Тензорное исчисление: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Нет описания правки |
|||
(не показаны 3 промежуточные версии 3 участников) | |||
Строка 1: | Строка 1: | ||
'''Тензорное исчисление''' — раздел математики, изучающий [[тензор]]ы и [[тензорное поле|тензорные поля]], подразделяется на [[ |
'''Тензорное исчисление''' — раздел математики, изучающий [[тензор]]ы и [[тензорное поле|тензорные поля]], подразделяется на [[Тензорная алгебра|тензорную алгебру]], входящую в качестве основной части в [[полилинейная алгебра|полилинейную алгебру]], и [[тензорный анализ]], изучающий [[Дифференциальный оператор|дифференциальные операторы]] на [[Алгебра над кольцом|алгебре]] тензорных полей. [[Векторный анализ]] и [[матричная алгебра]] могут быть рассмотрены как частные разделы тензорного исчисления (в связи с обобщением в понятии тензора понятий вектора и матрицы). |
||
Является одним из основных инструментов [[дифференциальная геометрия|дифференциальной геометрии]]. В этом направлении тензорное исчисление было развито [[Леви-Чивита, Туллио|Туллио Леви-Чивитой]] и [[Риччи-Курбастро, Грегорио|Грегорио Риччи]] (ранее тензорное исчисление также называли «исчислением Риччи»). Особое развитие исчисление получило в начале XX века в связи с его широким применением в [[Релятивистская физика|релятивистской физике]]. |
Является одним из основных инструментов [[дифференциальная геометрия|дифференциальной геометрии]]. В этом направлении тензорное исчисление было развито [[Леви-Чивита, Туллио|Туллио Леви-Чивитой]] и [[Риччи-Курбастро, Грегорио|Грегорио Риччи]] (ранее тензорное исчисление также называли «исчислением Риччи»). Особое развитие исчисление получило в начале XX века в связи с его широким применением в [[Релятивистская физика|релятивистской физике]]. |
||
Строка 66: | Строка 66: | ||
[[Категория:Тензорное исчисление| ]] |
[[Категория:Тензорное исчисление| ]] |
||
{{interwiki extra|qid=Q188524}} |
Текущая версия от 19:21, 26 июля 2024
Тензорное исчисление — раздел математики, изучающий тензоры и тензорные поля, подразделяется на тензорную алгебру, входящую в качестве основной части в полилинейную алгебру, и тензорный анализ, изучающий дифференциальные операторы на алгебре тензорных полей. Векторный анализ и матричная алгебра могут быть рассмотрены как частные разделы тензорного исчисления (в связи с обобщением в понятии тензора понятий вектора и матрицы).
Является одним из основных инструментов дифференциальной геометрии. В этом направлении тензорное исчисление было развито Туллио Леви-Чивитой и Грегорио Риччи (ранее тензорное исчисление также называли «исчислением Риччи»). Особое развитие исчисление получило в начале XX века в связи с его широким применением в релятивистской физике.
Является основным математическим языком, с помощью которого формулируются фундаментальные законы таких наук, как механика сплошной среды, физика твёрдого тела, электродинамика, теория относительности и её приложения. С точки зрения этих приложений важными направлениями в исчислении являются теория инвариантов тензоров и теория тензорных функций.
Литература
[править | править код]- Тензорное исчисление // Татары — Топрик. — М. : Советская энциклопедия, 1956. — С. 213—218. — (Большая советская энциклопедия : [в 51 т.] / гл. ред. Б. А. Введенский ; 1949—1958, т. 42).
- Димитриенко Ю. И. Тензорное исчисление. — М.: Высшая школа, 2001. — 575 с. — ISBN 5-06-004155-7.
- Коренев Г. В. Тензорное исчисление. — М.: Издательство МФТИ, 2000. — 240 с. — ISBN 5-89155-047-4.
- Сокольников И. С. Тензорный анализ. — М.: Наука, 1971. — 374 с.
- Схоутен Я. А. Тензорный анализ для физиков. — М.: Главная редакция физико-математической литературы изд-ва "Наука", 1965. — 456 с.
- Широков П. А. Тензорное исчисление. — М.—Л.: Гостехиздат, 1934. — 464 с.