Фуллерен: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
м откат правок 37.73.59.139 (обс.) к версии Wikisaurus
Метка: откат
стилевые правки
 
(не показано 6 промежуточных версий 5 участников)
Строка 2: Строка 2:
[[Файл:Buckminsterfullerene animated.gif|thumb|Вид вращающегося бакибола C<sub>60</sub>.]]
[[Файл:Buckminsterfullerene animated.gif|thumb|Вид вращающегося бакибола C<sub>60</sub>.]]
[[Файл:Fullerene c540.png|thumb|Фуллерен C<sub>540</sub>]]
[[Файл:Fullerene c540.png|thumb|Фуллерен C<sub>540</sub>]]
'''Фуллере́н''' — молекулярное соединение, представляющее собой {{нет АИ2|выпуклые замкнутые многогранники, составленные из трёхкоординированных [[атом]]ов [[углерод]]а.|4|1|2019}} Своим названием фуллерены обязаны инженеру и архитектору [[Фуллер, Ричард Бакминстер|Ричарду Бакминстеру Фуллеру]], чьи [[Геодезический купол|геодезические конструкции]] построены по этому принципу. {{нет АИ2|Первоначально данный класс соединений был ограничен лишь структурами, включающими только пяти- и шестиугольные грани.|4|1|2019}} Заметим, что для существования такого замкнутого многогранника, построенного из ''n'' вершин, образующих только пяти- и шестиугольные грани, согласно [[теорема Эйлера для многогранников|теореме Эйлера для многогранников]], утверждающей справедливость равенства <math>|n|-|e|+|f| = 2</math> (где <math>|n|, |e|</math> и <math>|f|</math> соответственно количество вершин, ребер и граней), необходимым условием является наличие ровно 12 пятиугольных граней и <math>n/2-10</math> шестиугольных граней. Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются [[эндоэдральные фуллерены|эндоэдральными]], если снаружи — экзоэдральными<ref>Сидоров Л. Н., Иоффе И. Н. [https://web.archive.org/web/20060116232353/http://journal.issep.rssi.ru/articles/pdf/0108_030.pdf Эндоэдральные фуллерены] // [[Соросовский образовательный журнал]], 2001, № 8, с.31</ref>.
'''Фуллере́н''' — молекулярное соединение, представляющее собой выпуклые замкнутые многогранники, составленные из трёхкоординированных [[атом]]ов [[углерод]]а. [[Прорыв года (Science)|Молекула года]] (1991)<ref>{{статья |заглавие=Molecule of the Year |издание=[[Science]] |том=254 |номер=5039 |страницы=1705 |doi=10.1126/science.254.5039.1705 |bibcode=1991Sci...254.1705K |язык=en |автор=D. E. Koshland, Jr. |год=1991 |тип=journal}}</ref>
Своим названием фуллерены обязаны инженеру и архитектору [[Фуллер, Ричард Бакминстер|Ричарду Бакминстеру Фуллеру]], чьи [[Геодезический купол|геодезические конструкции]] построены по этому принципу. Первоначально данный класс соединений был ограничен лишь структурами, включающими только пяти- и шестиугольные грани. Заметим, что для существования такого замкнутого многогранника, построенного из ''n'' вершин, образующих только пяти- и шестиугольные грани, согласно [[теорема Эйлера для многогранников|теореме Эйлера для многогранников]], утверждающей справедливость равенства <math>|n|-|e|+|f| = 2</math> (где <math>|n|, |e|</math> и <math>|f|</math> соответственно количество вершин, ребер и граней), необходимым условием является наличие ровно 12 пятиугольных граней и <math>n/2-10</math> шестиугольных граней. Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются [[эндоэдральные фуллерены|эндоэдральными]], если снаружи — экзоэдральными<ref>Сидоров Л. Н., Иоффе И. Н. [https://web.archive.org/web/20060116232353/http://journal.issep.rssi.ru/articles/pdf/0108_030.pdf Эндоэдральные фуллерены] // [[Соросовский образовательный журнал]], 2001, № 8, с.31</ref>.


В природном виде содержатся в [[шунгит]]е и морском воздухе.
В природном виде содержатся в [[шунгит]]е и морском воздухе.


== История открытия ==
== История открытия ==
В [[1985 год]]у группа исследователей — [[Кёрл, Роберт|Роберт Кёрл]], [[Крото, Харольд|Харольд Крото]], [[Смолли, Ричард|Ричард Смолли]]<ref name=nano1>{{cite web|last = Слюсар|first = В.И.|title = Наноантенны: подходы и перспективы. - C. 58 - 65. | work = Электроника: наука, технология, бизнес. – 2009. - № 2. | date = 2009 |pages = C. 58 | url = http://www.electronics.ru/files/article_pdf/0/article_178_132.pdf}}</ref>, Хис и О’Брайен — исследовали масс-спектры паров графита, полученных при лазерном облучении ([[Лазерная абляция|абляции]]) твёрдого образца, и обнаружили пики с максимальной амплитудой, соответствующие [[Кластер (химия)|кластерам]], состоящим из 60 и 70 атомов углерода<ref>Kroto H. W., Heath J. R., O’Brien S. C., et. al. C<sub>60</sub>: Buckminsterfullerene // Nature 318, 162 (1985) {{DOI|10.1038/318162a0}}</ref>. Они предположили, что данные пики отвечают молекулам С<sub>60</sub> и С<sub>70</sub> и выдвинули гипотезу, что молекула С<sub>60</sub> имеет форму [[усечённый икосаэдр|усечённого икосаэдра]] симметрии I<sub>h</sub>. Полиэдрические кластеры углерода получили название '''фуллеренов''', а наиболее распространённая молекула С<sub>60</sub> — {{iw|бакминстерфуллерен|бакминстерфуллерена|en|buckminsterfullerene}} (также её называют '''бакибо́лом''' или '''букибо́лом''', {{lang-en|buckyball}})<ref name=nano1 />, по имени американского архитектора [[Фуллер, Ричард Бакминстер|Бакминстера Фуллера]], применявшего для постройки куполов своих зданий пяти- и шестиугольники, являющиеся основными структурными элементами молекулярных каркасов всех фуллеренов.
В 1985 году группа исследователей — [[Кёрл, Роберт|Роберт Кёрл]], [[Крото, Харольд|Харольд Крото]], [[Смолли, Ричард|Ричард Смолли]]<ref name=nano1>{{cite web|last = Слюсар|first = В.И.|title = Наноантенны: подходы и перспективы. - C. 58 - 65.|work = Электроника: наука, технология, бизнес. – 2009. - № 2.|date = 2009|pages = C. 58|url = http://www.electronics.ru/files/article_pdf/0/article_178_132.pdf|access-date = 2020-06-13|archive-date = 2021-06-03|archive-url = https://web.archive.org/web/20210603073535/https://www.electronics.ru/files/article_pdf/0/article_178_132.pdf|deadlink = no}}</ref>, Хис и О’Брайен — исследовали масс-спектры паров графита, полученных при лазерном облучении ([[Лазерная абляция|абляции]]) твёрдого образца, и обнаружили пики с максимальной амплитудой, соответствующие [[Кластер (химия)|кластерам]], состоящим из 60 и 70 атомов углерода<ref>Kroto H. W., Heath J. R., O’Brien S. C., et. al. C<sub>60</sub>: Buckminsterfullerene // Nature 318, 162 (1985) {{DOI|10.1038/318162a0}}</ref>. Они предположили, что данные пики отвечают молекулам С<sub>60</sub> и С<sub>70</sub> и выдвинули гипотезу, что молекула С<sub>60</sub> имеет форму [[усечённый икосаэдр|усечённого икосаэдра]] симметрии I<sub>h</sub>. Полиэдрические кластеры углерода получили название '''фуллеренов''', а наиболее распространённая молекула С<sub>60</sub> — {{iw|бакминстерфуллерен|бакминстерфуллерена|en|buckminsterfullerene}} (также её называют '''бакибо́лом''' или '''букибо́лом''', {{lang-en|buckyball}})<ref name=nano1 />, по имени американского архитектора [[Фуллер, Ричард Бакминстер|Бакминстера Фуллера]], применявшего для постройки куполов своих зданий пяти- и шестиугольники, являющиеся основными структурными элементами молекулярных каркасов всех фуллеренов.


