Глобальная сеть телескопов-роботов МАСТЕР: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Поправлена хронология установок сети МАСТЕР.
м ruwiki → middle priority → Дублирование секции примечаний, removed: <references, {{примечания, typos fixed: 12-ой → 12-й
 
(не показаны 3 промежуточные версии 3 участников)
Строка 15: Строка 15:


'''МАСТЕР''' ('''М'''обильная '''А'''строномическая '''С'''истема '''ТЕ'''лескопов-'''Р'''оботов) — глобальная сеть [[телескоп]]ов-роботов [[МГУ имени М. В. Ломоносова]]
'''МАСТЕР''' ('''М'''обильная '''А'''строномическая '''С'''истема '''ТЕ'''лескопов-'''Р'''оботов) — глобальная сеть [[телескоп]]ов-роботов [[МГУ имени М. В. Ломоносова]]

<references />
. Создана под руководством профессора [[Липунов Владимир Михайлович|Липунова В. М.]] учеными Московского университета. Основная цель проекта МАСТЕР — это создание обзора всего видимого неба, получаемого в течение одной ночи с пределом до 19-20 [[звёздная величина|зв. вел]]. Такой обзор позволит решить ряд фундаментальных проблем: поиск [[тёмная энергия|тёмной энергии]] посредством открытия и фотометрии [[сверхновая|сверхновых]] (в том числе SNIa), поиск [[экзопланета|экзопланет]], наблюдение эффектов [[микролинзирование|микролинзирования]], открытие [[малые тела Солнечной системы|малых тел Солнечной системы]] и мониторинг [[космический мусор|космического мусора]]. Все телескопы МАСТЕР подключены к системе алертных предупреждений, и способны наблюдать оптическое излучение [[гамма-всплеск]]ов синхронно в нескольких фильтрах и в нескольких плоскостях поляризации.
Создана под руководством профессора [[Липунов Владимир Михайлович|Липунова В. М.]] учеными Московского университета. Основная цель проекта МАСТЕР — это создание обзора всего видимого неба, получаемого в течение одной ночи с пределом до 19-20 [[звёздная величина|зв. вел]]. Такой обзор позволит решить ряд фундаментальных проблем: поиск [[тёмная энергия|тёмной энергии]] посредством открытия и фотометрии [[сверхновая|сверхновых]] (в том числе SNIa), поиск [[экзопланета|экзопланет]], наблюдение эффектов [[микролинзирование|микролинзирования]], открытие [[малые тела Солнечной системы|малых тел Солнечной системы]] и мониторинг [[космический мусор|космического мусора]]. Все телескопы МАСТЕР подключены к системе алертных предупреждений, и способны наблюдать оптическое излучение [[гамма-всплеск]]ов синхронно в нескольких фильтрах и в нескольких плоскостях поляризации.


