Квантовая механика: различия между версиями
[непроверенная версия] | [отпатрулированная версия] |
м Добавление шаблона {{Разделы физики}} Метка: редактор вики-текста 2017 |
EyeBot (обсуждение | вклад) м автоматическая отмена правки участника 2A03:D000:1604:ADAA:29E0:A163:2CA4:CB95 - R:1 (+F) ORES: 0.8909 Метка: откат |
||
(не показана 31 промежуточная версия 22 участников) | |||
Строка 1: | Строка 1: | ||
{{Квантовая механика}} |
{{Квантовая механика}} |
||
[[Файл:Hydrogen_Density_Plots.png|мини| [[Волновая функция|Волновые функции]] [[электрон]]а в атоме водорода на разных энергетических уровнях. Квантовая механика не может предсказать точное местоположение частицы в пространстве, а только вероятность её обнаружения в разных малых окрестностях точки пространства<ref name="Born1926">{{Cite journal|author=Born|first=M.|title=Zur Quantenmechanik der Stoßvorgänge|journal=Zeitschrift für Physik|volume=37|pages=863–867|year=1926|doi=10.1007/BF01397477|bibcode=1926ZPhy...37..863B|issue=12}}</ref>. Более яркие области представляют более высокую вероятность обнаружения электрона]] |
[[Файл:Hydrogen_Density_Plots.png|мини| [[Волновая функция|Волновые функции]] [[электрон]]а в атоме водорода на разных энергетических уровнях. Квантовая механика не может предсказать точное местоположение частицы в пространстве, а только вероятность её обнаружения в разных малых окрестностях точки пространства<ref name="Born1926">{{Cite journal|author=Born|first=M.|title=Zur Quantenmechanik der Stoßvorgänge|journal=Zeitschrift für Physik|volume=37|pages=863–867|year=1926|doi=10.1007/BF01397477|bibcode=1926ZPhy...37..863B|issue=12 | issn=1434-6001}}</ref>. Более яркие области представляют более высокую вероятность обнаружения электрона]] |
||
'''Ква́нтовая (волнова́я) меха́ника''' — фундаментальная физическая [[Научная теория|теория]], которая описывает [[Природа|природу]] в масштабе [[атом]]ов и [[Субатомная частица|субатомных частиц]]. Она лежит в основании всей [[Квантовая физика|квантовой физики]], включая [[Квантовая химия|квантовую химию]], [[Квантовая теория поля|квантовую теорию поля]], [[Квантовая технология|квантовую технологию]] и [[Квантовая информатика|квантовую информатику]]{{переход|#Обзор и основные понятия}}. |
'''Ква́нтовая (волнова́я) меха́ника''' — фундаментальная физическая [[Научная теория|теория]], которая описывает [[Природа|природу]] в масштабе [[атом]]ов и [[Субатомная частица|субатомных частиц]]. Она лежит в основании всей [[Квантовая физика|квантовой физики]], включая [[Квантовая химия|квантовую химию]], [[Квантовая теория поля|квантовую теорию поля]], [[Квантовая технология|квантовую технологию]] и [[Квантовая информатика|квантовую информатику]]{{переход|#Обзор и основные понятия}}. |
||
Строка 7: | Строка 7: | ||
Квантовая механика отличается от классической физики тем, что [[энергия]], [[импульс]], [[Момент импульса|угловой момент]] и другие величины [[связанное энергетическое состояние|связанного состояния]] системы не могут принимать произвольные значения, но ограничены [[Дискретная математика|дискретными значениями]] ([[Квантование (физика)|квантование]]), объекты обладают характеристиками как [[Частица|частиц]], так и [[Волна|волн]] ([[корпускулярно-волновой дуализм]]){{переход|#Математическая формулировка}}, и существуют пределы нашей возможности точно предсказать значение физической величины до её измерения при заданном полном наборе начальных условий ([[принцип неопределённости]]){{переход|#Принцип неопределённости}}. |
Квантовая механика отличается от классической физики тем, что [[энергия]], [[импульс]], [[Момент импульса|угловой момент]] и другие величины [[связанное энергетическое состояние|связанного состояния]] системы не могут принимать произвольные значения, но ограничены [[Дискретная математика|дискретными значениями]] ([[Квантование (физика)|квантование]]), объекты обладают характеристиками как [[Частица|частиц]], так и [[Волна|волн]] ([[корпускулярно-волновой дуализм]]){{переход|#Математическая формулировка}}, и существуют пределы нашей возможности точно предсказать значение физической величины до её измерения при заданном полном наборе начальных условий ([[принцип неопределённости]]){{переход|#Принцип неопределённости}}. |
||
Квантовая механика [[История возникновения квантовой физики|постепенно возникла]] из теорий, объясняющих наблюдения, которые не могли быть согласованы с понятиями классической физики, таких как решение [[Планк, Макс|Макса Планка]] в 1900 |
Квантовая механика [[История возникновения квантовой физики|постепенно возникла]] из теорий, объясняющих наблюдения, которые не могли быть согласованы с понятиями классической физики, таких как решение [[Планк, Макс|Макса Планка]] в 1900 году проблемы {{iw|излучение абсолютно чёрного тела|излучения абсолютно чёрного тела|en|Black-body radiation}} и соответствие между энергией и частотой кванта света в [[Эйнштейн, Альберт|статье Альберта Эйнштейна]] [[Статьи Annus mirabilis|1905 года]], которая объяснила [[фотоэффект]]. Эти ранние попытки понять микроскопические явления, теперь известные как «[[старая квантовая теория]]», привели к стремительному развитию квантовой механики в середине 1920-х годов в работах [[Бор, Нильс|Нильса Бора]], [[Шрёдингер, Эрвин|Эрвина Шрёдингера]], [[Гейзенберг, Вернер|Вернера Гейзенберга]], [[Борн, Макс|Макса Борна]] и других{{переход|#История}}. Современная теория формулируется с использованием различных [[Математические основы квантовой механики|специально разработанных математических формализмов]]{{переход|#Математическая формулировка}}. В одном из них математическая сущность, называемая [[Волновая функция|волновой функцией]], предоставляет информацию в виде [[Статистическая интерпретация волновой функции|амплитуд вероятности]] о том, к чему приводят измерения энергии, импульса и других физических свойств частицы{{переход|#Примеры}}. |
||
== Обзор и основные понятия == |
== Обзор и основные понятия == |