Следует отметить, что открытие фуллеренов имеет свою предысторию: возможность их существования была предсказана ещё в [[1971 год]]у в Японии<ref>Osawa E. Kagaku (Kyoto), V.25, P.854 (1971); Chem. Abstr. V.74 (1971)</ref> и теоретически обоснована в [[1973 год]]у в [[СССР]]<ref>{{статья|автор=Бочвар Д. А., Гальперн Е. Г.|заглавие=О гипотетических системах: карбододекаэдре, s-икосаэдране и карбо-s-икосаэдре|издание=[[Доклады АН СССР]]|том=209|номер=3|страницы=610|год=1973}}</ref>. За открытие фуллеренов Крото, Смолли и Кёрлу в [[1996 год]]у была присуждена [[Нобелевская премия по химии]]<ref>[http://nobelprize.org/nobel_prizes/chemistry/laureates/1996/ Нобелевская премия по химии за 1996 год]</ref>. Единственным способом получения фуллеренов в настоящий момент (октябрь 2007) является их искусственный синтез. В течение ряда лет эти соединения интенсивно изучали в лабораториях разных стран, пытаясь установить условия их образования, структуру, свойства и возможные сферы применения. Установлено, в частности, что фуллерены в значительном количестве содержатся в [[сажа|саже]], образующейся в [[дуговой разряд|дуговом разряде]] на графитовых электродах<ref name=nano1 /> — их раньше просто не замечали (см. [[#Синтез|ниже]]).
Открытие фуллеренов имеет свою предысторию: возможность их существования была предсказана ещё в 1971 году в Японии<ref>Osawa E. Kagaku (Kyoto), V.25, P.854 (1971); Chem. Abstr. V.74 (1971)</ref> и теоретически обоснована в 1973 году в [[СССР]]<ref>{{статья|автор=Бочвар Д. А., Гальперн Е. Г.|заглавие=О гипотетических системах: карбододекаэдре, s-икосаэдране и карбо-s-икосаэдре|издание=[[Доклады АН СССР]]|том=209|номер=3|страницы=610|год=1973}}</ref>. За открытие фуллеренов Крото, Смолли и Кёрлу в [[1996 год]]у была присуждена [[Нобелевская премия по химии]]<ref>{{Cite web |url=http://nobelprize.org/nobel_prizes/chemistry/laureates/1996/ |title=Нобелевская премия по химии за 1996 год |access-date=2008-03-18 |archive-date=2012-10-19 |archive-url=https://web.archive.org/web/20121019081035/http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/ |deadlink=no }}</ref>. Единственным способом получения фуллеренов в настоящий момент (октябрь 2007) является их искусственный синтез. В течение ряда лет эти соединения интенсивно изучали в лабораториях разных стран, пытаясь установить условия их образования, структуру, свойства и возможные сферы применения. Установлено, в частности, что фуллерены в значительном количестве содержатся в [[сажа|саже]], образующейся в [[дуговой разряд|дуговом разряде]] на графитовых электродах<ref name=nano1 /> — их раньше просто не замечали (см. [[#Синтез|ниже]]).


== Фуллерены в природе ==
== Фуллерены в природе ==
После получения в лабораторных условиях фуллерены были найдены в некоторых образцах [[шунгит]]ов Северной Карелии<ref>''Buseck P.R, Tsipursky S.J, Hettich R.'' [http://www.sciencemag.org/content/257/5067/215.abstract Fullerenes from the Geological Environment] (англ.) // [[Science]]. (1992) 257(5067): 215—217 DOI: 10.1126/science.257.5067.215</ref><ref>''Юшкин Н. П.''. Глобулярная надмолекулярная структура шунгита: данные растровой туннельной микроскопии. // [[Доклады Академии наук|ДАН]]. (1994) 337(6): 800—803.</ref><ref>В. А. ''Резников. Ю. С. Полеховский''. Аморфный шунгитовый углерод — естественная среда образования фуллеренов. // [[Письма в ЖЭТФ]]. (2000) 26(15): 94-102.</ref> в [[фульгурит]]ах США и Индии<ref>''Daly T.K., Buseck P.R., Williams P. and Lewis C.F.'' [http://www.sciencemag.org/content/259/5101/1599.short Fullerenes from a fulgurite](англ.) [[Science]] // (1993) 259: 1599—1601 DOI: 10.1126/science.259.5101.1599</ref>, [[метеорит]]ах<ref>''Buseck P.R''. [http://www.sciencedirect.com/science/article/pii/S0012821X02008191 Geological fullerenes: review and analysis].(англ.) // Earth and Planetary Science Letters. (2002) 203(I 3-4): 781—792 DOI: 10.1016/S0012-821X(02)00819-1</ref> и [[Донные отложения|донных отложениях]], возраст которых достигает 65 миллионов лет<ref>''Parthasarathy G. et al''. Natural fullerenes from the Cretaceous-Tertiary boundary layer at Anjar, Kutch.(англ.) // [http://specialpapers.gsapubs.org/ Geological Society of America Special Papers] (2002) 356: 345—350 DOI:10.1130/0-8137-2356-6.345</ref>.
После получения в лабораторных условиях фуллерены были найдены в некоторых образцах [[шунгит]]ов Северной Карелии<ref>''Buseck P.R, Tsipursky S.J, Hettich R.'' [http://www.sciencemag.org/content/257/5067/215.abstract Fullerenes from the Geological Environment] {{Wayback|url=http://www.sciencemag.org/content/257/5067/215.abstract |date=20140531104728 }} (англ.) // [[Science]]. (1992) 257(5067): 215—217 DOI: 10.1126/science.257.5067.215</ref><ref>''Юшкин Н. П.''. Глобулярная надмолекулярная структура шунгита: данные растровой туннельной микроскопии. // [[Доклады Академии наук|ДАН]]. (1994) 337(6): 800—803.</ref><ref>В. А. ''Резников. Ю. С. Полеховский''. Аморфный шунгитовый углерод — естественная среда образования фуллеренов. // [[Письма в ЖЭТФ]]. (2000) 26(15): 94-102.</ref> в [[фульгурит]]ах США и Индии<ref>''Daly T.K., Buseck P.R., Williams P. and Lewis C.F.'' [http://www.sciencemag.org/content/259/5101/1599.short Fullerenes from a fulgurite] {{Wayback|url=http://www.sciencemag.org/content/259/5101/1599.short |date=20150924144141 }}(англ.) [[Science]] // (1993) 259: 1599—1601 DOI: 10.1126/science.259.5101.1599</ref>, [[метеорит]]ах<ref>''Buseck P.R''. [http://www.sciencedirect.com/science/article/pii/S0012821X02008191 Geological fullerenes: review and analysis] {{Wayback|url=http://www.sciencedirect.com/science/article/pii/S0012821X02008191 |date=20150924152206 }}.(англ.) // Earth and Planetary Science Letters. (2002) 203(I 3-4): 781—792 DOI: 10.1016/S0012-821X(02)00819-1</ref> и [[Донные отложения|донных отложениях]], возраст которых достигает 65 миллионов лет<ref>''Parthasarathy G. et al''. Natural fullerenes from the Cretaceous-Tertiary boundary layer at Anjar, Kutch.(англ.) // [http://specialpapers.gsapubs.org/ Geological Society of America Special Papers] {{Wayback|url=http://specialpapers.gsapubs.org/ |date=20141002221939 }} (2002) 356: 345—350 DOI:10.1130/0-8137-2356-6.345</ref>.


На [[Земля|Земле]] фуллерены образуются при горении [[Природный газ|природного газа]] и разряде [[Молния|молнии]]<ref>''Buseck P.R''. [http://www.sciencedirect.com/science/article/pii/S0012821X02008191 Geological fullerenes: review and analysis]. (англ.)// Earth and Planetary Science Letters. (2002) 203(I 3-4): 781—792 DOI: 10.1016/S0012-821X(02)00819-1<</ref>. Летом 2011 года были опубликованы результаты исследований проб воздуха над [[Средиземное море|Средиземным морем]]: во всех 43 образцах воздуха, взятых от [[Барселона|Барселоны]] до [[Стамбул]]а, были обнаружены фуллерены<ref>''Sanchís J et al.'' [http://pubs.acs.org/doi/abs/10.1021/es200758m?journalCode=esthag Occurrence of aerosol-bound fullerenes in the Mediterranean Sea atmosphere].(англ.) // Environ Sci Technol. (2012). 46(3): 1335-43. DOI: 10.1021/es200758m</ref>.
На [[Земля|Земле]] фуллерены образуются при горении [[Природный газ|природного газа]] и разряде [[Молния|молнии]]<ref>''Buseck P.R''. [http://www.sciencedirect.com/science/article/pii/S0012821X02008191 Geological fullerenes: review and analysis] {{Wayback|url=http://www.sciencedirect.com/science/article/pii/S0012821X02008191 |date=20150924152206 }}. (англ.)// Earth and Planetary Science Letters. (2002) 203(I 3-4): 781—792 DOI: 10.1016/S0012-821X(02)00819-1<</ref>. Летом 2011 года были опубликованы результаты исследований проб воздуха над [[Средиземное море|Средиземным морем]]: во всех 43 образцах воздуха, взятых от [[Барселона|Барселоны]] до [[Стамбул]]а, были обнаружены фуллерены<ref>''Sanchís J et al.'' [http://pubs.acs.org/doi/abs/10.1021/es200758m?journalCode=esthag Occurrence of aerosol-bound fullerenes in the Mediterranean Sea atmosphere] {{Wayback|url=http://pubs.acs.org/doi/abs/10.1021/es200758m?journalCode=esthag |date=20210811000113 }}.(англ.) // Environ Sci Technol. (2012). 46(3): 1335-43. DOI: 10.1021/es200758m</ref>.


