем и электродами помещают дополнительные слои: электрон-проводящие или дырко-проводящие, или соответственно электрон-блокирующие и дырко-блокирующие. Расположение этих слоев относительно фотоактивного слоя определяется архитектурой батареи.[8]

Архитектура батареи бывает двух типов: прямая (стандартная) или обратная (перевернутая). В перевернутой, как следует из названия, электрические заряды экстрагируются противоположными электродами. Так, исследования показали, что у батарей стандартной архитектуры эффективность выше, чем у перевернутых, однако стабильность ниже.

Полимерная солнечная батарея стандартной архитектуры

Низкая стабильность обусловлена тем фактом, что в стандартных батареях в качестве электрода используется кальций, который быстро окисляется на воздухе до кальция оксида, который имеет худшую проводимость. В свою очередь, обратная архитектура позволяет использовать в качестве электродов серебро и золото, более устойчивые к окислению.[9]

Для улучшения экстракции электронов в перевернутых батареях часто используют прозрачные проводящие оксиды, такие как титана оксид и цинка оксид, часто в виде наночастиц или наноструктурированных плёнок. В последнее время больше внимания уделяется исследованиям других слоев, способных улучшать экстракцию электронов, в том числе полимерных.

Для улучшения экстракции дырок применяются прозрачные проводящие полимеры, например смесь поли(3,4-этилендиокситиофена) и полистиролсульфоната (PEDOT:PSS) или другие проводящие оксиды с более подходящими для этого электронными уровнями, такие как ванадия оксид, молибдена оксид. В последнее время все больший интерес вызывают полупроводники на основе графена и графена оксида.

Физические процессы в полимерных батареях

[править | править код]

Поглощение света

[править | править код]

В полимерных солнечных батареях фотоактивный слой состоит из двух типов материалов: донора и акцептора. При попадании света на поверхность батареи, донор (обычно сопряжённый полимер) поглощает фотон света. Длина волны (т.е. энергия) этого фотона зависит напрямую от химической структуры донора и его организации в плёнке слоя (например, кристалличности). Поглощённая энергия фотона возбуждает электрон из основного состояния в возбуждённое состояние, или из верхней занятой молекулярной орбитали (англ. HOMO) до низшей свободной молекулярной орбитали (англ. LUMO).[10]

Полученная в результате такого возбуждения квазичастица называется экситон Френкеля и состоит из дырки (то есть отсутствия электрона, положительного заряда) и возбуждённого электрона (отрицательного заряда).[11] Экситон не имеет заряда и не может служить носителем, однако может перемещаться по сопряжённой системе донора. В зависимости от спинового состояния экситоны могут быть синглетными и триплетными. Срок жизни синглетного экситона составляет наносекунды, а триплетного около миллисекунды или больше. При определённых условиях синглетный экситон может перейти в триплет.[12]

Экситон перемещается в системе донора не далее 5-20 нм, в зависимости от вида полимера. Далее он имеет две возможности:

  • Диссоциировать и разделиться на отдельные положительный и отрицательный заряды, если экситон встретит на своём пути акцептор;
  • Распасться с излучением поглощённой энергии (путём фосфоресценции или люминесценции, в зависимости от типа экситона), если ближайшая молекула донора расположена за пределами возможной длины перемещения экситона.

Для полимерных солнечных батарей последний путь представляет собой потерю эффективности: важны только экситоны, которые могут диссоциировать. Энергия сопряжения дырки и электрона в экситоне в полимерных системах очень высока, около 0,5-1 эВ и поэтому при комнатной температуре термодинамической составляющей недостаточно, чтобы разделить экситон на заряды.[13] Поэтому для разделения экситона важны два аспекта: отсутствие порядка в системе (англ. disorder) и присутствие второго компонента, акцептора.

Низшая свободная молекулярная орбиталь акцептора должна иметь меньшую энергию, чтобы инициировать диссоциацию экситона и облегчить переход электрона на молекулы акцептора. Так, диссоциация экситона происходит на границе двух фаз: донора и акцептора, поэтому эффективность диссоциации экситонов намного выше в системах со смешанными фазами.[14] Качество границ двух фаз, так называемого интерфейса, во многом определяет эффективность батареи, в особенности силу генерируемого тока. При диссоциации экситона, электрон переходит на акцептор, а дырка остается в фазе донора.

Комплекс переноса заряда

[править | править код]

Однако, после диссоциации дырка и электрон не являются отдельными зарядами. Они пребывают на границе раздела фаз в связанном состоянии в виде так называемого переходного комплекса или комплекса переноса заряда (англ. charge transfer complex), состоящий из электрона и дырки, все ещё связанных между собой, но с меньшей энергией, чем в экситоне.[15] Такой комплекс может или разделиться окончательно под действием внутреннего поля (определяемого разницей в энергетических уровнях донора и акцептора) или же рекомбинировать (объединиться в электрон на основном уровне без выделения энергии путём излучения).[16] Подобная рекомбинация называется сдвоенной (geminate), потому что оба рекомбинирующих партнёра имеют общее происхождение (из одного и того же экситона).