== История создания ==
== История создания ==
Строка 29: Строка 29:
*В 2009 году под [[Благовещенск]]ом (на базе [[Благовещенский государственный педагогический университет|Благовещенского государственного педагогического университета]]);
*В 2009 году под [[Благовещенск]]ом (на базе [[Благовещенский государственный педагогический университет|Благовещенского государственного педагогического университета]]);
* В 2009 году в Тункинской долине [[Иркутск]]ом (в [[Тункинский астрофизический центр|Тункинском астрофизическом центре]] ТАЦКП [[Иркутский государственный университет|Иркутского государственного университета]] ФГБОУ ВПО «ИГУ»);
* В 2009 году в Тункинской долине [[Иркутск]]ом (в [[Тункинский астрофизический центр|Тункинском астрофизическом центре]] ТАЦКП [[Иркутский государственный университет|Иркутского государственного университета]] ФГБОУ ВПО «ИГУ»);
* в 2012 году в [[Аргентина|Аргентине]] в обсерватории [[Национальный университет Сан Хуан|Национального университета Сан Хуан]] начинают работать сверх-широкопольные камера МАСТЕРа, на которых открыт первый транзиент в Южном полушарии 12-ой звёздной величины;
* в 2012 году в [[Аргентина|Аргентине]] в обсерватории [[Национальный университет Сан Хуан|Национального университета Сан Хуан]] начинают работать сверх-широкопольные камера МАСТЕРа, на которых открыт первый транзиент в Южном полушарии 12-й звёздной величины;
* в 2014 году в [[ЮАР]] в южно-африканской обсерватории [[SAAO]];
* в 2014 году в [[ЮАР]] в южно-африканской обсерватории [[SAAO]];
* в 2015 году в [[Крым]]у (на [[Крымская лаборатория ГАИШ МГУ|Крымской астрономической станции МГУ им. М. В. Ломоносова]]);
* в 2015 году в [[Крым]]у (на [[Крымская лаборатория ГАИШ МГУ|Крымской астрономической станции МГУ им. М. В. Ломоносова]]);
* В 2015 году на [[Канарские острова|Канарских островах]] в [[Испания|Испании]] в обсерватории [[Канарский институт астрофизики|IAC]].
* В 2015 году на [[Канарские острова|Канарских островах]] в [[Испания|Испании]] в обсерватории [[Канарский институт астрофизики|IAC]].
* В 2016 году в [[Аргентина|Аргентине]] в обсерватории [[Национальный университет Сан Хуан|Национального университета Сан Хуан]] начинает работать однотрубный телескоп-робот МАСТЕР;
* В 2016 году в [[Аргентина|Аргентине]] в обсерватории [[Национальный университет Сан Хуан|Национального университета Сан Хуан]] начинает работать однотрубный телескоп-робот МАСТЕР;
* В 2022 году в [[Мексике|Мексике]] в обсерватории им. [[Гильермо Аро|Гильермо Аро]] начинает работать телескоп-робот МАСТЕРII;
* В 2022 году в [[Мексике]] в обсерватории им. [[Гильермо Аро]] начинает работать телескоп-робот МАСТЕРII;


Продолжается развитие сети путём создания более крупных телескопов МАСТЕР 600 и строительство новых обсерваторий.
Продолжается развитие сети путём создания более крупных телескопов МАСТЕР 600 и строительство новых обсерваторий.
Строка 41: Строка 41:
Каждая обсерватория сети МАСТЕР оснащена широкопольной и сверхширокопольной установками.
Каждая обсерватория сети МАСТЕР оснащена широкопольной и сверхширокопольной установками.