Фуллерены в больших количествах были обнаружены и в [[Космос (астрономия)|космосе]]: в 2010 году в виде [[газ]]а<ref>''Cami J. et al.''. [http://www.sciencemag.org/content/329/5996/1180.abstract Detection of C60 and C70 in a Young Planetary Nebula] (англ.)// [[Science]]. (2010) 329(5996): 1180—1182 — DOI: 10.1126/science.1192035</ref>, в 2012 году — в твёрдом виде<ref>''Evans A. et al.'' [http://mnrasl.oxfordjournals.org/content/421/1/L92 Solid-phase C-60 in the peculiar binary XX Oph?] (англ.)[http://mnrasl.oxfordjournals.org/ MNRAS Letters]. (2012) 421(1): L92-L96</ref>.
Фуллерены в больших количествах были обнаружены и в [[Космос (астрономия)|космосе]]: в 2010 году в виде [[газ]]а<ref>''Cami J. et al.''. [http://www.sciencemag.org/content/329/5996/1180.abstract Detection of C60 and C70 in a Young Planetary Nebula] {{Wayback|url=http://www.sciencemag.org/content/329/5996/1180.abstract |date=20140812051723 }} (англ.)// [[Science]]. (2010) 329(5996): 1180—1182 — DOI: 10.1126/science.1192035</ref>, в 2012 году — в твёрдом виде<ref>''Evans A. et al.'' [http://mnrasl.oxfordjournals.org/content/421/1/L92 Solid-phase C-60 in the peculiar binary XX Oph?] {{Wayback|url=http://mnrasl.oxfordjournals.org/content/421/1/L92 |date=20151011232654 }} (англ.)[http://mnrasl.oxfordjournals.org/ MNRAS Letters] {{Wayback|url=http://mnrasl.oxfordjournals.org/ |date=20140922193739 }}. (2012) 421(1): L92-L96</ref>.


== Структурные свойства ==
== Структурные свойства ==
Молекулярное образование углерода в форме [[усечённый икосаэдр]] имеет массу 720 [[Атомная единица массы|а. е. м.]] В молекулах фуллеренов атомы углерода расположены в вершинах шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов — [60]фуллерен (C<sub>60</sub>), в котором углеродные атомы образуют [[усечённый икосаэдр]], состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий [[Футбольный мяч#Конструкция|футбольный мяч]] (как идеальная форма, крайне редко встречающаяся в природе). Так как каждый атом углерода фуллерена С<sub>60</sub> принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С<sub>60</sub> эквивалентны, что подтверждается спектром [[ядерный магнитный резонанс|ядерного магнитного резонанса]] (ЯМР) изотопа <sup>13</sup>С — он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1,39 [[ангстрем|Å]], а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1,44 Å<ref name="bel_budt">Белоусов В. П., Будтов В. П., Данилов О. Б., Мак А. А. Оптический Журнал, т.64, № 12, с.3 (1997)</ref>. Кроме того, связь первого типа двойная, а второго — одинарная, что существенно для химии фуллерена С<sub>60</sub>. В действительности изучение свойств фуллеренов полученных в больших количествах показывают распределение их объективных свойств (химическая и сорбционная активности) на 4 устойчивых изомера фуллерена<ref>* Герасимов В. И. «Изомеры фуллеренов», журнал [http://www.ipme.ru/e-journals/MPM/no_12014/MPM120_04_gerasimov.pdf Физика и механика материалов] ISSN 1605—2730 volume 20 No 1 с.25-31</ref>, свободно определяемые по различному времени выхода из сорбционной колонки жидкостного хроматографа высокого разрешения. При этом атомная масса всех 4-х изомеров равнозначна — имеет массу 720 [[Атомная единица массы|а. е. м.]]
Молекулярное образование углерода в форме [[усечённый икосаэдр]] имеет массу 720 [[Атомная единица массы|а. е. м.]] В молекулах фуллеренов атомы углерода расположены в вершинах шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов — [60]фуллерен (C<sub>60</sub>), в котором углеродные атомы образуют [[усечённый икосаэдр]], состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий [[Футбольный мяч#Конструкция|футбольный мяч]] (как идеальная форма, крайне редко встречающаяся в природе). Так как каждый атом углерода фуллерена С<sub>60</sub> принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С<sub>60</sub> эквивалентны, что подтверждается спектром [[ядерный магнитный резонанс|ядерного магнитного резонанса]] (ЯМР) изотопа <sup>13</sup>С — он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1,39 [[ангстрем|Å]], а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1,44 Å<ref name="bel_budt">Белоусов В. П., Будтов В. П., Данилов О. Б., Мак А. А. Оптический Журнал, т.64, № 12, с.3 (1997)</ref>. Кроме того, связь первого типа двойная, а второго — одинарная, что существенно для химии фуллерена С<sub>60</sub>. В действительности изучение свойств фуллеренов полученных в больших количествах показывают распределение их объективных свойств (химическая и сорбционная активности) на 4 устойчивых изомера фуллерена<ref>* Герасимов В. И. «Изомеры фуллеренов», журнал [http://www.ipme.ru/e-journals/MPM/no_12014/MPM120_04_gerasimov.pdf Физика и механика материалов] {{Wayback|url=http://www.ipme.ru/e-journals/MPM/no_12014/MPM120_04_gerasimov.pdf |date=20150207123937 }} ISSN 16052730 volume 20 No 1 с.25-31</ref>, свободно определяемые по различному времени выхода из сорбционной колонки жидкостного хроматографа высокого разрешения. При этом атомная масса всех четырёх изомеров равнозначна — имеет массу 720 [[Атомная единица массы|а. е. м.]]


Следующим по распространённости является фуллерен C<sub>70</sub>, отличающийся от фуллерена C<sub>60</sub> вставкой пояса из 10 атомов углерода в экваториальную область C<sub>60</sub>, в результате чего молекула 34 является вытянутой и напоминает своей формой мяч для игры в [[регби]].
Следующим по распространённости является фуллерен C<sub>70</sub>, отличающийся от фуллерена C<sub>60</sub> вставкой пояса из 10 атомов углерода в экваториальную область C<sub>60</sub>, в результате чего молекула 34 является вытянутой и напоминает своей формой мяч для игры в [[регби]].
Строка 34: Строка 36:
Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и постоянная работа по улучшению методов их очистки привели к существенному снижению стоимости С<sub>60</sub> за последние 17 лет — с 10 тыс. до 10-15 долл. за грамм<ref name="vul">Вуль А. Я. Материалы электронной техники. № 3. С. 4 (1999)</ref>, что подвело к рубежу их реального промышленного использования.
Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и постоянная работа по улучшению методов их очистки привели к существенному снижению стоимости С<sub>60</sub> за последние 17 лет — с 10 тыс. до 10-15 долл. за грамм<ref name="vul">Вуль А. Я. Материалы электронной техники. № 3. С. 4 (1999)</ref>, что подвело к рубежу их реального промышленного использования.


К сожалению, несмотря на оптимизацию [[Метод Хаффмана — Кретчмера|метода Хаффмана — Кретчмера]] (ХК), повысить выход фуллеренов более 10-20 % от общей массы сожжённого графита не удаётся. Из-за относительно высокой стоимости начального продукта — графита, этот метод имеет принципиальные ограничения. Многие исследователи полагают, что снизить стоимость фуллеренов, получаемых методом ХК, ниже нескольких долларов за грамм не удастся. Поэтому усилия ряда исследовательских групп направлены на поиск альтернативных методов получения фуллеренов. Наибольших успехов в этой области достигла фирма [[Мицубиси]], которой удалось наладить промышленный выпуск фуллеренов методом сжигания [[углеводород]]ов в пламени. Стоимость таких фуллеренов составляет около 5 долл./грамм ([[2005 год]]), что никак не повлияло на стоимость электродуговых фуллеренов.
Несмотря на оптимизацию [[Метод Хаффмана — Кретчмера|метода Хаффмана — Кретчмера]] (ХК), повысить выход фуллеренов более 10-20 % от общей массы сожжённого графита не удаётся. Из-за относительно высокой стоимости начального продукта — графита, этот метод имеет принципиальные ограничения. Многие исследователи полагают, что снизить стоимость фуллеренов, получаемых методом ХК, ниже нескольких долларов за грамм не удастся. Поэтому усилия ряда исследовательских групп направлены на поиск альтернативных методов получения фуллеренов. Наибольших успехов в этой области достигла фирма [[Мицубиси]], которой удалось наладить промышленный выпуск фуллеренов методом сжигания [[углеводород]]ов в пламени. Стоимость таких фуллеренов составляет около 5 долл./грамм (2005 год), что никак не повлияло на стоимость электродуговых фуллеренов.


