Передающая телевизионная трубка: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Принцип действия: пунктуация
 
(не показано 5 промежуточных версий 4 участников)
Строка 1: Строка 1:
{{falseredirect|Ортикон}}
[[Файл:Zworykin and iconoscope.jpg|thumb|220px|Изобретатель первой в мире передающей трубки [[Зворыкин, Владимир Козьмич|Владимир Зворыкин]] со своим [[иконоскоп]]ом]]
[[Файл:Zworykin and iconoscope.jpg|thumb|220px|Изобретатель первой в мире передающей трубки [[Зворыкин, Владимир Козьмич|Владимир Зворыкин]] со своим [[иконоскоп]]ом]]
'''Передающая телевизионная трубка''' (ортикон) — электровакуумный прибор, преобразующий движущееся [[Оптическое изображение|изображение]] в электрические сигналы. Относится к классу [[электронно-лучевой прибор|электронно-лучевых устройств]]. Главная составная часть [[телекамера|телевизионных передающих камер]] и [[Видеокамера|видеокамер]], использовавшаяся до появления полупроводниковых светочувствительных [[Матрица (фото)|матриц]].
'''Передающая телевизионная трубка'''  — электровакуумный прибор, преобразующий движущееся [[Оптическое изображение|изображение]] в электрические сигналы. Относится к классу [[электронно-лучевой прибор|электронно-лучевых устройств]]. Главная составная часть [[телекамера|телевизионных передающих камер]] и [[Видеокамера|видеокамер]], использовавшаяся до появления полупроводниковых светочувствительных [[Матрица (фото)|матриц]].


== Классификация ==
== Классификация ==
Строка 14: Строка 15:
Первоначально основывались на внешнем [[фотоэффект]]е, позднее — на внутреннем. Самые известные представители, в порядке появления — иконоскоп, суперортикон, видикон.
Первоначально основывались на внешнем [[фотоэффект]]е, позднее — на внутреннем. Самые известные представители, в порядке появления — иконоскоп, суперортикон, видикон.


Неизменными составными частями передающих телевизионных трубок были светочувствительная мишень, куда проецировалось изображение, и в которой происходило накопление зарядов, и электронно-лучевая пушка, осуществлявшая сканирование мишени. Накопление зарядов происходило в течение всего времени кадра, а считывание — практически мгновенно, при прохождении электронного луча. Для вещательного телевидения соотношение времени накопления и времени считывания — около полумиллиона. Сканирование мишени производилось с помощью отклонения электронного луча магнитным полем, как и в кинескопе. Для увеличения чувствительности и отношения сигнал/шум в конструкцию вводились дополнительные элементы, например, секция переноса, представлявшая собой оптико-электронный преобразователь. В этом случае на мишень падал не свет, а ускоренные электроны, выбитые из фотокатода.
Неизменными составными частями передающих телевизионных трубок были светочувствительная мишень, куда проецировалось изображение, и в которой происходило накопление зарядов, и электронно-лучевая пушка, осуществлявшая сканирование мишени. Накопление зарядов происходило в течение всего времени кадра, а считывание — практически мгновенно при прохождении электронного луча. Для вещательного телевидения соотношение времени накопления и времени считывания — около полумиллиона. Сканирование мишени производилось с помощью отклонения электронного луча магнитным полем, как и в кинескопе. Для увеличения чувствительности и отношения сигнал/шум в конструкцию вводились дополнительные элементы, например, секция переноса, представлявшая собой оптико-электронный преобразователь. В этом случае на мишень падал не свет, а ускоренные электроны, выбитые из фотокатода. Действие передающих электронно-лучевых приборов основано на [[фотоэффект]]е и заключается, во-первых, в образовании электронного изображения (как правило, в виде потенциального рельефа), соответствующего передаваемому световому изображению, а во-вторых, в упорядоченной коммутации элементов этого изображения. Передающий электронно-лучевой прибор относится к классу фотоэлектронных приборов. В случае внешнего фотоэффекта преобразующим светочувствительным элементом служит фотокатод, который под действием падающего на фотослой света испускает электроны (см. [[Фотоэлектронная эмиссия]]); в случае внутреннего фотоэффекта — фоточувствительная мишень, изменяющая при освещении свою электропроводность (см. [[Фотопроводимость]]). Коммутация элементов изображения обычно осуществляется электронным лучом, последовательно обегающим все участки поверхности мишени; при этом изображение раскладывается на несколько сотен строк, образующих телевизионный растр (каждую строку можно рассматривать как последовательность отдельных элементарных участков изображения).
Действие передающих электронно-лучевых приборов основано на [[фотоэффект]]е и заключается, во-первых, в образовании электронного изображения (как правило, в виде потенциального рельефа), соответствующего передаваемому световому изображению, а во-вторых, в упорядоченной коммутации элементов этого изображения. Передающий электронно-лучевой прибор относится к классу фотоэлектронных приборов. В случае внешнего фотоэффекта преобразующим светочувствительным элементом служит фотокатод, который под действием падающего на фотослой света испускает электроны (см. [[Фотоэлектронная эмиссия]]); в случае внутреннего фотоэффекта — фоточувствительная мишень, изменяющая при освещении свою электропроводность (см. [[Фотопроводимость]]). Коммутация элементов изображения обычно осуществляется электронным лучом, последовательно обегающим все участки поверхности мишени; при этом изображение раскладывается на несколько сотен строк, образующих телевизионный растр (каждую строку можно рассматривать как последовательность отдельных элементарных участков изображения).


