Матрица Якоби: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
м откат правок 81.211.74.201 (обс.) к версии Tosha
Метка: откат
 
(не показаны 3 промежуточные версии 3 участников)
(нет различий)

Текущая версия от 02:18, 24 июля 2024

Матрица Яко́би отображения в точке описывает главную линейную часть произвольного отображения в точке .

Определение

[править | править код]

Пусть задано отображение имеющее в некоторой точке все частные производные первого порядка. Матрица , составленная из частных производных этих функций в точке , называется матрицей Якоби данной системы функций.

Иными словами, матрица Якоби является производной векторной функции от векторного аргумента.

Связанные определения

[править | править код]
  • Если , то определитель матрицы Якоби называется определителем Якоби или якобиа́ном системы функций .
  • Отображение называют невырожденным, если его матрица Якоби имеет максимально возможный ранг; то есть,
  • Если все непрерывно дифференцируемы в окрестности , то
  • Пусть — дифференцируемые отображения, — их матрицы Якоби. Тогда матрица Якоби композиции отображений равна произведению их матриц Якоби (свойство функториальности):