Необходимо отметить, что высокую стоимость фуллеренов определяет не только их низкий выход при сжигании графита, но и сложность выделения, очистки и разделения фуллеренов различных масс из углеродной сажи. Обычный подход состоит в следующем: сажу, полученную при сжигании графита, смешивают с [[толуол]]ом или другим органическим растворителем (способным эффективно растворять фуллерены), затем смесь фильтруют или отгоняют на [[центрифуга|центрифуге]], а оставшийся раствор выпаривают. После удаления растворителя остается тёмный мелкокристаллический осадок — смесь фуллеренов, называемый обычно фуллеритом. В состав фуллерита входят различные кристаллические образования: мелкие кристаллы из молекул С<sub>60</sub> и С<sub>70</sub> и кристаллы С<sub>60</sub>/С<sub>70</sub>, являются твёрдыми растворами. Кроме того, в фуллерите всегда содержится небольшое количество высших фуллеренов (до 3 %). Разделение смеси фуллеренов на индивидуальные молекулярные фракции производят с помощью [[жидкостная хроматография|жидкостной хроматографии]] на колонках и жидкостной хроматографии высокого давления (ЖХВД). Последняя используется главным образом для анализа чистоты выделенных фуллеренов, так как аналитическая чувствительность метода ЖХВД очень высока (до 0,01 %). Наконец, последний этап — удаление остатков растворителя из твёрдого образца фуллерена. Оно осуществляется путём выдерживания образца при температуре 150—250 °C в условиях динамического вакуума (около 0,1 [[торр]]).
Высокую стоимость фуллеренов определяет не только их низкий выход при сжигании графита, но и сложность выделения, очистки и разделения фуллеренов различных масс из углеродной сажи. Обычный подход состоит в следующем: сажу, полученную при сжигании графита, смешивают с [[толуол]]ом или другим органическим растворителем (способным эффективно растворять фуллерены), затем смесь фильтруют или отгоняют на [[центрифуга|центрифуге]], а оставшийся раствор выпаривают. После удаления растворителя остается тёмный мелкокристаллический осадок — смесь фуллеренов, называемый обычно фуллеритом. В состав фуллерита входят различные кристаллические образования: мелкие кристаллы из молекул С<sub>60</sub> и С<sub>70</sub> и кристаллы С<sub>60</sub>/С<sub>70</sub>, являются твёрдыми растворами. Кроме того, в фуллерите всегда содержится небольшое количество высших фуллеренов (до 3 %). Разделение смеси фуллеренов на индивидуальные молекулярные фракции производят с помощью [[жидкостная хроматография|жидкостной хроматографии]] на колонках и жидкостной хроматографии высокого давления (ЖХВД). Последняя используется главным образом для анализа чистоты выделенных фуллеренов, так как аналитическая чувствительность метода ЖХВД очень высока (до 0,01 %). Наконец, последний этап — удаление остатков растворителя из твёрдого образца фуллерена. Оно осуществляется путём выдерживания образца при температуре 150—250&nbsp;°C в условиях динамического вакуума (около 0,1 [[торр]]).


== Физические свойства и прикладное значение ==
== Физические свойства и прикладное значение ==
Строка 53: Строка 55:


=== Квантовая механика и фуллерен ===
=== Квантовая механика и фуллерен ===
В [[1999 год]]у исследователи из Университета Вены продемонстрировали применимость [[Корпускулярно-волновой дуализм|корпускулярно-волнового дуализма]] к молекулам фуллеренов C<sub>60</sub><ref>{{cite doi|10.1038/44348}}</ref><ref>[http://nature.web.ru/db/msg.html?mid=1156925 Квантовые свойства фуллерена]</ref>.
В [[1999 год]]у исследователи из Университета Вены продемонстрировали применимость [[Корпускулярно-волновой дуализм|корпускулярно-волнового дуализма]] к молекулам фуллеренов C<sub>60</sub><ref>{{cite doi|10.1038/44348}}</ref><ref>{{Cite web |url=http://nature.web.ru/db/msg.html?mid=1156925 |title=Квантовые свойства фуллерена |access-date=2010-03-30 |archive-date=2012-01-12 |archive-url=https://web.archive.org/web/20120112073500/http://nature.web.ru/db/msg.html?mid=1156925 |deadlink=no }}</ref>.


=== Гидратированный фуллерен (HyFn);(С<sub>60</sub>(H<sub>2</sub>O)n) ===
=== Гидратированный фуллерен (HyFn);(С<sub>60</sub>(H<sub>2</sub>O)n) ===
Строка 73: Строка 75:


=== Влияние малых добавок фуллереновой сажи на антифрикционные и противоизносные свойства [[Политетрафторэтилен|ПТФЭ]] ===
=== Влияние малых добавок фуллереновой сажи на антифрикционные и противоизносные свойства [[Политетрафторэтилен|ПТФЭ]] ===
Следует отметить, что присутствие фуллерена С<sub>60</sub> в минеральных [[смазка]]х инициирует на поверхностях контртел образование защитной фуллерено-полимерной плёнки толщиной 100 нм. Образованная плёнка защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, [[термостабильность]] смазок до 400—500 °C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел.
Присутствие фуллерена С<sub>60</sub> в минеральных [[смазка]]х инициирует на поверхностях контртел образование защитной фуллерено-полимерной плёнки толщиной 100 нм. Образованная плёнка защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, [[термостабильность]] смазок до 400—500&nbsp;°C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел.


=== Другие области применения ===
=== Другие области применения ===
Среди других интересных приложений следует отметить [[аккумулятор]]ы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые [[катод]]ы, содержащие [[Интеркаляция (химия)|интеркалированные]] фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения [[Искусственный алмаз|искусственных алмазов]] методом высокого [[Давление|давления]]. При этом выход алмазов увеличивается на ≈30 %.
В [[аккумулятор]]ах и электрических батареях используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые [[катод]]ы, содержащие [[Интеркаляция (химия)|интеркалированные]] фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения [[Искусственный алмаз|искусственных алмазов]] методом высокого [[Давление|давления]]. При этом выход алмазов увеличивается приблизительно на 30 %.


Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействием температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций.
Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействием температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций.
Строка 88: Строка 90:


=== Антиоксиданты ===
=== Антиоксиданты ===
Фуллерены являются мощнейшими [[антиоксиданты|антиоксидантами]], известными на сегодняшний день. В среднем они превосходят действие всех известных до них антиоксидантов в 100—1000 раз. Предполагается, что именно благодаря этому они способны значительно продлевать среднюю продолжительность жизни крыс<ref>Baati, T., Bourasset, F., Gharbi, N., Njim, L., Abderrabba, M., Kerkeni, A., Szwarc, H. & Moussa, F. (2012). [http://www.sciencedirect.com/science/article/pii/S0142961212003237 The prolongation of the lifespan of rats by repeated oral administration of &#91;60&#93; fullerene]. Biomaterials, 33(19), 4936-4946.</ref><ref>Hendrickson, O. D., Morozova, O. V., Zherdev, A. V., Yaropolov, A. I., Klochkov, S. G., Bachurin, S. O., & Dzantiev, B. B. (2015). [http://www.tandfonline.com/doi/abs/10.1080/1536383X.2014.949695#.VPb59HysWNB Study of distribution and biological effects of fullerene c60 after single and multiple intragastrical administrations to rats]. Fullerenes, Nanotubes and Carbon Nanostructures, 23(7), 658—668. {{DOI|10.1080/1536383X.2014.949695}}</ref><ref>ДжагаровД. Э. (2012). [http://biomolecula.ru/content/1057 Алхимия «волшебной сажи» — перспективы применения фуллерена С60 в медицине]. Биомолекула.ру</ref> и круглых червей<ref>Cong, W., Wang, P., Qu, Y., Tang, J., Bai, R., Zhao, Y., … & Bi, X. (2015). [http://www.sciencedirect.com/science/article/pii/S0142961214012253 Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis elegans]. Biomaterials, 42, 78-86. {{doi|10.1016/j.biomaterials.2014.11.048}}</ref>. Предполагается, что фуллерен С<sub>60</sub>, растворённый в оливковом масле, может встраиваться в двухслойные липидные мембраны клеток и митохондрий и действовать как многоразовый антиоксидант<ref>[https://www.youtube.com/watch?v=XLZS1WQl_1E Living Longer — C60 Olive Oil Interview with Professor Fathi Moussa — C60oo Longevity study, Universtiry of Paris], Streamed live on Mar 18, 2015</ref>.
Фуллерены являются мощнейшими [[антиоксиданты|антиоксидантами]], известными на сегодняшний день. В среднем они превосходят действие всех известных до них антиоксидантов в 100—1000 раз. Предполагается, что именно благодаря этому они способны значительно продлевать среднюю продолжительность жизни крыс<ref>Baati, T., Bourasset, F., Gharbi, N., Njim, L., Abderrabba, M., Kerkeni, A., Szwarc, H. & Moussa, F. (2012). [http://www.sciencedirect.com/science/article/pii/S0142961212003237 The prolongation of the lifespan of rats by repeated oral administration of &#91;60&#93; fullerene] {{Wayback|url=http://www.sciencedirect.com/science/article/pii/S0142961212003237 |date=20150224100604 }}. Biomaterials, 33(19), 4936-4946.</ref><ref>Hendrickson, O. D., Morozova, O. V., Zherdev, A. V., Yaropolov, A. I., Klochkov, S. G., Bachurin, S. O., & Dzantiev, B. B. (2015). [http://www.tandfonline.com/doi/abs/10.1080/1536383X.2014.949695#.VPb59HysWNB Study of distribution and biological effects of fullerene c60 after single and multiple intragastrical administrations to rats] {{Wayback|url=http://www.tandfonline.com/doi/abs/10.1080/1536383X.2014.949695#.VPb59HysWNB |date=20210810235958 }}. Fullerenes, Nanotubes and Carbon Nanostructures, 23(7), 658—668. {{DOI|10.1080/1536383X.2014.949695}}</ref><ref>ДжагаровД. Э. (2012). [http://biomolecula.ru/content/1057 Алхимия «волшебной сажи» — перспективы применения фуллерена С60 в медицине] {{Wayback|url=http://biomolecula.ru/content/1057 |date=20150402104233 }}. Биомолекула.ру</ref> и круглых червей<ref>Cong, W., Wang, P., Qu, Y., Tang, J., Bai, R., Zhao, Y., … & Bi, X. (2015). [http://www.sciencedirect.com/science/article/pii/S0142961214012253 Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis elegans] {{Wayback|url=http://www.sciencedirect.com/science/article/pii/S0142961214012253 |date=20150924162716 }}. Biomaterials, 42, 78-86. {{doi|10.1016/j.biomaterials.2014.11.048}}</ref>. Предполагается, что фуллерен С<sub>60</sub>, растворённый в оливковом масле, может встраиваться в двухслойные липидные мембраны клеток и митохондрий и действовать как многоразовый антиоксидант<ref>[https://www.youtube.com/watch?v=XLZS1WQl_1E Living Longer — C60 Olive Oil Interview with Professor Fathi Moussa — C60oo Longevity study, Universtiry of Paris] {{Wayback|url=https://www.youtube.com/watch?v=XLZS1WQl_1E |date=20160331231244 }}, Streamed live on Mar 18, 2015</ref>.