По способу формирования видеосигнала различают передающие электронно-лучевые приборы прямого (мгновенного) действия и с накоплением заряда. В приборах первого типа величина электрического сигнала, соответствующего данному элементарному участку передаваемого изображения, пропорциональна мгновенному значению (в момент передачи) локальной освещённости участка светочувствительного элемента; в приборах второго типа — интегральному значению освещённости участка светочувствительного элемента за время передачи всего изображения (данного кадра). В течение этого времени благодаря фотоэффекту на мишени возникает распределение зарядов и потенциалов (потенциальный рельеф), соответствующий распределению освещённости объекта.
По способу формирования видеосигнала различают передающие электронно-лучевые приборы прямого (мгновенного) действия и с накоплением заряда. В приборах первого типа величина электрического сигнала, соответствующего данному элементарному участку передаваемого изображения, пропорциональна мгновенному значению (в момент передачи) локальной освещённости участка светочувствительного элемента; в приборах второго типа — интегральному значению освещённости участка светочувствительного элемента за время передачи всего изображения (данного кадра). В течение этого времени благодаря фотоэффекту на мишени возникает распределение зарядов и потенциалов (потенциальный рельеф), соответствующий распределению освещённости объекта.
Строка 36: Строка 36:
* Тимофеев П. В., создавший в 1933 году вместе со Шмаковым [[супериконоскоп]]<ref>Авторское свидетельство № 45648 (СССР). Устройство для передачи дальновидения / П. В. Шмаков, П. В. Тимофеев. Заявлено 28.11.33. Выдано 31.01.36.</ref>,
* Тимофеев П. В., создавший в 1933 году вместе со Шмаковым [[супериконоскоп]]<ref>Авторское свидетельство № 45648 (СССР). Устройство для передачи дальновидения / П. В. Шмаков, П. В. Тимофеев. Заявлено 28.11.33. Выдано 31.01.36.</ref>,
* [[Брауде, Гирш Вульфович|Брауде Г. В.]], создавший в 1934 году устройство, названное статотроном («трубка Брауде»)<ref>Авторское свидетельство № 44955 (СССР). Способ развертки строки изображения / Г. В. Брауде. Заявлено 09.09.34. Выдано 30.11.35.</ref>, и трубку - предшественник [[суперортикон]]а<ref>Авторское свидетельство № 55712 (CCCP). Катодная передающая телевизионная трубка / Г. В. Брауде. Заявлено 03.02.38. Выдано 30.09.39.</ref>.
* [[Брауде, Гирш Вульфович|Брауде Г. В.]], создавший в 1934 году устройство, названное статотроном («трубка Брауде»)<ref>Авторское свидетельство № 44955 (СССР). Способ развертки строки изображения / Г. В. Брауде. Заявлено 09.09.34. Выдано 30.11.35.</ref>, и трубку - предшественник [[суперортикон]]а<ref>Авторское свидетельство № 55712 (CCCP). Катодная передающая телевизионная трубка / Г. В. Брауде. Заявлено 03.02.38. Выдано 30.09.39.</ref>.

В 1969 году в [[СССР]] выпускалось 50 типов передающих телевизионных трубок{{sfn|Техника кино и телевидения|1970|с=45}}. В качестве датчиков видеосигнала ПТТ использовались до 1990-х годов. В 1970-е годы им на смену пришли твердотельные преобразователи «свет-сигнал» с зарядовой связью ([[ПЗС]]). В 2000-е годы применялись только в узкоспециальном оборудовании, например, в [[Ускоренная киносъёмка|сверхскоростной съёмке]], а в массовом применении были полностью вытеснены полупроводниковыми [[матрица (фото)|датчиками изображения]].