||
Квантовая механика позволяет рассчитывать свойства и поведение физических систем. Обычно её применяют к микроскопическим системам: молекулам, атомам и субатомным частицам<ref name="Feynman">{{Cite book|last1=Feynman|first1=Richard|last2=Leighton|first2=Robert|last3=Sands|first3=Matthew|title=The Feynman Lectures on Physics|volume=3|publisher=California Institute of Technology|date=1964|url=https://www.feynmanlectures.caltech.edu/III_01.html|isbn=978-0201500646|access-date=19 December 2020}}</ref>{{Rp|1.1}}. Также было показано, что квантовая механика верно описывает поведение сложных молекул с тысячами атомов<ref>{{Cite journal|title=Quantum superposition of molecules beyond 25 kDa|author=Yaakov Y. Fein|journal=Nature Physics|volume=15|pages=1242–1245|date=September 2019|issue=12|doi=10.1038/s41567-019-0663-9|bibcode=2019NatPh..15.1242F}}</ref>, хотя при попытке применить её к людям возникают философские вопросы и парадоксы, такие как [[друг Вигнера]], и её применение ко Вселенной в целом также остаётся спекулятивным<ref>{{Cite journal|author=Bojowald|first=Martin|title=Quantum cosmology: a review|journal=Reports on Progress in Physics|date=2015|volume=78|issue=2|doi=10.1088/0034-4885/78/2/023901|pmid=25582917|arxiv=1501.04899|bibcode=2015RPPh...78b3901B}}</ref>. Предсказания квантовой механики были подтверждены экспериментально с чрезвычайно высокой степенью [[Точность|точности]]{{Refn|Смотрите, например, [[ |
Квантовая механика позволяет рассчитывать свойства и поведение физических систем. Обычно её применяют к микроскопическим системам: молекулам, атомам и субатомным частицам<ref name="Feynman">{{Cite book|last1=Feynman|first1=Richard|last2=Leighton|first2=Robert|last3=Sands|first3=Matthew|title=The Feynman Lectures on Physics|volume=3|publisher=California Institute of Technology|date=1964|url=https://www.feynmanlectures.caltech.edu/III_01.html|isbn=978-0201500646|access-date=19 December 2020}} {{Wayback|url=https://www.feynmanlectures.caltech.edu/III_01.html |date=20230221053907 }}</ref>{{Rp|1.1}}. Также было показано, что квантовая механика верно описывает поведение сложных молекул с тысячами атомов<ref>{{Cite journal|title=Quantum superposition of molecules beyond 25 kDa|author=Yaakov Y. Fein|journal=Nature Physics|volume=15|pages=1242–1245|date=September 2019|issue=12|doi=10.1038/s41567-019-0663-9|bibcode=2019NatPh..15.1242F}}</ref>, хотя при попытке применить её к людям возникают философские вопросы и парадоксы, такие как [[друг Вигнера]], и её применение ко Вселенной в целом также остаётся спекулятивным<ref>{{Cite journal|author=Bojowald|first=Martin|title=Quantum cosmology: a review|journal=Reports on Progress in Physics|date=2015|volume=78|issue=2|doi=10.1088/0034-4885/78/2/023901|pmid=25582917|arxiv=1501.04899|bibcode=2015RPPh...78b3901B}}</ref>. Предсказания квантовой механики были подтверждены экспериментально с чрезвычайно высокой степенью [[Точность|точности]]{{Refn|Смотрите, например, [[Эксперименты по проверке точности КЭД]]. Было показано, что дальнейшее развитие квантовой механики с учётом теории относительности, известное как [[квантовая электродинамика]] (КЭД), согласуется с экспериментом с точностью до 1 части на 10<sup>8</sup> для некоторых атомных свойств<ref>{{статья |автор = B. Odom, D. Hanneke, B. D'Urso, and G. Gabrielse|заглавие = New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron|оригинал = |ссылка = |издание = Phys. Rev. Lett.|год = 2006|том = 97|страницы = 030801 |doi = 10.1103/PhysRevLett.97.030801|pmid = |bibcode = |arxiv = |ref = }}</ref><ref>{{статья |автор = D. Hanneke, S. Fogwell, and G. Gabrielse|заглавие = New Measurement of the Electron Magnetic Moment and the Fine Structure Constant|оригинал = |ссылка = |издание = Phys. Rev. Lett.|год = 2008|том = 100|страницы = 120801 |doi = 10.1103/PhysRevLett.100.120801|pmid = |bibcode = |arxiv = 0801.1134|ref = }}</ref>|group=К}}{{sfn|Иванов|2012|с=9}}. |
||
Фундаментальной особенностью квантовой теории является то, что она обычно не может с определённостью предсказать значения физических величин (динамических переменных), а только даёт вероятности их измерения{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=113}}. Математически вероятность находится путём возведения в квадрат абсолютного значения [[Комплексное число|комплексного числа]], известного как амплитуда вероятности{{sfn|Auletta|2000|p=28}}<ref>{{cite web|author = Мартинсон, Л. К.; Смирнов, Е. В.|url = http://fn.bmstu.ru/data-physics/library/physbook/tom5/ch3/texthtml/ch3_1.htm|title = 3.1. Волновая функция|lang = ru|website = |publisher = МГТУ им. Н. Э. Баумана|year = 2002| |
Фундаментальной особенностью квантовой теории является то, что она обычно не может с определённостью предсказать значения физических величин (динамических переменных), а только даёт вероятности их измерения{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=113}}. Математически вероятность находится путём возведения в квадрат абсолютного значения [[Комплексное число|комплексного числа]], известного как амплитуда вероятности{{sfn|Auletta|2000|p=28}}<ref>{{cite web|author = Мартинсон, Л. К.; Смирнов, Е. В.