=== Создание новых лекарств ===
=== Создание новых лекарств ===
Фуллерены могут быть также использованы в фармакологии для создания новых лекарств. Так, в 2007 году были проведены исследования, показавшие, что эти вещества могут оказаться перспективными для разработки противоаллергических средств<ref>[http://www.med2.ru/story.php?id=2180 «Фуллерены VS аллергия» — сайт «Медицина 2.0», дайджест статьи]</ref><ref>{{статья|автор=John J. Ryan et al.|заглавие=Fullerene Nanomaterials Inhibit the Allergic Response|ссылка=http://www.jimmunol.org/content/179/1/665.abstract |издание=The Journal of Immunology|год=2007|том=179|страницы=665—672|pmid=17579089|язык=en}}</ref>.
Фуллерены могут быть также использованы в фармакологии для создания новых лекарств. Так, в 2007 году были проведены исследования, показавшие, что эти вещества могут оказаться перспективными для разработки противоаллергических средств<ref>{{Cite web |url=http://www.med2.ru/story.php?id=2180 |title=«Фуллерены VS аллергия» — сайт «Медицина 2.0», дайджест статьи |access-date=2012-05-27 |archive-date=2014-11-29 |archive-url=https://web.archive.org/web/20141129103956/http://www.med2.ru/story.php?id=2180 |deadlink=no }}</ref><ref>{{статья|автор=John J. Ryan et al.|заглавие=Fullerene Nanomaterials Inhibit the Allergic Response|ссылка=http://www.jimmunol.org/content/179/1/665.abstract|издание=The Journal of Immunology|год=2007|том=179|страницы=665—672|pmid=17579089|язык=en|archivedate=2012-08-29|archiveurl=https://web.archive.org/web/20120829032647/http://www.jimmunol.org/content/179/1/665.abstract}}</ref>.


=== Борьба с ВИЧ ===
=== Борьба с ВИЧ ===
Различные производные фуллеренов показали себя эффективными средствами в лечении вируса иммунодефицита человека: белок, ответственный за проникновение вируса в кровяные клетки — ВИЧ-1-протеаза, — имеет сферическую полость диаметром 10 Ǻ, форма которой остается постоянной при всех мутациях. Такой размер почти совпадает с диаметром молекулы фуллерена. Синтезировано производное фуллерена, которое растворимо в воде. Оно блокирует активный центр ВИЧ-протеазы, без которой невозможно образование новой вирусной частицы<ref>{{статья|автор=Simon H. Friedman et al.|заглавие=Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification|ссылка=http://pubs.acs.org/doi/abs/10.1021/ja00068a005 |издание=J. Am. Chem. Soc. |год=1993 |том=115 |номер=15 |страницы=6506–6509 |doi=10.1021/ja00068a005 |язык=en}}</ref>.
Различные производные фуллеренов показали себя эффективными средствами в лечении вируса иммунодефицита человека: белок, ответственный за проникновение вируса в кровяные клетки — ВИЧ-1-протеаза, — имеет сферическую полость диаметром 10 Ǻ, форма которой остается постоянной при всех мутациях. Такой размер почти совпадает с диаметром молекулы фуллерена. Синтезировано производное фуллерена, которое растворимо в воде. Оно блокирует активный центр ВИЧ-протеазы, без которой невозможно образование новой вирусной частицы<ref>{{статья |автор=Simon H. Friedman et al. |заглавие=Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification |ссылка=http://pubs.acs.org/doi/abs/10.1021/ja00068a005 |издание=J. Am. Chem. Soc. |год=1993 |том=115 |номер=15 |страницы=6506–6509 |doi=10.1021/ja00068a005 |язык=en |archivedate=2019-11-05 |archiveurl=https://web.archive.org/web/20191105044303/https://pubs.acs.org/doi/abs/10.1021/ja00068a005 }}</ref>.


== Примечания ==
== Примечания ==
Строка 117: Строка 119:
* Тихонов А. Н. Спиновые метки // [[Соросовский образовательный журнал]]. — 1998. — № 1. — С. 8-15.
* Тихонов А. Н. Спиновые метки // [[Соросовский образовательный журнал]]. — 1998. — № 1. — С. 8-15.
* Воронов В. К., Подоплелов А. В. Современная физика: Учебное пособие. — М.: КомКнига, 2005. — 512 с., 2005 г., ISBN 5-484-00058-0, тир. 5000 экз., Гл. 5. Атомная физика, п. 5.8. Эндоэдральные соединения, c. 287—289.
* Воронов В. К., Подоплелов А. В. Современная физика: Учебное пособие. — М.: КомКнига, 2005. — 512 с., 2005 г., ISBN 5-484-00058-0, тир. 5000 экз., Гл. 5. Атомная физика, п. 5.8. Эндоэдральные соединения, c. 287—289.
* Герасимов В. И. [http://www.ipme.ru/e-journals/MPM/no_12014/MPM120_04_gerasimov.pdf Изомеры фуллеренов] // Физика и механика материалов. ISSN 1605—2730. Vol. 20, No 1. — P. 25-31.
* Герасимов В. И. [http://www.ipme.ru/e-journals/MPM/no_12014/MPM120_04_gerasimov.pdf Изомеры фуллеренов] // Физика и механика материалов. ISSN 16052730. Vol. 20, No 1. — P. 25-31.
{{конец кол}}
{{конец кол}}



Текущая версия от 06:58, 21 июля 2024

Фуллерен С60
Вид вращающегося бакибола C60.
Фуллерен C540

Фуллере́н — молекулярное соединение, представляющее собой выпуклые замкнутые многогранники, составленные из трёхкоординированных атомов углерода. Молекула года (1991)[1]

Своим названием фуллерены обязаны инженеру и архитектору Ричарду Бакминстеру Фуллеру, чьи геодезические конструкции построены по этому принципу. Первоначально данный класс соединений был ограничен лишь структурами, включающими только пяти- и шестиугольные грани. Заметим, что для существования такого замкнутого многогранника, построенного из n вершин, образующих только пяти- и шестиугольные грани, согласно теореме Эйлера для многогранников, утверждающей справедливость равенства (где и соответственно количество вершин, ребер и граней), необходимым условием является наличие ровно 12 пятиугольных граней и шестиугольных граней. Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными, если снаружи — экзоэдральными[2].

В природном виде содержатся в шунгите и морском воздухе.

История открытия

[править | править код]

В 1985 году группа исследователей — Роберт Кёрл, Харольд Крото, Ричард Смолли[3], Хис и О’Брайен — исследовали масс-спектры паров графита, полученных при лазерном облучении (абляции) твёрдого образца, и обнаружили пики с максимальной амплитудой, соответствующие кластерам, состоящим из 60 и 70 атомов углерода[4]. Они предположили, что данные пики отвечают молекулам С60 и С70 и выдвинули гипотезу, что молекула С60 имеет форму усечённого икосаэдра симметрии Ih. Полиэдрические кластеры углерода получили название фуллеренов, а наиболее распространённая молекула С60 — бакминстерфуллерена[англ.] (также её называют бакибо́лом или букибо́лом, англ. buckyball)[3], по имени американского архитектора Бакминстера Фуллера, применявшего для постройки куполов своих зданий пяти- и шестиугольники, являющиеся основными структурными элементами молекулярных каркасов всех фуллеренов.