Транспорт электронов

[править | править код]

Если же электрону и дырке удалось разделиться, то они перемещаются до электродов, где экстрагируются соответствующими электродами. Электрон перемещается по фазе акцептора до катода, а дырка – по фазе донора до анода. Если на своём пути отдельные заряды встречают противоположный заряд, который не попал к электроду по каким-то причинам, то они также рекомбинируют.[17] Такая рекомбинация называется не-сдвоенная, потому что рекомбинирующие электрон и дырка имеют различное происхождения (из разных экситонов). Рекомбинация зарядов является одним из факторов, ограничивающих эффективность солнечных батарей, так как рекомбинированные заряды не могут быть экстрагированы.[18]

Поскольку для успешного транспорта зарядов каждая фаза должна быть непрерывной во всем фотоактивном слое, чтобы заряд беспрепятственно добрался до электродов, наилучшая экстракция наблюдается в батареях, где слой акцептора нанесен на слой донора без перемешивания. Однако для диссоциации экситонов такой подход неэффективен из-за маленькой границы раздела фаз.

Так, оптимальная морфология фотоактивного слоя представляет собой компромисс между транспортом электронов и диссоциацией экситонов на границе фаз. Оптимальная морфология слоя зависит от большого числа факторов: химической структуры донора и акцептора, их термических свойств, температуры и растворителя, а также метода получения слоя.[19][20][21]

Сравнение с кремниевыми батареями

[править | править код]

В сравнении с устройствами, основанными на кремниевой технологии, полимерные солнечные батареи легки (что важно для автономных датчиков малых размеров), доступны, недороги в производстве, гибки, оказывают незначительное влияние на окружающую среду, однако энергетический выход едва достигает одной четверти обычных кремниевых солнечных батарей.[22][23] Полимерные солнечные батареи также страдают значительным эффектом деградации: их эффективность снижается под воздействием окружающей среды. Хорошие защитные покрытия до сих пор не разработаны.

Открытым вопросом остаётся степень коммерческой конкуренции с кремниевыми солнечными батареями. Несмотря на то, что полимерные ячейки относительно дёшевы в производстве, индустрия кремниевых солнечных батарей имеет важное промышленное преимущество, будучи способной использовать кремниевую инфраструктуру, развитую для компьютерной индустрии. Однако, производители солнечных батарей находятся в невыгодном положении, поскольку вынуждены конкурировать с более крупной компьютерной индустрией в снабжении высококачественным кремнием.

Эффективность остаётся проблемой для этого типа технологии. Традиционные кремниевые батареи достигают эффективности 20 % и более. Наивысшая эффективность достигнута для солнечных батарей, используемых для питания космических спутников. Такие батареи демонстрируют эффективность до 40 %, что, соответственно, в два раза выше, чем имеют «наземные» батареи.

Другие солнечные батареи третьего поколения

[править | править код]
  1. N.S. Sariciftci, L. Smilowitz, A.J. Heeger,F. Wudl, Photoinduced Electron Transfer from Conducting Polymers onto Buckminsterfullerene, Science 258, (1992) 1474
  2. Best Research-Cell Efficiencies (англ.). Дата обращения: 16 ноября 2019. Архивировано из оригинала 16 ноября 2019 года.
  3. Polymer-Solar-Cells (англ.). Дата обращения: 10 сентября 2015. Архивировано из оригинала 19 сентября 2015 года.
  4. Scientists develop ultra-thin solar cells (англ.). Дата обращения: 10 сентября 2015. Архивировано 24 апреля 2015 года.
  5. The layer stack (англ.). Дата обращения: 10 сентября 2015. Архивировано 20 сентября 2015 года.
  6. Yu, G.; Pakbaz, K.; Heeger, A. J. Appl. Phys. Lett. 1994, 64 (25), 3422–3424.
  7. Мир современных материалов - Перспективная альтернатива: полимерные солнечные батареи. Дата обращения: 13 сентября 2015. Архивировано 11 июня 2016 года.
  8. Litzov I., Brabec C.Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces. Materials 2013, 6, 5796-5820
  9. Electrodes (англ.). Дата обращения: 10 сентября 2015. Архивировано 20 сентября 2015 года.
  10. How do polymer solar cells work (англ.). Дата обращения: 13 сентября 2015. Архивировано 20 сентября 2015 года.
  11. Улавливание лучей: органические солнечные батареи делают прыжок вперед. Дата обращения: 13 сентября 2015. Архивировано 9 июля 2014 года.
  12. Энергию можно передавать с помощью триплетных экситонов
  13. Экситон. Дата обращения: 13 сентября 2015. Архивировано 30 марта 2015 года.
  14. Ориентация молекул определяет эффективность органических солнечных батарей. Дата обращения: 13 сентября 2015. Архивировано 5 июля 2017 года.
  15. M. C.; Sariciftci, N. S. Prog. Polym. Sci. 2013, 38 (12), 1929–1940. Open Access (недоступная ссылка)
  16. 11.3. Генерация и рекомбинация в полупроводниках и диэлектриках. Дата обращения: 13 сентября 2015. Архивировано из оригинала 26 ноября 2015 года.
  17. Генерация носителей заряда. Дата обращения: 13 сентября 2015. Архивировано 11 марта 2016 года.
  18. Процессы рекомбинации неравновесных носителей тока в полупроводниках. Дата обращения: 13 сентября 2015. Архивировано 4 марта 2016 года.
  19. Более эффективные солнечные батареи. Дата обращения: 13 сентября 2015. Архивировано из оригинала 4 марта 2016 года.
  20. Органические солнечные батареи. Дата обращения: 13 сентября 2015. Архивировано 20 июля 2016 года.
  21. Раскрыт секрет повышения эффективности солнечных элементов. Дата обращения: 13 сентября 2015. Архивировано 11 июня 2016 года.
  22. [electrik.info/main/news/416-polimernye-solnechnye-batarei.html Полимерные солнечные батареи]
  23. Разбираемся в многообразии видов солнечных панелей. Дата обращения: 10 сентября 2015. Архивировано 2 октября 2015 года.