{{заготовка раздела}}
{{заготовка раздела}}
Строка 44: Строка 46:
Габариты передающих телевизионных трубок были весьма большими, до полуметра в длину при размере светочувствительной мишени порядка 1 дециметра. Прогресс способствовал уменьшению размеров, наиболее массовыми в студийных камерах были трубки с диаметром в 1 [[дюйм]], а для применения в бытовой и репортажной аппаратуре были разработаны и полудюймовые видиконы. Как правило, для фокусировки использовалось магнитное поле, так же, как и для отклонения луча, поэтому дополнительно габариты [[телекамера|телекамеры]] увеличивались из-за фокусирующе-отклоняющей системы.
Габариты передающих телевизионных трубок были весьма большими, до полуметра в длину при размере светочувствительной мишени порядка 1 дециметра. Прогресс способствовал уменьшению размеров, наиболее массовыми в студийных камерах были трубки с диаметром в 1 [[дюйм]], а для применения в бытовой и репортажной аппаратуре были разработаны и полудюймовые видиконы. Как правило, для фокусировки использовалось магнитное поле, так же, как и для отклонения луча, поэтому дополнительно габариты [[телекамера|телекамеры]] увеличивались из-за фокусирующе-отклоняющей системы.


== Интересные факты ==
== Современность ==
{{Интересные факты}}{{нет ссылок в разделе|дата=10 апреля 2022}}
В 1969 году в [[СССР]] выпускалось 50 типов передающих телевизионных трубок{{sfn|Техника кино и телевидения|1970|с=45}}. В качестве датчиков видеосигнала ПТТ использовались до 1990-х годов. В 1970-е годы им на смену пришли твердотельные преобразователи «свет-сигнал» с зарядовой связью ([[ПЗС]]), которые и сейчас применяются для получения изображений. В [[2000-е годы]] применялись только в узкоспециальном оборудовании, например, в [[Ускоренная киносъёмка|сверхскоростной съёмке]].
Сейчас в массовом применении полностью вытеснены полупроводниковыми [[матрица (фото)|датчиками изображения]].

=== Интересные факты ===
* Несмотря на то, что [[вакуумные электронные приборы|вакуумные трубки]] уже почти два десятилетия не применяются в телевидении, размеры матриц в современных камерах исчисляются в диаметрах трубок с таким же размером светочувствительной мишени. То есть 1-дюймовая матрица по диагонали заметно меньше 1 [[дюйм]]а, так как у соответствующего видикона это был наружный диаметр стеклянного баллона. Размер такой матрицы примерно 10×13 мм, а диагональ, соответственно, около 17 мм, то есть, приблизительно, 2/3 дюйма. Сделано это было для совместимости оптики «старых» камер и «новых».
* Несмотря на то, что [[вакуумные электронные приборы|вакуумные трубки]] уже почти два десятилетия не применяются в телевидении, размеры матриц в современных камерах исчисляются в диаметрах трубок с таким же размером светочувствительной мишени. То есть 1-дюймовая матрица по диагонали заметно меньше 1 [[дюйм]]а, так как у соответствующего видикона это был наружный диаметр стеклянного баллона. Размер такой матрицы примерно 10×13 мм, а диагональ, соответственно, около 17 мм, то есть, приблизительно, 2/3 дюйма. Сделано это было для совместимости оптики «старых» камер и «новых».
* Если для приемных телевизионных трубок (кинескопов) важно иметь высокое анодное напряжение (до 50 кВ) и большой ток электронного луча (до 1 мА) для достижения высокой яркости и контрастности изображения, то для передающих трубок — наоборот, эти величины, с целью достижения высокой чувствительности, стараются уменьшить до значений, при которых еще возможны фокусировка и отклонение электронного луча (100—300 В и 10—50 мкА).
* Если для приемных телевизионных трубок (кинескопов) важно иметь высокое анодное напряжение (до 50 кВ) и большой ток электронного луча (до 1 мА) для достижения высокой яркости и контрастности изображения, то для передающих трубок — наоборот, эти величины, с целью достижения высокой чувствительности, стараются уменьшить до значений, при которых еще возможны фокусировка и отклонение электронного луча (100—300 В и 10—50 мкА).