|url = http://fn.bmstu.ru/data-physics/library/physbook/tom5/ch3/texthtml/ch3_1.htm|title = 3.1. Волновая функция|lang = ru|website = |publisher = МГТУ им. Н. Э. Баумана|year = 2002|access-date = 2022-02-23|archive-date = 2021-01-22|archive-url = https://web.archive.org/web/20210122012242/http://fn.bmstu.ru/data-physics/library/physbook/tom5/ch3/texthtml/ch3_1.htm|url-status = live}}</ref>. Это утверждение известно как [[правило Борна]], названное в честь физика [[Борн, Макс|Макса Борна]]<ref name=Zeitschrift>{{статья |автор=Born M. |заглавие=Zur Quantenmechanik der Stoßvorgänge |издание=Zeitschrift für Physik |год=1926 |том=37 |выпуск=12 |номер= |страницы=863—867 |ссылка=https://link.springer.com/article/10.1007/BF01397477 |doi=10.1007/BF01397477 |arxiv= |bibcode=1926ZPhy...37..863B |язык=de |archivedate=2024-03-22 |archiveurl=https://web.archive.org/web/20240322104921/https://link.springer.com/article/10.1007/BF01397477 }}</ref>{{sfn|Иванов|2012|с=32}}. Например, квантовая частица, такая как [[электрон]], описывается [[Волновая функция|волновой функцией]], которая задаёт для каждой точки пространства амплитуду вероятности. Применение правила Борна к этим амплитудам определяет [[Плотность вероятности|функцию плотности вероятности]] для координаты частицы, когда будет проведён эксперимент по её измерению. Это лучшее, что может дать теория; нельзя точно сказать, где будет найден электрон. [[Уравнение Шрёдингера]] описывает эволюцию системы во времени, то есть связывает набор амплитуд вероятности, относящихся к одному моменту времени, с набором амплитуд вероятностей, относящихся к другому моменту времени<ref>{{cite web|author = Мартинсон Л. К., Смирнов Е. В.|url = http://fn.bmstu.ru/data-physics/library/physbook/tom5/ch3/texthtml/ch3_2.htm|title = 3.2. Уравнение Шредингера|lang = ru|website = |publisher = МГТУ им. Н. Э. Баумана|year = 2002|access-date = 2022-02-23|archive-date = 2020-08-13|archive-url = https://web.archive.org/web/20200813072017/http://fn.bmstu.ru/data-physics/library/physbook/tom5/ch3/texthtml/ch3_2.htm|url-status = live}}</ref>{{sfn|Иванов|2012|с=32}}. |
||
|last=Born |
|||
|first=Max |
|||
|editor1-last=Wheeler |
|||
|editor1-first=J. A. |
|||
|editor1-link=John Archibald Wheeler |
|||
|editor2-last=Zurek |
|||
|editor2-first=W. H. |
|||
|editor2-link=Wojciech H. Zurek |
|||
|title=Zur Quantenmechanik der Stoßvorgänge |
|||
|journal=Zeitschrift für Physik |
|||
|volume=37 |
|||
|trans-title=On the quantum mechanics of collisions |
|||
|date=1926 |
|||
|publisher=Princeton University Press |
|||
|publication-date=1983 |
|||
|doi=10.1007/BF01397477 |
|||
|isbn=978-0-691-08316-2 |
|||
|pages=863–867 |
|||
|bibcode = 1926ZPhy...37..863B |
|||
}}</ref>{{sfn|Иванов|2012|с=32}}. Например, квантовая частица, такая как [[электрон]], описывается [[Волновая функция|волновой функцией]], которая задаёт для каждой точки пространства амплитуду вероятности. Применение правила Борна к этим амплитудам определяет [[Плотность вероятности|функцию плотности вероятности]] для координаты частицы, когда будет проведён эксперимент по её измерению. Это лучшее, что может дать теория; нельзя точно сказать, где будет найден электрон. [[Уравнение Шрёдингера]] описывает эволюцию системы во времени, то есть связывает набор амплитуд вероятности, относящихся к одному моменту времени, с набором амплитуд вероятностей, относящихся к другому моменту времени<ref>{{cite web|author = Мартинсон, Л. К.; Смирнов, Е. В.|url = http://fn.bmstu.ru/data-physics/library/physbook/tom5/ch3/texthtml/ch3_2.htm|title = 3.2. Уравнение Шредингера|lang = ru|website = |publisher = МГТУ им. Н. Э. Баумана|year = 2002|accessdate = 2022-02-23|archive-date = 2020-08-13|archive-url = https://web.archive.org/web/20200813072017/http://fn.bmstu.ru/data-physics/library/physbook/tom5/ch3/texthtml/ch3_2.htm|deadlink = no}}</ref>{{sfn|Иванов|2012|с=32}}. |
|||
Одним из следствий математических правил квантовой механики является компромисс при попытке определить различные измеримые величины. Самая известная форма такого компромисса — [[Принцип неопределённости|принципа неопределённости]] гласит, что как бы ни было приготовлено состояние квантовой частицы, или как бы тщательно ни были поставлены над этой частицей опыты, при измерении невозможно точное предсказание значений её положения и [[импульс]]а в один момент времени<ref>{{cite web|author = Мартинсон |
Одним из следствий математических правил квантовой механики является компромисс при попытке определить различные измеримые величины. Самая известная форма такого компромисса — [[Принцип неопределённости|принципа неопределённости]] гласит, что как бы ни было приготовлено состояние квантовой частицы, или как бы тщательно ни были поставлены над этой частицей опыты, при измерении невозможно точное предсказание значений её положения и [[импульс]]а в один момент времени<ref>{{cite web|author = Мартинсон Л. К., Смирнов Е. В.|url = http://fn.bmstu.ru/data-physics/library/physbook/tom5/ch2/texthtml/ch2_3.htm|title = 2.3. Соотношения неопределенностей|lang = ru|website = |publisher = МГТУ им. Н. Э. Баумана|year = 2002|access-date = 2022-02-23|archive-date = 2020-08-07|archive-url = https://web.archive.org/web/20200807202709/http://fn.bmstu.ru/data-physics/library/physbook/tom5/ch2/texthtml/ch2_3.htm|url-status = live}}</ref>. |
||
Ещё одним следствием математических правил квантовой механики является [[Интерференция волн|квантовая интерференция]], в качестве примера которой рассматривается [[Двухщелевой опыт|опыт с двумя щелями]]. В базовом варианте этого эксперимента [[Когерентность (физика)|когерентный источник света]], например [[лазер]], освещает непрозрачную пластину, с прорезанными двумя параллельными щелями, и свет, проходящий через щели, наблюдается на экране позади пластины<ref name=" |
Ещё одним следствием математических правил квантовой механики является [[Интерференция волн|квантовая интерференция]], в качестве примера которой рассматривается [[Двухщелевой опыт|опыт с двумя щелями]]. В базовом варианте этого эксперимента [[Когерентность (физика)|когерентный источник света]], например [[лазер]], освещает непрозрачную пластину, с прорезанными двумя параллельными щелями, и свет, проходящий через щели, наблюдается на экране позади пластины<ref name="Feynman" />{{Rp|1.1–1.8}}<ref name="Lederman">{{книга|автор=Lederman L. M., Hill C. T. |часть=|заглавие=Quantum Physics for Poets |оригинал= |ссылка=https://books.google.com/books?id=qY_yOwHg_WYC&pg=PA102|издание=|ответственный=|место=|издательство=Prometheus Books|год=2011 |том= |страницы=102—111 |страниц=|isbn=978-1616142810|тираж=|язык=en}}</ref>{{Rp|102–111}}. Волновая природа света означает, что световые волны проходят через две щели, [[Интерференция волн|интерферируя]] и создавая на экране яркие и тёмные полосы — результат, которого нельзя было бы ожидать, если бы свет состоял из классических частиц<ref name="Lederman" />. Однако опыт всегда показывает, что свет поглощается экраном в отдельных точках в виде отдельных частиц, а не волн; интерференционная картина проявляется из-за различной плотности засветки фотографической пластины при попадании этих частиц на экран. Кроме того, в других вариациях опыта, включающих детекторы в щелях, обнаруживают, что каждый наблюдаемый [[фотон]] проходит через одну щель (как классическая частица), а не через обе щели (как волна)<ref name="Lederman" />{{Rp|109}}<ref name="Müller-Kirsten">{{книга|автор=Müller-Kirsten H. J. W.