Оптический роботизированный комплекс МАСТЕР II представляет собой установленные на одной монтировке два светосильных зеркально-линзовых телескопа [[система Гамильтона|системы Гамильтона]] с диаметром 40 см, фокусным расстоянием 1 метр, полем зрения 4 квадратных градуса. Телескопы установлены на быстрой паралактической монтировке способной наводиться со скоростью 50 градусов в секунду под автоматическим куполом и способны работать как в полностью автономной режиме без участия человека, так и в режиме удаленного (по Интернет) управления. Каждый телескоп оснащен двумя ПЗС-камерами (4000x4000 пикселей), [[фотометр]]ом (собственная разработка) с блоком фильтров для проведения детальных фотометрических исследований астрофизических объектов и поляриметром для измерений степени поляризации.<ref>{{cite web|url=https://msupress.com/catalogue/books/book/astronomicheskie-robotizirovannye-seti-i-operativnaya-mnogokanalnaya-astrofizika-na-primere-globalno/|title=Астрономические роботизированные сети и оперативная многоканальная астрофизика (на примере Глобальной сети МАСТЕР)|lang=Русский|author=Липунов В. М. Корнилов В. Г. Горбовской Е. С. Тюрина Н. В. Кузнецов А. С|website=Серия "Труды выдающихся учёных МГУ", посвящённой 270-летию Московского университета.|date=2023|publisher=Издательский Дом МГУ|archive-url=https://msupress.com/catalogue/books/book/astronomicheskie-robotizirovannye-seti-i-operativnaya-mnogokanalnaya-astrofizika-na-primere-globalno/|archive-date=2024-03-13|access-date=2024-03-13|deadlink=no|url-status=live}}</ref> Скорость наведения по алерту — 8 градусов в секунду. Телескопы снабжены актюатором, позволяющим сводить трубы параллельно при проведении синхронных наблюдений быстроизменяющихся объектов в разных фильтрах или в разных плоскостях поляризации. В режиме обзора неба телескопы разводятся, и общее поле зрения становится равным 8 квадратным градусам.
Оптический роботизированный комплекс МАСТЕР II представляет собой установленные на одной монтировке два светосильных зеркально-линзовых телескопа [[система Гамильтона|системы Гамильтона]] с диаметром 40 см, фокусным расстоянием 1 метр, полем зрения 4 квадратных градуса. Телескопы установлены на быстрой паралактической монтировке способной наводиться со скоростью 50 градусов в секунду под автоматическим куполом и способны работать как в полностью автономной режиме без участия человека, так и в режиме удаленного (по Интернет) управления. Каждый телескоп оснащен двумя ПЗС-камерами (4000x4000 пикселей), [[фотометр]]ом (собственная разработка) с блоком фильтров для проведения детальных фотометрических исследований астрофизических объектов и поляриметром для измерений степени поляризации.<ref>{{cite web|url=https://msupress.com/catalogue/books/book/astronomicheskie-robotizirovannye-seti-i-operativnaya-mnogokanalnaya-astrofizika-na-primere-globalno/|title=Астрономические роботизированные сети и оперативная многоканальная астрофизика (на примере Глобальной сети МАСТЕР)|lang=Русский|author=Липунов В. М. Корнилов В. Г. Горбовской Е. С. Тюрина Н. В. Кузнецов А. С|website=Серия "Труды выдающихся учёных МГУ", посвящённой 270-летию Московского университета.|date=2023|publisher=Издательский Дом МГУ|archive-url=https://web.archive.org/web/20240313151226/https://msupress.com/catalogue/books/book/astronomicheskie-robotizirovannye-seti-i-operativnaya-mnogokanalnaya-astrofizika-na-primere-globalno/|archive-date=2024-03-13|access-date=2024-03-13|deadlink=no|url-status=bot: unknown}}</ref> Скорость наведения по алерту — 8 градусов в секунду. Телескопы снабжены актюатором, позволяющим сводить трубы параллельно при проведении синхронных наблюдений быстроизменяющихся объектов в разных фильтрах или в разных плоскостях поляризации. В режиме обзора неба телескопы разводятся, и общее поле зрения становится равным 8 квадратным градусам.


Таким образом, по состоянию на 2024 год в Глобальная сеть МАСТЕР работают с общим полем зрения 32 квадратных градуса и чувствительностью до 20-й звездной величины в безлунную ночь при 3-минутной экспозиции. Телескопы сами выбирают тактику обзора на ночь, автоматически получают изображения, обрабатывают их в реальном времени, формируя непрерывно растущую базу данных, и предлагают астрономам список объектов не содержащихся в астрономических каталогах.
Таким образом, по состоянию на 2024 год в Глобальная сеть МАСТЕР работают с общим полем зрения 32 квадратных градуса и чувствительностью до 20-й звездной величины в безлунную ночь при 3-минутной экспозиции. Телескопы сами выбирают тактику обзора на ночь, автоматически получают изображения, обрабатывают их в реальном времени, формируя непрерывно растущую базу данных, и предлагают астрономам список объектов не содержащихся в астрономических каталогах.