Открытие фуллеренов имеет свою предысторию: возможность их существования была предсказана ещё в 1971 году в Японии[5] и теоретически обоснована в 1973 году в СССР[6]. За открытие фуллеренов Крото, Смолли и Кёрлу в 1996 году была присуждена Нобелевская премия по химии[7]. Единственным способом получения фуллеренов в настоящий момент (октябрь 2007) является их искусственный синтез. В течение ряда лет эти соединения интенсивно изучали в лабораториях разных стран, пытаясь установить условия их образования, структуру, свойства и возможные сферы применения. Установлено, в частности, что фуллерены в значительном количестве содержатся в саже, образующейся в дуговом разряде на графитовых электродах[3] — их раньше просто не замечали (см. ниже).

Фуллерены в природе

[править | править код]

После получения в лабораторных условиях фуллерены были найдены в некоторых образцах шунгитов Северной Карелии[8][9][10] в фульгуритах США и Индии[11], метеоритах[12] и донных отложениях, возраст которых достигает 65 миллионов лет[13].

На Земле фуллерены образуются при горении природного газа и разряде молнии[14]. Летом 2011 года были опубликованы результаты исследований проб воздуха над Средиземным морем: во всех 43 образцах воздуха, взятых от Барселоны до Стамбула, были обнаружены фуллерены[15].

Фуллерены в больших количествах были обнаружены и в космосе: в 2010 году в виде газа[16], в 2012 году — в твёрдом виде[17].

Структурные свойства

[править | править код]

Молекулярное образование углерода в форме усечённый икосаэдр имеет массу 720 а. е. м. В молекулах фуллеренов атомы углерода расположены в вершинах шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов — [60]фуллерен (C60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч (как идеальная форма, крайне редко встречающаяся в природе). Так как каждый атом углерода фуллерена С60 принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С60 эквивалентны, что подтверждается спектром ядерного магнитного резонанса (ЯМР) изотопа 13С — он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1,39 Å, а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1,44 Å[18]. Кроме того, связь первого типа двойная, а второго — одинарная, что существенно для химии фуллерена С60. В действительности изучение свойств фуллеренов полученных в больших количествах показывают распределение их объективных свойств (химическая и сорбционная активности) на 4 устойчивых изомера фуллерена[19], свободно определяемые по различному времени выхода из сорбционной колонки жидкостного хроматографа высокого разрешения. При этом атомная масса всех четырёх изомеров равнозначна — имеет массу 720 а. е. м.

Следующим по распространённости является фуллерен C70, отличающийся от фуллерена C60 вставкой пояса из 10 атомов углерода в экваториальную область C60, в результате чего молекула 34 является вытянутой и напоминает своей формой мяч для игры в регби.

Так называемые высшие фуллерены[англ.], содержащие большее число атомов углерода (до 400), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить Cn, n=74, 76, 78, 80, 82 и 84.

Первые фуллерены выделяли из конденсированных паров графита, получаемых при лазерном облучении твёрдых графитовых образцов. Фактически, это были следы вещества. Следующий важный шаг был сделан в 1990 году В. Кретчмером, Лэмбом, Д. Хаффманом и др., разработавшими метод получения граммовых количеств фуллеренов путём сжигания графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях[20]. В процессе эрозии анода на стенках камеры оседала сажа, содержащая некоторое количество фуллеренов. Сажу растворяют в бензоле или толуоле и из полученного раствора выделяют в чистом виде граммовые количества молекул С60 и С70 в соотношении 3:1 и примерно 2 % более тяжёлых фуллеренов[21]. Впоследствии удалось подобрать оптимальные параметры испарения электродов (давление, состав атмосферы, ток, диаметр электродов), при которых достигается наибольший выход фуллеренов, составляющий в среднем 3-12 % материала анода, что, в конечном счёте, определяет высокую стоимость фуллеренов.

На первых порах все попытки экспериментаторов найти более дешёвые и производительные способы получения граммовых количеств фуллеренов (сжигание углеводородов в пламени[22], химический синтез[23] и др.) к успеху не привели и метод «дуги» долгое время оставался наиболее продуктивным (производительность около 1 г/час)[24]. Впоследствии фирме Mitsubishi удалось наладить промышленное производство фуллеренов методом сжигания углеводородов, но такие фуллерены содержат кислород, и поэтому дуговой метод по-прежнему остаётся единственным подходящим методом получения чистых фуллеренов.

Механизм образования фуллеренов в дуге до сих пор остаётся неясным, поскольку процессы, идущие в области горения дуги, термодинамически неустойчивы, что сильно усложняет их теоретическое рассмотрение. Неопровержимо удалось установить только то, что фуллерен собирается из отдельных атомов углерода (или фрагментов С2). Для доказательства в качестве анодного электрода использовался графит 13С высокой степени очистки, другой электрод был из обычного графита 12С. После экстракции фуллеренов было показано методом ЯМР, что атомы 12С и 13С расположены на поверхности фуллерена хаотично. Это указывает на распад материала графита до отдельных атомов или фрагментов атомного уровня и их последующую сборку в молекулу фуллерена. Данное обстоятельство заставило отказаться от наглядной картины образования фуллеренов в результате сворачивания атомных графитовых слоёв в замкнутые сферы.

Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и постоянная работа по улучшению методов их очистки привели к существенному снижению стоимости С60 за последние 17 лет — с 10 тыс. до 10-15 долл. за грамм[25], что подвело к рубежу их реального промышленного использования.

Несмотря на оптимизацию метода Хаффмана — Кретчмера (ХК), повысить выход фуллеренов более 10-20 % от общей массы сожжённого графита не удаётся. Из-за относительно высокой стоимости начального продукта — графита, этот метод имеет принципиальные ограничения. Многие исследователи полагают, что снизить стоимость фуллеренов, получаемых методом ХК, ниже нескольких долларов за грамм не удастся. Поэтому усилия ряда исследовательских групп направлены на поиск альтернативных методов получения фуллеренов. Наибольших успехов в этой области достигла фирма Мицубиси, которой удалось наладить промышленный выпуск фуллеренов методом сжигания углеводородов в пламени. Стоимость таких фуллеренов составляет около 5 долл./грамм (2005 год), что никак не повлияло на стоимость электродуговых фуллеренов.

Высокую стоимость фуллеренов определяет не только их низкий выход при сжигании графита, но и сложность выделения, очистки и разделения фуллеренов различных масс из углеродной сажи. Обычный подход состоит в следующем: сажу, полученную при сжигании графита, смешивают с толуолом или другим органическим растворителем (способным эффективно растворять фуллерены), затем смесь фильтруют или отгоняют на центрифуге, а оставшийся раствор выпаривают. После удаления растворителя остается тёмный мелкокристаллический осадок — смесь фуллеренов, называемый обычно фуллеритом. В состав фуллерита входят различные кристаллические образования: мелкие кристаллы из молекул С60 и С70 и кристаллы С6070, являются твёрдыми растворами. Кроме того, в фуллерите всегда содержится небольшое количество высших фуллеренов (до 3 %). Разделение смеси фуллеренов на индивидуальные молекулярные фракции производят с помощью жидкостной хроматографии на колонках и жидкостной хроматографии высокого давления (ЖХВД). Последняя используется главным образом для анализа чистоты выделенных фуллеренов, так как аналитическая чувствительность метода ЖХВД очень высока (до 0,01 %). Наконец, последний этап — удаление остатков растворителя из твёрдого образца фуллерена. Оно осуществляется путём выдерживания образца при температуре 150—250 °C в условиях динамического вакуума (около 0,1 торр).

Физические свойства и прикладное значение

[править | править код]

Конденсированные системы, состоящие из молекул фуллеренов, называются фуллеритами. Наиболее изученная система такого рода — кристалл С60, менее — система кристаллического С70. Исследования кристаллов высших фуллеренов затруднены сложностью их получения.

Атомы углерода в молекуле фуллерена связаны σ- и π-связями, в то время как химической связи (в обычном смысле этого слова) между отдельными молекулами фуллеренов в кристалле нет. Поэтому в конденсированной системе отдельные молекулы сохраняют свою индивидуальность (что важно при рассмотрении электронной структуры кристалла). Молекулы удерживаются в кристалле силами Ван-дер-Ваальса, определяя в значительной мере макроскопические свойства твёрдого C60.

При комнатных температурах кристалл С60 имеет гранецентрированную кубическую (ГЦК) решётку с постоянной 1,415 нм, но при понижении температуры происходит фазовый переход первого рода (Ткр≈260 К) и кристалл С60 меняет свою структуру на простую кубическую (постоянная решётки 1,411 нм)[26]. При температуре Т > Ткр молекулы С60 хаотично вращаются вокруг своего центра равновесия, а при её снижении до критической две оси вращения замораживаются. Полное замораживание вращений происходит при 165 К. Кристаллическое строение С70 при температурах порядка комнатной подробно исследовалось в работе[27]. Как следует из результатов этой работы, кристаллы данного типа имеют объёмноцентрированную (ОЦК) решётку с небольшой примесью гексагональной фазы.