|часть=|заглавие=Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral|оригинал= |ссылка=https://books.google.com/books?id=p1_Z81Le58MC&pg=PA14 |издание=|ответственный=|место=|издательство=World Scientific|год=2006 |том=|страницы=14|страниц=|isbn=978-981-2566911|тираж=|язык=en}}</ref><ref name="Plotnitsky">{{книга|автор=Plotnitsky A. |часть=|заглавие=Niels Bohr and Complementarity: An Introduction|оригинал= |ссылка=https://books.google.com/books?id=dmdUp97S4AYC&pg=PA75 |издательство=Springer|год=2012|том=|страницы=75 |страниц=|isbn=978-1461445173 |тираж=|язык=en}}</ref>. Из [[Двухщелевой опыт|таких экспериментов]] следует вывод, что частицы не образуют интерференционную картину, если определить, через какую щель они проходят. Было обнаружено, что другие объекты атомного масштаба, такие как [[электрон]]ы, демонстрируют такое же поведение, когда падают на экран с двумя щелями<ref name="Feynman" />. Такое поведение микрообъектов известно как [[корпускулярно-волновой дуализм]] — он «лежит в сердце» квантовой механики{{sfn|Auletta|2000|p=25}}. |
||
[[Файл:EffetTunnel.gif|thumb|300 px|[[Квантовое туннелирование|Туннельный эффект]] — квантовая механика показывает, что электроны могут преодолеть потенциальный барьер, что подтверждается результатами экспериментов. <br>Классическая механика, наоборот, предсказывает, что это невозможно]] |
[[Файл:EffetTunnel.gif|thumb|300 px|[[Квантовое туннелирование|Туннельный эффект]] — квантовая механика показывает, что электроны могут преодолеть потенциальный барьер, что подтверждается результатами экспериментов. <br>Классическая механика, наоборот, предсказывает, что это невозможно]] |
||
⚫ | Ещё одно противоречащее повседневному опыту явление, предсказанное квантовой механикой — [[квантовое туннелирование]], когда частица, столкнувшись с [[Туннелирование через прямоугольный барьер|потенциальным барьером]], может преодолеть его, даже если её кинетическая энергия меньше максимума потенциала |
||
⚫ | Ещё одно противоречащее повседневному опыту явление, предсказанное квантовой механикой — [[квантовое туннелирование]], когда частица, столкнувшись с [[Туннелирование через прямоугольный барьер|потенциальным барьером]], может преодолеть его, даже если её кинетическая энергия меньше максимума потенциала{{sfn|Griffiths and Schroeter|2018}}. В классической механике эта частица всегда отражается от барьера. Квантовое туннелирование имеет несколько важных наблюдаемых последствий, включающих [[радиоактивный распад]], [[Термоядерная реакция|ядерный синтез]] в звёздах и такие приложения, как [[Сканирующий туннельный микроскоп|сканирующая туннельная микроскопия]] и создание [[туннельный диод|туннельных диодов]]<ref name="Trixler2013">{{статья|автор=Trixler F.|заглавие=Quantum tunnelling to the origin and evolution of life|издание=Current Organic Chemistry|год=2013 |том=17 |выпуск=|номер=|страницы=1758–1770 |ссылка=|doi=10.2174/13852728113179990083 |pmid=24039543 |arxiv=|bibcode=|язык=en}}</ref>. |
||
⚫ | Когда квантовые системы взаимодействуют, результатом может быть |
||
⚫ | Когда квантовые системы взаимодействуют, результатом может быть возникновение [[Квантовая запутанность|квантовой запутанности]]: их свойства становятся настолько переплетёнными, что описание целого исключительно в терминах отдельных частей больше невозможно. Шрёдингер назвал запутывание<ref>{{книга|автор=Bub J. |часть=Quantum entanglement|заглавие=Stanford Encyclopedia of Philosophy|оригинал= |ссылка=|издание=|ответственный=|место=|издательство=Metaphysics Research Lab, Stanford University|год=2019|том=|страницы=|страниц=|isbn=|тираж=|язык=en}}</ref> |
||
{{Начало цитаты}} |
{{Начало цитаты}} |
||
«… |
«… характерной чертой квантовой механики — тем, что вызывает её полный отход от классических путей понимания» |
||
{{оригинальный текст|en|„… the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought“}} |
{{оригинальный текст|en|„… the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought“}} |
||
{{Конец цитаты}} |
{{Конец цитаты}} |
||
Квантовая запутанность реализует нелогичные свойства {{iw|Квантовая псевдотелепатия|квантовой псевдотелепатии|en|Quantum pseudo-telepathy}} и может оказаться ценным методом в протоколах связи, таких как [[квантовое распределение ключей]] и [[Квантовое сверхплотное кодирование|сверхплотное кодирование]]<ref name="Caves">{{ |
Квантовая запутанность реализует нелогичные свойства {{iw|Квантовая псевдотелепатия|квантовой псевдотелепатии|en|Quantum pseudo-telepathy}} и может оказаться ценным методом в протоколах связи, таких как [[квантовое распределение ключей]] и [[Квантовое сверхплотное кодирование|сверхплотное кодирование]]<ref name="Caves">{{книга|автор=Caves C. M. |часть=Quantum Information Science: Emerging No More|заглавие=OSA Century of Optics|оригинал= |ссылка=|издание=|ответственный=|место=|издательство=The Optical Society|год=2015 |том=|страницы=|страниц=|isbn=978-1-943580-04-0|тираж=|язык=en}}</ref>. Вопреки распространённому заблуждению, запутанность не позволяет посылать сигналы [[Сверхсветовое движение|быстрее скорости света]], что демонстрирует {{iw|теорема об отсутствии связи||en|No-communication theorem}}<ref name="Caves" />. |
||