Текущая версия от 20:44, 13 сентября 2024

МАСТЕР
Мобильная Астрономическая Система ТЕлескопов-Роботов
Тип глобальная сеть телескопов-роботов
Сайт observ.pereplet.ru

МАСТЕР (Мобильная Астрономическая Система ТЕлескопов-Роботов) — глобальная сеть телескопов-роботов МГУ имени М. В. Ломоносова

Создана под руководством профессора Липунова В. М. учеными Московского университета. Основная цель проекта МАСТЕР — это создание обзора всего видимого неба, получаемого в течение одной ночи с пределом до 19-20 зв. вел. Такой обзор позволит решить ряд фундаментальных проблем: поиск тёмной энергии посредством открытия и фотометрии сверхновых (в том числе SNIa), поиск экзопланет, наблюдение эффектов микролинзирования, открытие малых тел Солнечной системы и мониторинг космического мусора. Все телескопы МАСТЕР подключены к системе алертных предупреждений, и способны наблюдать оптическое излучение гамма-всплесков синхронно в нескольких фильтрах и в нескольких плоскостях поляризации.

История создания

[править | править код]

Глобальная сеть телескопов-роботов МАСТЕР развивается под руководством профессора МГУ имени М. В. Ломоносова Липунова В. М. с 2002 года, когда под Москвой на частной обсерватории А. В. Крылова был создан первый робот-телескоп МАСТЕР для исследования оптического излучения космических гамма-всплесков.

В первые годы (до 2008 года) проект полностью развивался при материальной поддержке генерального директора ОАО «Московское Объединение „Оптика“» С. М. Бодрова. На обсерватории под Москвой было зарегистрировано оптическое излучение гамма-всплеска GRB021219 — GSN-circular-1770 и была открыта первая активная сверхновая в России SN2005bv — IAUC 8520.

Начиная с 2008 года, проект получает государственную поддержку. В результате, к 2024 году телескопы-роботы МАСТЕР II, разработанные командой МАСТЕРа и выпускаемые ОАО «МO „Оптика“», установлены[1]

Продолжается развитие сети путём создания более крупных телескопов МАСТЕР 600 и строительство новых обсерваторий.

Инструменты

[править | править код]

Каждая обсерватория сети МАСТЕР оснащена широкопольной и сверхширокопольной установками.

Оптический роботизированный комплекс МАСТЕР II представляет собой установленные на одной монтировке два светосильных зеркально-линзовых телескопа системы Гамильтона с диаметром 40 см, фокусным расстоянием 1 метр, полем зрения 4 квадратных градуса. Телескопы установлены на быстрой паралактической монтировке способной наводиться со скоростью 50 градусов в секунду под автоматическим куполом и способны работать как в полностью автономной режиме без участия человека, так и в режиме удаленного (по Интернет) управления. Каждый телескоп оснащен двумя ПЗС-камерами (4000x4000 пикселей), фотометром (собственная разработка) с блоком фильтров для проведения детальных фотометрических исследований астрофизических объектов и поляриметром для измерений степени поляризации.[2] Скорость наведения по алерту — 8 градусов в секунду. Телескопы снабжены актюатором, позволяющим сводить трубы параллельно при проведении синхронных наблюдений быстроизменяющихся объектов в разных фильтрах или в разных плоскостях поляризации. В режиме обзора неба телескопы разводятся, и общее поле зрения становится равным 8 квадратным градусам.

Таким образом, по состоянию на 2024 год в Глобальная сеть МАСТЕР работают с общим полем зрения 32 квадратных градуса и чувствительностью до 20-й звездной величины в безлунную ночь при 3-минутной экспозиции. Телескопы сами выбирают тактику обзора на ночь, автоматически получают изображения, обрабатывают их в реальном времени, формируя непрерывно растущую базу данных, и предлагают астрономам список объектов не содержащихся в астрономических каталогах.

Кроме светосильных телескопов обсерватории МАСТЕРа оснащены камерами сверхширокого поля MASTER VWF (Very Wide Field) способными получать снимки без перерывов со скоростью до 7 кадров в секунду и полем зрения 400 квадратных градусов. В настоящее время сеть МАСТЕР имеет 14 камер сверхширокого поля с общим полем зрения 5600 квадратных градусов. Эти камеры предназначены для предварительного и синхронного наблюдения гамма-всплесков при их случайном попадании в поле зрения камер сверхширокого поля. Главная цель установки этих камер — первичная регистрация собственного оптического излучения коротких гамма-всплесков, не наблюдавшихся другими телескопами. Предельная звездная величина камер близка к 14 при суммарной экспозиции несколько минут.