Текущая версия от 12:58, 23 июля 2024

Изобретатель первой в мире передающей трубки Владимир Зворыкин со своим иконоскопом

Передающая телевизионная трубка  — электровакуумный прибор, преобразующий движущееся изображение в электрические сигналы. Относится к классу электронно-лучевых устройств. Главная составная часть телевизионных передающих камер и видеокамер, использовавшаяся до появления полупроводниковых светочувствительных матриц.

Классификация

[править | править код]
Видикон фирмы «Matsushita»

Передающие телевизионные трубки (ПТТ) по типу фотоэффекта светочувствительной мишени делятся на приборы:

  • с использованием внешнего фотоэффекта,
по способу формирования видеосигнала:
  • с использованием внутреннего фотоэффекта (видикон).

Принцип действия

[править | править код]

Первоначально основывались на внешнем фотоэффекте, позднее — на внутреннем. Самые известные представители, в порядке появления — иконоскоп, суперортикон, видикон.

Неизменными составными частями передающих телевизионных трубок были светочувствительная мишень, куда проецировалось изображение, и в которой происходило накопление зарядов, и электронно-лучевая пушка, осуществлявшая сканирование мишени. Накопление зарядов происходило в течение всего времени кадра, а считывание — практически мгновенно при прохождении электронного луча. Для вещательного телевидения соотношение времени накопления и времени считывания — около полумиллиона. Сканирование мишени производилось с помощью отклонения электронного луча магнитным полем, как и в кинескопе. Для увеличения чувствительности и отношения сигнал/шум в конструкцию вводились дополнительные элементы, например, секция переноса, представлявшая собой оптико-электронный преобразователь. В этом случае на мишень падал не свет, а ускоренные электроны, выбитые из фотокатода. Действие передающих электронно-лучевых приборов основано на фотоэффекте и заключается, во-первых, в образовании электронного изображения (как правило, в виде потенциального рельефа), соответствующего передаваемому световому изображению, а во-вторых, в упорядоченной коммутации элементов этого изображения. Передающий электронно-лучевой прибор относится к классу фотоэлектронных приборов. В случае внешнего фотоэффекта преобразующим светочувствительным элементом служит фотокатод, который под действием падающего на фотослой света испускает электроны (см. Фотоэлектронная эмиссия); в случае внутреннего фотоэффекта — фоточувствительная мишень, изменяющая при освещении свою электропроводность (см. Фотопроводимость). Коммутация элементов изображения обычно осуществляется электронным лучом, последовательно обегающим все участки поверхности мишени; при этом изображение раскладывается на несколько сотен строк, образующих телевизионный растр (каждую строку можно рассматривать как последовательность отдельных элементарных участков изображения).

По способу формирования видеосигнала различают передающие электронно-лучевые приборы прямого (мгновенного) действия и с накоплением заряда. В приборах первого типа величина электрического сигнала, соответствующего данному элементарному участку передаваемого изображения, пропорциональна мгновенному значению (в момент передачи) локальной освещённости участка светочувствительного элемента; в приборах второго типа — интегральному значению освещённости участка светочувствительного элемента за время передачи всего изображения (данного кадра). В течение этого времени благодаря фотоэффекту на мишени возникает распределение зарядов и потенциалов (потенциальный рельеф), соответствующий распределению освещённости объекта.

Считывание информации осуществляется пучком электронов, который «пробегает» по мишени строчка за строчкой. Сам же луч замкнут на выходную цепь трубки. В результате электрический сигнал на выходе будет полностью соответствовать распределению яркостей объекта, на который направлена оптическая система передающей камеры.

Основными вехами развития передающих трубок были их следующие типы, указанные в хронологическом порядке:

В СССР первыми изобретателями передающих электронных трубок были:

  • Чернышев А. А., предложивший прототип видикона ещё в 1925 году[1],
  • Константинов А. П., предложивший проект передающей ТВ-трубки с накоплением и коммутацией зарядов электронным лучом на основе внешнего фотоэффекта в конце 1930 года[2],
  • Катаев С. И, предложивший трубку, аналогичную иконоскопу Зворыкина, в 1931 году[3],
  • Грабовский Б. П., первым в истории собравший модель полностью электронной телевизионной системы: с электронной системой и приема, и передачи изображения[4],
  • Шмаков П. В., усовершенствовавший иконоскоп,
  • Тимофеев П. В., создавший в 1933 году вместе со Шмаковым супериконоскоп[5],
  • Брауде Г. В., создавший в 1934 году устройство, названное статотроном («трубка Брауде»)[6], и трубку - предшественник суперортикона[7].