Другая возможность, открываемая запутанностью, — это проверка «[[Теория скрытых параметров|скрытых переменных]]», гипотетических свойств, более фундаментальных, чем величины, рассматриваемые в самой квантовой теории, знание которых позволило бы делать более точные предсказания, чем может дать квантовая теория. Множество полученных результатов, в первую очередь [[Неравенства Белла|теорема Белла]], продемонстрировало, что широкие классы таких теорий со скрытыми переменными |
Другая возможность, открываемая запутанностью, — это проверка существования «[[Теория скрытых параметров|скрытых переменных]]», гипотетических свойств, более фундаментальных, чем величины, рассматриваемые в самой квантовой теории, знание которых позволило бы делать более точные предсказания, чем может дать квантовая теория. Множество полученных результатов, в первую очередь [[Неравенства Белла|теорема Белла]], продемонстрировало, что широкие классы таких теорий со скрытыми переменными несовместимы с квантовой физикой. Согласно [[Неравенства Белла|теореме Белла]], если природа действительно описывается какой-либо теорией ''локальных'' скрытых переменных, то результаты [[Проверка неравенств Белла|проверки неравенств Белла]] будут ограничены определённым образом, поддающимся количественной оценке. Было проведено множество тестов Белла с использованием запутанных частиц, и они показали результаты, несовместимые с ограничениями, налагаемыми теориями с локальными скрытыми переменными<ref name="wiseman15">{{статья|автор=Wiseman H.|заглавие=Death by experiment for local realism |издание=Nature |год=2015 |том=526 |выпуск=7575 |номер=|страницы=649–650 |ссылка=|doi=10.1038/nature15631|pmid=26503054|arxiv=|bibcode=|язык=en }}</ref><ref name="wolchover17">{{Cite web|lang=en-US|url=https://www.quantamagazine.org/physicists-are-closing-the-bell-test-loophole-20170207/|title=Experiment Reaffirms Quantum Weirdness|last=Wolchover|first=Natalie|website=[[Quanta Magazine]]|date=2017-02-07|access-date=2020-02-08|archive-date=2017-05-22|archive-url=https://web.archive.org/web/20170522175741/https://www.quantamagazine.org/20170207-bell-test-quantum-loophole/|url-status=live}}</ref>. |
||
Невозможно представить эти понятия более чем поверхностно, не вводя при этом фактическую математику; понимание квантовой механики требует не только манипулирования комплексными числами, но и [[Линейная алгебра|линейной алгебры]], [[Дифференциальное уравнение|дифференциальных уравнений]], [[Теория групп|теории групп]] и других более сложных областей математики. Физик [[Баэз, Джон К.|Джон К. Баэз]] предупреждает<ref>{{cite web|url=https://math.ucr.edu/home/baez/books.html|title=How to Learn Math and Physics|first=John C.|last=Baez|website=University of California, Riverside|date= |
Невозможно представить эти понятия более чем поверхностно, не вводя при этом фактическую математику; понимание квантовой механики требует не только манипулирования комплексными числами, но и [[Линейная алгебра|линейной алгебры]], [[Дифференциальное уравнение|дифференциальных уравнений]], [[Теория групп|теории групп]] и других более сложных областей математики. Физик [[Баэз, Джон К.|Джон К. Баэз]] предупреждает<ref>{{cite web|url=https://math.ucr.edu/home/baez/books.html|title=How to Learn Math and Physics|first=John C.|last=Baez|website=University of California, Riverside|date=2020-03-20|access-date=2020-12-19|archive-date=2022-01-27|archive-url=https://web.archive.org/web/20220127173448/https://math.ucr.edu/home/baez/books.html|url-status=live}}</ref>: |
||
{{Начало цитаты}} |
{{Начало цитаты}} |
||
«… нельзя понять интерпретацию квантовой механики, не умея решать |
«… нельзя понять интерпретацию квантовой механики, не умея решать квантовомеханические задачи, — чтобы понять эту теорию, нужно уметь использовать её (и наоборот)». |
||
{{оригинальный текст|en|„… there’s no way to understand the interpretation of quantum mechanics without also being able to ''solve quantum mechanics problems'' — to understand the theory, you need to be able to use it (and vice versa)“.}} |
{{оригинальный текст|en|„… there’s no way to understand the interpretation of quantum mechanics without also being able to ''solve quantum mechanics problems'' — to understand the theory, you need to be able to use it (and vice versa)“.}} |
||
{{Конец цитаты}} |
{{Конец цитаты}} |
||
[[Карл Саган]] обрисовал в общих чертах «математическое обоснование» квантовой механики и написал<ref>{{ |
[[Карл Саган]] обрисовал в общих чертах «математическое обоснование» квантовой механики и написал<ref>{{книга|автор=[[Саган, Карл|Sagan C.]]|часть=|заглавие=The Demon-Haunted World: Science as a Candle in the Dark|оригинал= |ссылка=|издание=|ответственный=|место=|издательство=Ballantine Books|год=1996|том=|страницы=[https://archive.org/details/demonhauntedworl00saga/page/249 249]|страниц=|isbn=0-345-40946-9|тираж=|язык=en}}</ref>: |
||
{{Начало цитаты}} |
{{Начало цитаты}} |
||
«Для большинства студентов-физиков это может занять у них период, скажем, от третьего класса до начала аспирантуры — примерно 15 лет. (…) Объём работы популяризатора науки, чтобы попытаться донести какое-то представление о квантовой механике до широкой аудитории, не прошедшей через этот обряд инициации, пугает. Действительно, на мой взгляд, нет успешного популярного изложения квантовой механики — отчасти по этой причине |
«Для большинства студентов-физиков это может занять у них период, скажем, от третьего класса до начала аспирантуры — примерно 15 лет. (…) Объём работы популяризатора науки, чтобы попытаться донести какое-то представление о квантовой механике до широкой аудитории, не прошедшей через этот обряд инициации, пугает. Действительно, на мой взгляд, нет успешного популярного изложения квантовой механики — отчасти по этой причине». |
||