Телескопы сети называют роботизированными так как они не просто автоматически наводятся по заданной программе, а способны автономно выбирать стратегию обзора неба, обрабатывать потоки данных порядка нескольких терабайт в сутки в режиме реального времени и писать и отправлять научные телеграммы.

Одно из преимуществ сети МАСТЕР состоит в идентичности оборудования, что позволяет проводить непрерывные наблюдения одного объекта в течение нескольких суток (в зимнее время) в одной фотометрической системе.

Направления исследований

[править | править код]

Учеными группы МАСТЕР за 10 лет создано математическое обеспечение, которое позволяет в автоматическом режиме проводить мониторинг ближнего и дальнего космического пространства на всех обсерваториях сети МАСТЕР (Благовещенск, Иркутск, Екатеринбург, Кисловодск, ЮАР, Канарские острова и Аргентина), и получать полную информацию обо всех объектах на каждом изображении через 1-2 минуты после считывания с ПЗС-камеры, включая распознавание движущихся объектов и определение параметров их движения.

Информация по каждому объекту на кадре включает историю предыдущих наблюдений данной области на всех обсерваториях сети МАСТЕР, а также опубликованные в международных центрах данные каталогов и обзоров.

Основные достижения

[править | править код]

На телескопах сети МАСТЕР за несколько лет в автоматическом режиме открыто и опубликовано 860 оптических транзиентов (быстропеременных объектов) расположенных на расстояниях от нескольких сотен световых лет до миллиарда световых лет. Список объектов включает в себя:[3]

  • оптические источники гамма-всплесков (например, пионерские исследования гамма-всплеска GRB 160625B[англ.] крымским телескопом системы[4]);
  • сверхновые звезды различных типов (для примера XXX);
  • вспышки активных ядер галактик и квазаров (MASTER OT J141922.56-083831.7);
  • вспышки килоновых, вызванные слиянием нейтронных звёзд (например, пионерские исследования источника GW170817 аргентинским телескопом системы)[5];
  • вспышки новых и новоподобных звезд в нашей Галактике и в Андромеде;
  • вспышки карликовых новых звезд, в том числе выско амплитудные (катаклизмические переменные);
  • переменные звезды типа UV Cet;
  • затменные звезды типа Epsilon Auriga (падение блеска на 5 величин);
  • кометы (C/2015 G2 MASTER и C/2015 K1 MASTER);
  • астероиды, в том числе потенциально-опасные.[6][7]

В последние несколько лет МАСТЕР является лидером по ранним наблюдениям собственного оптического излучения гамма-вслесков и открытию ярких оптических транзиентов. Крупнейшие наземные и космические телескопы мира проводят спектральные исследования открываемых на МАСТЕР объектов:

  • 10,4-м телескоп GCT (Большой Канарский Телескоп, Испания) — научная телеграмма GCN[8],
  • 10-м телескоп SALT (ЮАР)[9],
  • 4,2-м WHT (Великобритания-Испания)[10],
  • 3,6-м NTT (ESO, Chile)[11],
  • 9,2-м HET (США)[12],
  • гамма-обсерватории Swift и ИНТЕГРАЛ (кооперация ЕС, России, США)[13][14],
  • 6-м БТА САО РАН (Россия) — научная телеграмма GCN[15],
  • 2,1-м Guillermo Haro (Мексика)[16],
  • 1,8-м Сopernico telescope (Италия)[17][18][19],
  • 1,5-м Fred Lawrence Whipple (США)[20] и др.

Данный инновационный проект, охватывающий широкий спектр современных технологий, был (морально) поддержан тремя технологическими платформами: Национальной космической технологической платформой; Технологиями мехатроники, встраиваемых систем управления, радиочастотной идентификации и роботостроение; Национальной суперкомпьютерной технологической платформой.