Нелинейные оптические свойства

[править | править код]

Анализ электронной структуры фуллеренов показывает наличие π-электронных систем, для которых имеются большие величины нелинейной восприимчивости. Фуллерены действительно обладают нелинейными оптическими свойствами. Однако из-за высокой симметрии молекулы С60 генерация второй гармоники возможна только при внесении асимметрии в систему (например внешним электрическим полем). С практической точки зрения привлекательно высокое быстродействие (~250 пс), определяющее гашение генерации второй гармоники. Кроме того фуллерены С60 способны генерировать и третью гармонику[18].

Другой вероятной областью использования фуллеренов и, в первую очередь, С60 являются оптические затворы. Экспериментально показана возможность применения этого материала для длины волны 532 нм[25]. Малое время отклика даёт шанс использовать фуллерены в качестве ограничителей лазерного излучения и модуляторов добротности. Однако, по ряду причин фуллеренам трудно конкурировать здесь с традиционными материалами. Высокая стоимость, сложности с диспергированием фуллеренов в стёклах, способность быстро окисляться на воздухе, далеко не рекордные коэффициенты нелинейной восприимчивости, высокий порог ограничения оптического излучения (не пригодный для защиты глаз) создают серьёзные трудности в борьбе с конкурирующими материалами.

Квантовая механика и фуллерен

[править | править код]

В 1999 году исследователи из Университета Вены продемонстрировали применимость корпускулярно-волнового дуализма к молекулам фуллеренов C60[28][29].

Гидратированный фуллерен (HyFn);(С60(H2O)n)

[править | править код]
Водный раствор C60HyFn с концентрацией 0,22 мг/мл (C60)

Гидратированный фуллерен С60 — C60HyFn — это прочный, гидрофильный супрамолекулярный комплекс, состоящий из молекулы фуллерена С60, заключенной в первую гидратную оболочку, которая содержит 24 молекулы воды: C60(H2O)24. Гидратная оболочка образуется вследствие донорно-акцепторного взаимодействия неподеленных пар электронов кислорода молекул воды с электрон-акцепторными центрами на поверхности фуллерена. При этом молекулы воды, ориентированные вблизи поверхности фуллерена, связаны между собой объёмной сеткой водородных связей. Размер C60HyFn соответствует 1,6-1,8 нм. В настоящее время, максимальная концентрация С60, в виде C60 HyFn, которую удалось создать в воде, эквивалентна 4 мг/мл.[30][31][32][33][34][уточнить ссылку]

Фуллерен в качестве материала для полупроводниковой техники

[править | править код]

Молекулярный кристалл фуллерена является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников. Поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Здесь их преимуществом по сравнению с традиционным кремнием является малое время фотоотклика (единицы нс). Однако существенным недостатком оказалось влияние кислорода на проводимость плёнок фуллеренов и, следовательно, возникла необходимость в защитных покрытиях. В этом смысле более перспективно использовать молекулу фуллерена в качестве самостоятельного наноразмерного устройства и, в частности, усилительного элемента[35].

Фуллерен как фоторезист

[править | править код]

Под действием видимого (> 2 эВ), ультрафиолетового и более коротковолнового излучения фуллерены полимеризуются и в таком виде не растворяются органическими растворителями. В качестве иллюстрации применения фуллеренового фоторезиста можно привести пример получения субмикронного разрешения (≈20 нм) при травлении кремния электронным пучком с использованием маски из полимеризованной плёнки С60[25].

Фуллереновые добавки для роста алмазных плёнок методом CVD

[править | править код]

Другой интересной возможностью практического применения является использование фуллереновых добавок при росте алмазных плёнок CVD-методом (Chemical Vapor Deposition). Введение фуллеренов в газовую фазу эффективно с двух точек зрения: увеличение скорости образования алмазных ядер на подложке и поставка строительных блоков из газовой фазы на подложку. В качестве строительных блоков выступают фрагменты С2, которые оказались подходящим материалом для роста алмазной плёнки. Экспериментально показано, что скорость роста алмазных плёнок достигает 0,6 мкм/ч, что в 5 раз выше, чем без использования фуллеренов. Для реальной конкуренции алмазов с другими полупроводниками в микроэлектронике необходимо разработать метод гетероэпитаксии алмазных плёнок, однако рост монокристаллических плёнок на неалмазных подложках остаётся пока неразрешимой задачей. Один из возможных путей решения этой проблемы — использование буферного слоя фуллеренов между подложкой и плёнкой алмазов. Предпосылкой к исследованиям в этом направлении является хорошая адгезия фуллеренов к большинству материалов. Перечисленные положения особенно актуальны в связи с интенсивными исследованиями алмазов на предмет их использования в микроэлектронике следующего поколения. Высокое быстродействие (высокая насыщенная дрейфовая скорость); максимальная, по сравнению с любыми другими известными материалами, теплопроводность и химическая стойкость делают алмаз перспективным материалом для электроники следующего поколения[25].

Сверхпроводящие соединения с С60

[править | править код]

Молекулярные кристаллы фуллеренов — полупроводники, однако в начале 1991 года было установлено, что легирование твёрдого С60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник. Легирование С60 производят путём обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа X3С60 (Х — атом щелочного металла). Первым интеркалированным металлом оказался калий. Переход соединения К3С60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников. Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х3С60, либо XY2С60 (X,Y — атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался RbCs2С60 — его Ткр=33 К[36].

Влияние малых добавок фуллереновой сажи на антифрикционные и противоизносные свойства ПТФЭ

[править | править код]

Присутствие фуллерена С60 в минеральных смазках инициирует на поверхностях контртел образование защитной фуллерено-полимерной плёнки толщиной 100 нм. Образованная плёнка защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, термостабильность смазок до 400—500 °C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел.

Другие области применения

[править | править код]

В аккумуляторах и электрических батареях используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды, содержащие интеркалированные фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления. При этом выход алмазов увеличивается приблизительно на 30 %.

Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействием температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций.

Также фуллерены и их различные химические производные используются в сочетании с полисопряжёнными полупроводящими полимерами для изготовления солнечных элементов.

Химические свойства

[править | править код]

Фуллерены, несмотря на отсутствие атомов водорода, которые могут быть замещены как в случае обычных ароматических соединений, всё же могут быть функционализированы различными химическими методами. Например, успешно были применены такие реакции для функционализации фуллеренов, как реакция Дильса — Альдера, реакция Прато, реакция Бингеля. Фуллерены также могут быть прогидрированы с образованием продуктов от С60Н2 до С60Н50.

Медицинское значение

[править | править код]

Антиоксиданты

[править | править код]

Фуллерены являются мощнейшими антиоксидантами, известными на сегодняшний день. В среднем они превосходят действие всех известных до них антиоксидантов в 100—1000 раз. Предполагается, что именно благодаря этому они способны значительно продлевать среднюю продолжительность жизни крыс[37][38][39] и круглых червей[40]. Предполагается, что фуллерен С60, растворённый в оливковом масле, может встраиваться в двухслойные липидные мембраны клеток и митохондрий и действовать как многоразовый антиоксидант[41].

Создание новых лекарств

[править | править код]

Фуллерены могут быть также использованы в фармакологии для создания новых лекарств. Так, в 2007 году были проведены исследования, показавшие, что эти вещества могут оказаться перспективными для разработки противоаллергических средств[42][43].

Борьба с ВИЧ

[править | править код]

Различные производные фуллеренов показали себя эффективными средствами в лечении вируса иммунодефицита человека: белок, ответственный за проникновение вируса в кровяные клетки — ВИЧ-1-протеаза, — имеет сферическую полость диаметром 10 Ǻ, форма которой остается постоянной при всех мутациях. Такой размер почти совпадает с диаметром молекулы фуллерена. Синтезировано производное фуллерена, которое растворимо в воде. Оно блокирует активный центр ВИЧ-протеазы, без которой невозможно образование новой вирусной частицы[44].