{{оригинальный текст|en|„For most physics students, this might occupy them from, say, third grade to early graduate school{{snd}}roughly 15 years. […] The job of the popularizer of science, trying to get across some idea of quantum mechanics to a general audience that has not gone through these initiation rites, is daunting. Indeed, there are no successful popularizations of quantum mechanics in my opinion{{snd}}partly for this reason.“}} |
{{оригинальный текст|en|„For most physics students, this might occupy them from, say, third grade to early graduate school{{snd}}roughly 15 years. […] The job of the popularizer of science, trying to get across some idea of quantum mechanics to a general audience that has not gone through these initiation rites, is daunting. Indeed, there are no successful popularizations of quantum mechanics in my opinion{{snd}}partly for this reason.“}} |
||
{{Конец цитаты}} |
{{Конец цитаты}} |
||
Строка 62: | Строка 44: | ||
== История == |
== История == |
||
{{main|История возникновения квантовой физики|Атомная теория}} |
{{main|История возникновения квантовой физики|Атомная теория}} |
||
[[Файл:Max_Planck_(1858-1947).jpg|мини| [[Планк, Макс|Макс Планк]] считается отцом квантовой теории |
[[Файл:Max_Planck_(1858-1947).jpg|мини| [[Планк, Макс|Макс Планк]] считается отцом квантовой теории]] |
||
[[Файл:Solvay_conference_1927.jpg |мини| [[Сольвеевские конгрессы|Сольвеевская конференция]] 1927 |
[[Файл:Solvay_conference_1927.jpg |мини| [[Сольвеевские конгрессы|Сольвеевская конференция]] 1927 года в [[Брюссельский столичный регион|Брюсселе]] стала пятой всемирной конференцией по физике]] |
||
Квантовая механика была разработана в первые десятилетия |
Квантовая механика была разработана в первые десятилетия XX века из-за необходимости объяснить явления, которые не нашли объяснения в рамках классического подхода{{sfn|Джеммер|1985|с=13}}. Научные исследования волновой природы света начались в XVII и XVIII веках, когда такие учёные, как [[Гук, Роберт|Роберт Гук]], [[Гюйгенс, Христиан|Христиан Гюйгенс]] и [[Эйлер, Леонард|Леонард Эйлер]], предложили волновую теорию света, основанную на экспериментальных наблюдениях<ref name="Born & Wolf">{{книга|автор=[[Борн, Макс|Born M.]], [[Вольф, Эмиль|Wolf E.]] |часть=|заглавие=Principles of Optics |оригинал= |ссылка=|издание=|ответственный=|место=|издательство=Cambridge University Press|год=1999 |том=|страницы=|страниц=|isbn=0-521-64222-1 |oclc=1151058062|тираж=|язык=en}}</ref>. В 1803 году английский [[Универсальный человек|эрудит]] [[Юнг, Томас|Томас Юнг]] описал знаменитый [[Опыт Юнга|эксперимент с двумя щелями]]. Этот эксперимент сыграл важную роль в общем признании [[Волновая оптика|волновой теории света]]<ref>{{статья|автор=Scheider W. |заглавие=Bringing one of the great moments of science to the classroom|издание=[[The Physics Teacher]]|год=1986 |том=24|выпуск=4 |страницы=217–219|ссылка=http://www.cavendishscience.org/phys/tyoung/tyoung.htm10.1119/1.2341987|bibcode=1986PhTea..24..217S |arxiv=|access-date=2022-01-26|archive-date=2018-10-18|archive-url=https://web.archive.org/web/20181018052344/http://www.cavendishscience.org/phys/tyoung/tyoung.htm|язык=en}}</ref>. |
||
В начале |
В начале XIX века [[Химия|химические]] исследования [[Дальтон, Джон|Джона Дальтона]] и [[Авогадро, Амедео|Амедео Авогадро]] придали вес [[Атомная теория|атомной теории]] материи, идее, на которой [[Максвелл, Джеймс Клерк|Джеймс Клерк Максвелл]], [[Больцман, Людвиг|Людвиг Больцман]] и другие построили [[Молекулярно-кинетическая теория|кинетическую теорию газов]]. Успехи кинетической теории ещё больше укрепили веру в идею о том, что материя состоит из атомов, однако у этой теории также были недостатки, которые можно было устранить только с развитием квантовой механики<ref name="Feynman-kinetic-theory">{{Cite book|last=Feynman|first=Richard|title=The Feynman Lectures on Physics|year=1966|url=https://archive.org/details/feynmanlectureso00feyn_0|publisher=California Institute of Technology|isbn=978-0201500646|access-date=30 September 2021}}</ref>. В то время как ранняя концепция атомов из греческой философии состояла в том, что они были неделимыми единицами — слово «атом» происходит от греческого «неразрезаемый» — в XIX веке были сформулированы гипотезы о субатомной структуре. Одним из важных открытий в этом отношении было [[Фарадей, Майкл|наблюдение Майклом Фарадеем]] в 1838 году свечения, вызванного электрическим разрядом внутри стеклянной трубки, содержащей газ при низком давлении. [[Плюккер, Юлиус|Юлиус Плюккер]], [[Гитторф, Иоганн Вильгельм|Иоганн Вильгельм Гитторф]] и [[Гольдштейн, Ойген|Ойген Гольдштейн]] продолжили и усовершенствовали работу Фарадея, что привело к идентификации [[Катодные лучи|катодных лучей]], которые, как обнаружил [[Томсон, Джозеф Джон|Дж. Дж. Томсон]], состоят из субатомных частиц, названных впоследствии электронами<ref>{{книга|автор=Martin A. |заглавие=Cathode Ray Tubes for Industrial and Military Applications |ссылка=|издание=|ответственный=Ed. P. Hawkes|место=|издательство=Academic Press|год=1986|том=|страницы=183|серия=Advances in Electronics and Electron Physics, Volume 67|isbn=978-0080577333|тираж=|язык=en}}</ref><ref>{{книга|автор=Dahl Per F.|заглавие=Flash of the Cathode Rays: A History of J J Thomson's Electron|оригинал= |ссылка=https://archive.org/details/flashofcathodera0000dahl |издание=|ответственный=|место=|издательство=CRC Press|год=1997|том=|страницы=|страниц=|isbn=978-0-7503-0453-5|тираж=|язык=en}}</ref>. |
||
[[излучение абсолютно чёрного тела|Проблема излучения чёрного тела]] была открыта [[Кирхгоф, Густав|Густавом Кирхгофом]] в 1859 |