Примечания

[править | править код]
  1. Амнуэль, 2020, с. 57—58.
  2. Липунов В. М. Корнилов В. Г. Горбовской Е. С. Тюрина Н. В. Кузнецов А. С. Астрономические роботизированные сети и оперативная многоканальная астрофизика (на примере Глобальной сети МАСТЕР) (рус.). Серия "Труды выдающихся учёных МГУ", посвящённой 270-летию Московского университета.. Издательский Дом МГУ (2023). Дата обращения: 13 марта 2024. Архивировано 13 марта 2024 года.
  3. List of Optical Transients discovered by the unique russian MASTER Global Robotic Net (англ.). observ.pereplet.ru. Дата обращения: 23 августа 2015. Архивировано 18 апреля 2015 года.
  4. Амнуэль, 2020, с. 59—60.
  5. Амнуэль, 2020, с. 61.
  6. Телескоп в Тункинской долине Бурятии зафиксировал потерянный 16 лет назад астероид. УланМедиа (21 сентября 2014). Дата обращения: 24 августа 2015. Архивировано 6 октября 2014 года.
  7. Липунов В. М. Астрономы обнаруживают потенциально опасные астероиды каждую ночь. Вести-ФМ (4 марта 2013). Дата обращения: 6 октября 2014. Архивировано 6 октября 2014 года.
  8. Antonio de Ugarte Postigo at IAA-CSIC. GRB 140801A: Redshift from the 10.4m GTC telescope (англ.). GCN CIRCULAR. gcn.gsfc.nasa.gov (14 августа 2012). Дата обращения: 24 августа 2015. Архивировано 8 марта 2016 года.
  9. SALT spectral observations of a new, bright, southern CV: MASTER OT J142023.5-485540. astronomerstelegram.org (15 июля 2013). Дата обращения: 24 августа 2015. Архивировано 23 сентября 2015 года.
  10. Spectroscopic classification of two optical transients. astronomerstelegram.org (14 февраля 2013). Дата обращения: 24 августа 2015. Архивировано 23 сентября 2015 года.
  11. PESSTO spectroscopic classification of optical transients. astronomerstelegram.org (9 февраля 2013). Дата обращения: 24 августа 2015. Архивировано 23 сентября 2015 года.
  12. Spectroscopic Confirmation of MASTER OT J004619.12+414436.0 as an Fe II Nova in M31. astronomerstelegram.org (27 декабря 2012). Дата обращения: 24 августа 2015. Архивировано 23 сентября 2015 года.
  13. Swift follow-up of the optical transient MASTER OT 082752.77+704606.0. astronomerstelegram.org (7 апреля 2011). Дата обращения: 24 августа 2015. Архивировано 23 сентября 2015 года.
  14. X-ray detection of the supernova candidate MASTER OT 082752.77+704606.0. astronomerstelegram.org (20 мая 2011). Дата обращения: 24 августа 2015. Архивировано 23 сентября 2015 года.
  15. MASTER OT 082752.77+704606.0 discovery and 6 meter telescope follow-up spectroscopic observations (англ.). astronomerstelegram.org (3 апреля 2011). Дата обращения: 24 августа 2015. Архивировано 23 сентября 2015 года.
  16. Further NIR brightening of the QSO PKS0507+17 (англ.). astronomerstelegram.org (10 января 2013). Дата обращения: 24 августа 2015. Архивировано 23 сентября 2015 года.
  17. CBET003267.txt.
  18. Spectroscopic classification of PSN J13144705+5405055 (= MASTER OT J131447.05+540505.5) (англ.). astronomerstelegram.org (8 ноября 2012). Дата обращения: 24 августа 2015. Архивировано 23 сентября 2015 года.
  19. Spectroscopic classification of four supernovae at Asiago (англ.). astronomerstelegram.org (6 ноября 2012). Дата обращения: 24 августа 2015. Архивировано 23 сентября 2015 года.
  20. CBET003253.txt. Дата обращения: 24 августа 2015.

Литература

[править | править код]