Примечания

[править | править код]
  1. D. E. Koshland, Jr. Molecule of the Year (англ.) // Science : journal. — 1991. — Vol. 254, no. 5039. — P. 1705. — doi:10.1126/science.254.5039.1705. — Bibcode1991Sci...254.1705K.
  2. Сидоров Л. Н., Иоффе И. Н. Эндоэдральные фуллерены // Соросовский образовательный журнал, 2001, № 8, с.31
  3. 1 2 3 Слюсар, В.И. Наноантенны: подходы и перспективы. - C. 58 - 65. Электроника: наука, технология, бизнес. – 2009. - № 2. C. 58 (2009). Дата обращения: 13 июня 2020. Архивировано 3 июня 2021 года.
  4. Kroto H. W., Heath J. R., O’Brien S. C., et. al. C60: Buckminsterfullerene // Nature 318, 162 (1985) doi:10.1038/318162a0
  5. Osawa E. Kagaku (Kyoto), V.25, P.854 (1971); Chem. Abstr. V.74 (1971)
  6. Бочвар Д. А., Гальперн Е. Г. О гипотетических системах: карбододекаэдре, s-икосаэдране и карбо-s-икосаэдре // Доклады АН СССР. — 1973. — Т. 209, № 3. — С. 610.
  7. Нобелевская премия по химии за 1996 год. Дата обращения: 18 марта 2008. Архивировано 19 октября 2012 года.
  8. Buseck P.R, Tsipursky S.J, Hettich R. Fullerenes from the Geological Environment Архивная копия от 31 мая 2014 на Wayback Machine (англ.) // Science. (1992) 257(5067): 215—217 DOI: 10.1126/science.257.5067.215
  9. Юшкин Н. П.. Глобулярная надмолекулярная структура шунгита: данные растровой туннельной микроскопии. // ДАН. (1994) 337(6): 800—803.
  10. В. А. Резников. Ю. С. Полеховский. Аморфный шунгитовый углерод — естественная среда образования фуллеренов. // Письма в ЖЭТФ. (2000) 26(15): 94-102.
  11. Daly T.K., Buseck P.R., Williams P. and Lewis C.F. Fullerenes from a fulgurite Архивная копия от 24 сентября 2015 на Wayback Machine(англ.) Science // (1993) 259: 1599—1601 DOI: 10.1126/science.259.5101.1599
  12. Buseck P.R. Geological fullerenes: review and analysis Архивная копия от 24 сентября 2015 на Wayback Machine.(англ.) // Earth and Planetary Science Letters. (2002) 203(I 3-4): 781—792 DOI: 10.1016/S0012-821X(02)00819-1
  13. Parthasarathy G. et al. Natural fullerenes from the Cretaceous-Tertiary boundary layer at Anjar, Kutch.(англ.) // Geological Society of America Special Papers Архивная копия от 2 октября 2014 на Wayback Machine (2002) 356: 345—350 DOI:10.1130/0-8137-2356-6.345
  14. Buseck P.R. Geological fullerenes: review and analysis Архивная копия от 24 сентября 2015 на Wayback Machine. (англ.)// Earth and Planetary Science Letters. (2002) 203(I 3-4): 781—792 DOI: 10.1016/S0012-821X(02)00819-1<
  15. Sanchís J et al. Occurrence of aerosol-bound fullerenes in the Mediterranean Sea atmosphere Архивная копия от 11 августа 2021 на Wayback Machine.(англ.) // Environ Sci Technol. (2012). 46(3): 1335-43. DOI: 10.1021/es200758m
  16. Cami J. et al.. Detection of C60 and C70 in a Young Planetary Nebula Архивная копия от 12 августа 2014 на Wayback Machine (англ.)// Science. (2010) 329(5996): 1180—1182 — DOI: 10.1126/science.1192035
  17. Evans A. et al. Solid-phase C-60 in the peculiar binary XX Oph? Архивная копия от 11 октября 2015 на Wayback Machine (англ.)MNRAS Letters Архивная копия от 22 сентября 2014 на Wayback Machine. (2012) 421(1): L92-L96
  18. 1 2 Белоусов В. П., Будтов В. П., Данилов О. Б., Мак А. А. Оптический Журнал, т.64, № 12, с.3 (1997)
  19. * Герасимов В. И. «Изомеры фуллеренов», журнал Физика и механика материалов Архивная копия от 7 февраля 2015 на Wayback Machine ISSN 16052730 volume 20 No 1 с.25-31
  20. Kratschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R. Nature, V.347, № 354 (1990)
  21. Г.П.Ковтун, А.А.Веревкин. Наноматериалы: технологии и материаловедение. Обзор. — Харьков: ННЦ ХФТИ, 2010. — 73 с.
  22. Ozawa M., Deota P., Ozawa E., Fullerene Sci. Technol. V. 7. № 3. P. 387—409 (1999)
  23. Diederich F., Nature. V. 369. P. 199—207 (1994)
  24. Богданов А. А., Дайнигер Д., Дюжев Г. А. ЖТФ. Т. 70, № 5. С. 1 (2000)
  25. 1 2 3 4 Вуль А. Я. Материалы электронной техники. № 3. С. 4 (1999)
  26. Елецкий А. В., Смирнов Б. М. // УФН. — Т. 163, № 2. — С. 33 (1993)
  27. Vaughan G. B. M. et al. Science, V. 254, P. 1350 (1991)
  28. Arndt M. et al. Wave–particle duality of C60 molecules (англ.) // Nature. — 1999. — 14 October (vol. 401, no. 6754). — P. 680—682. — ISSN 0028-0836. — doi:10.1038/44348. — Bibcode1999Natur.401..680A. [исправить]
  29. Квантовые свойства фуллерена. Дата обращения: 30 марта 2010. Архивировано 12 января 2012 года.
  30. G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, V. S. Shelkovsky, L. A. Vashchenko. ON THE PRODUCTION OF AN AQUEOUS COLLOIDAL SOLUTION OF FULLERENES. J. Chem. Soc., Chem. Commun. 12 (1995) 1281—1282.
  31. G. V. Andrievsky, V. K. Klochkov, A. Bordyuh, G. I. Dovbeshko. COMPARATIVE ANALYSIS OF TWO AQUEOUS-COLLOIDAL SOLUTIONS OF C60 FULLERENE WITH HELP OF FT-IR REFLECTANCE AND UV-VIS SPECTROSCOPY. Chem. Phys. Letters, 364 (2002) 8-17.
  32. G. V. Andrievsky, V. K. Klochkov, L. I. Derevyanchenko. Is C60 fullerene molecule toxic?! Fullerenes, Nanotubes and Carbon Nanostructures, 13 (4), (2005) 363-37
  33. G. V. Andrievsky, V. I. Bruskov, A. A. Tykhomyrov, S. V. Gudkov. Peculiarities of the antioxidant and radioprotective effects of hydrated c60 fullerene nanostuctures in vitro and in vivo. Free Radical Biology & Medicine, 47 (2009) 786—793.
  34. Fullerene (C60 and C70) aqueous solutions. Дата обращения: 6 февраля 2010. Архивировано из оригинала 31 декабря 2011 года.
  35. Y. Wada, M. Tsukada, M. Fujihira, K. Matsushige, T. Ogawa et al., «Prospects and Problems of Single Molecule Information Devices», Jpn. J. Appl. Phys., V. 39, Part 1, N 7A, pp. 3835-3849 (2000)
  36. Hebard A.F. Annu. Rev. Mater. Sci., V.23, P.159 (1993)
  37. Baati, T., Bourasset, F., Gharbi, N., Njim, L., Abderrabba, M., Kerkeni, A., Szwarc, H. & Moussa, F. (2012). The prolongation of the lifespan of rats by repeated oral administration of [60] fullerene Архивная копия от 24 февраля 2015 на Wayback Machine. Biomaterials, 33(19), 4936-4946.
  38. Hendrickson, O. D., Morozova, O. V., Zherdev, A. V., Yaropolov, A. I., Klochkov, S. G., Bachurin, S. O., & Dzantiev, B. B. (2015). Study of distribution and biological effects of fullerene c60 after single and multiple intragastrical administrations to rats Архивная копия от 10 августа 2021 на Wayback Machine. Fullerenes, Nanotubes and Carbon Nanostructures, 23(7), 658—668. doi:10.1080/1536383X.2014.949695
  39. ДжагаровД. Э. (2012). Алхимия «волшебной сажи» — перспективы применения фуллерена С60 в медицине Архивная копия от 2 апреля 2015 на Wayback Machine. Биомолекула.ру
  40. Cong, W., Wang, P., Qu, Y., Tang, J., Bai, R., Zhao, Y., … & Bi, X. (2015). Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis elegans Архивная копия от 24 сентября 2015 на Wayback Machine. Biomaterials, 42, 78-86. doi:10.1016/j.biomaterials.2014.11.048
  41. Living Longer — C60 Olive Oil Interview with Professor Fathi Moussa — C60oo Longevity study, Universtiry of Paris Архивная копия от 31 марта 2016 на Wayback Machine, Streamed live on Mar 18, 2015
  42. «Фуллерены VS аллергия» — сайт «Медицина 2.0», дайджест статьи. Дата обращения: 27 мая 2012. Архивировано 29 ноября 2014 года.
  43. John J. Ryan et al. Fullerene Nanomaterials Inhibit the Allergic Response (англ.) // The Journal of Immunology. — 2007. — Vol. 179. — P. 665—672. — PMID 17579089. Архивировано 29 августа 2012 года.
  44. Simon H. Friedman et al. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification (англ.) // J. Am. Chem. Soc.. — 1993. — Vol. 115, no. 15. — P. 6506–6509. — doi:10.1021/ja00068a005. Архивировано 5 ноября 2019 года.

Литература

[править | править код]