[[излучение абсолютно чёрного тела|Проблема излучения чёрного тела]] была открыта [[Кирхгоф, Густав|Густавом Кирхгофом]] в 1859 году{{sfn|Джеммер|1985|с=14}}. В 1900 году [[Планк, Макс|Макс Планк]] выдвинул гипотезу о том, что энергия излучается и поглощается дискретными «квантами» (или энергетическими пакетами). Это позволило объяснить наблюдаемый спектр излучения абсолютно чёрного тела<ref>{{книга|автор=Mehra J.|часть=|заглавие=The Historical Development of Quantum Theory, Vol. 1: The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld. Its Foundation and the Rise of Its Difficulties (1900–1925)|оригинал= |ссылка=|издание=|ответственный=|место=|издательство=|год=|том=|страницы=|страниц=|isbn=978-0387906423|тираж=|язык=en}}</ref>. Слово ''«квант»'' происходит от [[Латинский язык|латинского]] ''quantus'', что означает «сколько»<ref>{{Cite web|url=http://www.merriam-webster.com/dictionary/quantum|title=Quantum – Definition and More from the Free Merriam-Webster Dictionary|publisher=Merriam-webster.com|access-date=2012-08-18|archive-date=2022-01-19|archive-url=https://web.archive.org/web/20220119185451/https://www.merriam-webster.com/dictionary/quantum|url-status=live}}</ref>. Согласно Планку, количество энергии можно рассматривать как разделённое на «элементы», величина которых ({{math|''E''}}) будет пропорциональна их [[Частота|частоте]] ({{math|ν}}): |
||
: <math> E = h \nu\ </math> |
: <math> E = h \nu\ ,</math> |
||
где ''h'' — [[постоянная Планка]]. Планк осторожно настаивал на том, что это лишь аспект процессов поглощения и испускания излучения, а не ''физическая реальность'' излучения<ref>{{ |
где {{math|''h''}} — [[постоянная Планка]]. Планк осторожно настаивал на том, что это лишь аспект процессов поглощения и испускания излучения, а не ''физическая реальность'' излучения<ref>{{книга|автор=[[Кун, Томас|Kuhn T. S.]]|часть=|заглавие=Black-body theory and the quantum discontinuity 1894–1912|оригинал= |ссылка=https://archive.org/details/blackbodytheoryq0000kuhn|издание=|ответственный=|место=Oxford|издательство=Clarendon Press|год=1978|том=|страницы=|страниц=|isbn=978-0195023831|тираж=|язык=en}}</ref>. Он не мог выбрать, считать ли свою квантовую гипотезу математическим трюком для получения правильного ответа или значительным открытием{{sfn|Джеммер|1985|с=33}}<ref name="Kragh">{{Cite web|url=https://physicsworld.com/a/max-planck-the-reluctant-revolutionary/|title=Max Planck: the reluctant revolutionary|author=Kragh H.|website=[[Physics World]]|date=2000-12-01|access-date=2020-12-12|archive-date=2018-11-05|archive-url=https://web.archive.org/web/20181105061830/https://physicsworld.com/a/max-planck-the-reluctant-revolutionary/|url-status=live}}</ref>. Однако в 1905 году [[Эйнштейн, Альберт|Альберт Эйнштейн]] реалистично интерпретировал квантовую гипотезу Планка и использовал её для объяснения [[Фотоэффект|фотоэлектрического эффекта]], при котором свет, падающий на определённые материалы, может выбивать электроны из материала{{sfn|Auletta|2000|p=25}}{{sfn|Джеммер|1985|с=46}}. Затем [[Бор, Нильс|Нильс Бор]] развил идею Планка об излучении, включив её в [[Боровская модель атома|модель атома]], которая успешно предсказала [[Спектральная линия|спектральные линии]] водорода<ref>{{книга|автор=Stachel J.|часть=Bohr and the Photon|заглавие=Quantum Reality, Relativistic Causality and the Closing of the Epistemic Circle|оригинал= |ссылка=|издание=|ответственный=|место=Dordrecht |издательство=Springer |год=2009 |том=|страницы=69–83|страниц=|серия=The Western Ontario Series in Philosophy of Science; Vol. 73|doi=10.1007/978-1-4020-9107-0_5|isbn=978-1-4020-9106-3|тираж=|язык=en}}</ref>. Эйнштейн развил эту идею, чтобы показать, что [[Электромагнитное излучение|электромагнитная волна]], такая как свет, также может быть описана как частица (позже названная [[фотон]]ом) с дискретным количеством энергии, которое зависит от его частоты{{sfn|Джеммер|1985|с=47}}<ref>{{статья|автор=Einstein A.|заглавие=Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt|издание=[[Annalen der Physik]]|год=1905|том=17|выпуск=6|номер=|страницы=132–148|ссылка=|doi=10.1002/andp.19053220607|arxiv=|bibcode=1905AnP...322..132E|язык=de}}</ref>. В своей статье «К квантовой теории излучения» ({{Lang-de|Zur Quantentheorie der Strahlung}})<ref>{{статья|автор=Einstein A.|заглавие=Zur Quantentheorie der Strahlung|издание=Mitt. Phys. Ges. (Zurich) |год=1916 |том=|выпуск=|номер=18 |страницы=47—62 |ссылка=|doi=|arxiv=|bibcode=|язык=de}} |
||
{{статья|автор=Einstein A.|заглавие=Zur Quantentheorie der Strahlung|издание=[[Physikalische Zeitschrift]] |год=1917 |том=18 |выпуск=|номер=|страницы=121–128 |ссылка=|doi=|arxiv=|bibcode=1917PhyZ...18..121E|язык=de}} Переведено на русский язык: {{книга|автор=Эйнштейн А.|часть=К квантовой теории излучения|заглавие=Альберт Эйнштейн. Собрание научных трудов |оригинал= |ссылка=|издание=|ответственный=Под ред. И. Е. Тамма, Я. А. Смородинского, Б. Г. Кузнецова |место=М. |издательство=Наука |год=1966 |том=3|страницы=393—406|страниц=|isbn=|тираж=|язык=ru}}</ref>, опубликованной в 1916 году, Эйнштейн расширил взаимосвязь между энергией и материей, чтобы объяснить поглощение и испускание энергии атомами. Хотя в то время его общая теория относительности затмила эту идею, в этой статье был сформулирован механизм, лежащий в основе стимулированного излучения, который стал основным принципом работы [[лазер]]ов<ref name="Gould1959">{{cite book |last=Gould |first= R. Gordon |year=1959 |chapter=The LASER, Light Amplification by Stimulated Emission of Radiation |editor= Franken, P.A. |editor2=Sands R.H.| title = The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959 |page=128 |oclc=02460155}}</ref>. |
|||
Эта фаза развития квантовой теории известна как [[старая квантовая теория]]. Она никогда не была полной и непротиворечивой, и была скорее набором [[Эвристика|эвристических]] поправок к [[Классическая механика|классической механике]]<ref>{{ |