В 1969 году в СССР выпускалось 50 типов передающих телевизионных трубок[8]. В качестве датчиков видеосигнала ПТТ использовались до 1990-х годов. В 1970-е годы им на смену пришли твердотельные преобразователи «свет-сигнал» с зарядовой связью (ПЗС). В 2000-е годы применялись только в узкоспециальном оборудовании, например, в сверхскоростной съёмке, а в массовом применении были полностью вытеснены полупроводниковыми датчиками изображения.

Происхождение названия

[править | править код]

Слово «трубка» в названии является калькой с англ. tube, которым долгое время обозначали все вакуумные электронные приборы. В действительности, форму «трубки» имели только видиконы, остальные приборы помещались в стеклянные баллоны довольно сложной и иногда несимметричной формы.

Габариты передающих телевизионных трубок были весьма большими, до полуметра в длину при размере светочувствительной мишени порядка 1 дециметра. Прогресс способствовал уменьшению размеров, наиболее массовыми в студийных камерах были трубки с диаметром в 1 дюйм, а для применения в бытовой и репортажной аппаратуре были разработаны и полудюймовые видиконы. Как правило, для фокусировки использовалось магнитное поле, так же, как и для отклонения луча, поэтому дополнительно габариты телекамеры увеличивались из-за фокусирующе-отклоняющей системы.

Интересные факты

[править | править код]
  • Несмотря на то, что вакуумные трубки уже почти два десятилетия не применяются в телевидении, размеры матриц в современных камерах исчисляются в диаметрах трубок с таким же размером светочувствительной мишени. То есть 1-дюймовая матрица по диагонали заметно меньше 1 дюйма, так как у соответствующего видикона это был наружный диаметр стеклянного баллона. Размер такой матрицы примерно 10×13 мм, а диагональ, соответственно, около 17 мм, то есть, приблизительно, 2/3 дюйма. Сделано это было для совместимости оптики «старых» камер и «новых».
  • Если для приемных телевизионных трубок (кинескопов) важно иметь высокое анодное напряжение (до 50 кВ) и большой ток электронного луча (до 1 мА) для достижения высокой яркости и контрастности изображения, то для передающих трубок — наоборот, эти величины, с целью достижения высокой чувствительности, стараются уменьшить до значений, при которых еще возможны фокусировка и отклонение электронного луча (100—300 В и 10—50 мкА).

Примечания

[править | править код]
  1. Патент № 5598 (СССР). Передатчик в аппарате для электрической телескопии / А. А. Чернышев. Заявлен 12.11.25. Выдан 30.06.28.
  2. Авторское свидетельство № 39830 (СССР). Передающее устройство для дальновидения / А. П. Константинов. Заявлено 28.12.30. Выдано 30.11.34. Реализована не была из-за технических сложностей.
  3. Авторское свидетельство № 29865 (CCCP). Устройство для передачи движущихся изображений / C. И. Катаев. Заявлено 24.09.31. Выдано 30.02.33.
  4. Заявочное свидетельство от 09.11.1925 № 4899, а 30.08.1928 был выдан патент № 5592.
  5. Авторское свидетельство № 45648 (СССР). Устройство для передачи дальновидения / П. В. Шмаков, П. В. Тимофеев. Заявлено 28.11.33. Выдано 31.01.36.
  6. Авторское свидетельство № 44955 (СССР). Способ развертки строки изображения / Г. В. Брауде. Заявлено 09.09.34. Выдано 30.11.35.
  7. Авторское свидетельство № 55712 (CCCP). Катодная передающая телевизионная трубка / Г. В. Брауде. Заявлено 03.02.38. Выдано 30.09.39.
  8. Техника кино и телевидения, 1970, с. 45.

Литература

[править | править код]
  • Жигарев А. А., Шамаева Г. Г. Электронно-лучевые и фотоэлектронные устройства. — М.: Высшая школа, 1982. — 464 с. — ISBN 10000033-3030.
  • А. П. Нефедьев, В. А. Урвалов. Передающие и приёмные телевизионные трубки // «Техника кино и телевидения» : журнал. — 1970. — № 6. — С. 43—49. — ISSN 0040-2249.
  • Ортикон / А. А. Жигарев // Никко — Отолиты. — М. : Советская энциклопедия, 1974. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 18).