Эта фаза развития квантовой теории известна как [[старая квантовая теория]]. Она никогда не была полной и непротиворечивой, и была скорее набором [[Эвристика|эвристических]] поправок к [[Классическая механика|классической механике]]<ref>{{книга|автор=ter Haar D.|часть=|заглавие=The Old Quantum Theory|оригинал= |ссылка=https://archive.org/details/oldquantumtheory0000haar|издание=|ответственный=|место=|издательство=Pergamon Press|год=1967|том=|страницы=[https://archive.org/details/oldquantumtheory0000haar/page/206 206]|страниц=|isbn=978-0-08-012101-7|тираж=|язык=en}}</ref>. Старая теория теперь понимается как [[Квазиклассическое приближение|полуклассическое приближение]]<ref>{{Cite web|url=https://www.encyclopediaofmath.org/index.php?title=Semi-classical_approximation|title=Semi-classical approximation|website=Encyclopedia of Mathematics|access-date=2020-02-01|archive-date=2022-01-17|archive-url=https://web.archive.org/web/20220117061556/https://encyclopediaofmath.org/index.php?title=Semi-classical_approximation|url-status=live}}</ref> к современной квантовой механике<ref>{{книга|автор=Sakurai J. J., Napolitano J.|часть=Quantum Dynamics|заглавие=Modern Quantum Mechanics|оригинал= |ссылка=|издание=|ответственный=|место=|издательство=Pearson|год=2014|том=|страницы=|страниц=|isbn=978-1-292-02410-3|oclc=929609283|тираж=|язык=en}}</ref>. Заметные результаты этого периода включают, помимо работ Планка, Эйнштейна и Бора, упомянутых выше, работы Эйнштейна и [[Дебай, Петер|Петера Дебая]] по [[Удельная теплоёмкость|удельной теплоёмкости]] твёрдых тел{{sfn|Джеммер|1985|с=67—68}}, [[Теорема Бора — ван Лёвен|доказательство]] Бора и [[Ван Леувен, Хендрика Йоханна|Хендрики Йоханны ван Леувен]], что классическая физика не может объяснить [[диамагнетизм]] и расширение [[Зоммерфельд, Арнольд|Арнольдом Зоммерфельдом]] модели Бора, включающее релятивистские эффекты{{sfn|Джеммер|1985|с=100—101}}. |
||
В середине 1920-х годов была разработана квантовая механика, ставшая стандартной формулировкой атомной физики. В 1923 |
В середине 1920-х годов была разработана квантовая механика, ставшая стандартной формулировкой атомной физики. В 1923 году французский физик [[Де Бройль, Луи|Луи де Бройль]] выдвинул теорию волн материи, заявив, что частицы могут проявлять волновые характеристики и наоборот. Основанная на подходе де Бройля, современная квантовая механика родилась в 1925 году, когда немецкие физики [[Гейзенберг, Вернер|Вернер Гейзенберг]], [[Борн, Макс|Макс Борн]] и [[Йордан, Паскуаль|Паскуаль Йордан]]<ref name="Edwards79">{{статья|автор=Edwards D. |заглавие=The Mathematical Foundations of Quantum Mechanics|издание=Synthese|год=1979|том=42|выпуск=|номер=1|страницы=1—70|ссылка=|doi=|arxiv=|bibcode=|язык=en}}</ref><ref name="Edwards81">{{статья|автор=Edwards D.|заглавие=The Mathematical Foundations of Quantum Field Theory: Fermions, Gauge Fields, and Super-symmetry, Part I: Lattice Field Theories|издание=International J. of Theor. Phys.|год=1981|том=20|выпуск=|номер= 7|страницы=|ссылка=|doi=|arxiv=|bibcode=|язык=en}}</ref> разработали [[Матричная квантовая механика|матричную механику]], а австрийский физик [[Шрёдингер, Эрвин|Эрвин Шрёдингер]] изобрёл [[Уравнение Шрёдингера|волновую механику]]. Борн представил вероятностную интерпретацию волновой функции Шрёдингера в июле 1926 года<ref>{{статья|автор=Bernstein J.|заглавие=Max Born and the quantum theory|издание=[[American Journal of Physics]]|год=2005 |том=73|выпуск=11 |номер=|страницы=999–1008 |ссылка=|doi=10.1119/1.2060717|bibcode=2005AmJPh..73..999B|arxiv=|язык=en}}</ref>. Таким образом, возникла целая область квантовой физики, что привело к её более широкому признанию на Пятой [[Сольвеевские конгрессы|Сольвеевской конференции]] в 1927 году<ref name="pais1997">{{книга|автор=Pais A.|часть=|заглавие=A Tale of Two Continents: A Physicist's Life in a Turbulent World|оригинал= |ссылка=https://archive.org/details/taleoftwocontine00pais|издание=|ответственный=|место=|издательство=Princeton University Press|год=1997|том=|страницы=|страниц=|isbn=0-691-01243-1|тираж=|язык=en}}</ref>. |
||
В 1927 |
В 1927 году [[Гайтлер, Вальтер|В. Гайтлер]] и [[Лондон, Фриц|Ф. Лондон]] рассчитали спектр [[Молекула водорода|молекулы водорода]] и объяснили возникновение химической связи в молекулах. [[Блох, Феликс|Ф. Блох]] заложил основы движения частиц в периодическом потенциале кристаллической решётки. В том же году [[Паули, Вольфганг|В. Паули]] обобщил уравнение Шрёдингера с учётом спина электрона{{sfn|Милантьев|2009|с=181}}, а в следующем году появилось релятивистское уравнение для электрона — [[уравнение Дирака]], которое предсказало существование античастиц{{sfn|Милантьев|2009|с=182}}. |
||
Эйнштейн не признавал квантовую механику как законченную теорию, то есть теорию, которая полностью описывает природу. Поэтому в 1935 |
Эйнштейн не признавал квантовую механику как законченную теорию, то есть теорию, которая полностью описывает природу. Поэтому в 1935 году появилась статья о парадоксе, возникающем в [[Квантовая запутанность|запутанной]] системе, который сейчас называется [[Парадокс Эйнштейна — Подольского — Розена|парадоксом Эйнштейна — Подольского — Розена]]. Шрёдингер поддержал идею ЭПР и придумал в том же году парадокс, известный под названием «[[кот Шрёдингера]]». Эти парадоксы привлекают внимание исследователей основ квантовой механики{{sfn|Милантьев|2009|с=184—185}}. |
||
Решение уравнения Шрёдингера для атома водорода имеет аналитическую форму, но для многоэлектронного атома решение не известно, |
Решение уравнения Шрёдингера для атома водорода имеет аналитическую форму, но для многоэлектронного атома аналитическое решение не известно, в связи с чем возникают различные приближённые методы вычисления волновых функций. Например, в 1928 году [[Хартри, Дуглас Рейнер|Дугласом Хартри]] был предложен [[метод самосогласованного поля]], а в 1930 году [[Фок, Владимир Александрович|В. А. Фок]] расширил этот подход с учётом спина электрона{{sfn|Милантьев|2009|с=201}}. |
||
К 1930 |
К 1930 году квантовая механика была дополнительно унифицирована и формализована [[Гильберт, Давид|Давидом Гильбертом]], [[Дирак, Поль|Полом Дираком]] и [[Нейман, Джон фон|Джоном фон Нейманом]]<ref>{{статья|автор=Van Hove L.|заглавие=Von Neumann's contributions to quantum theory|издание=[[Bulletin of the American Mathematical Society]]|год=1958|том=64|выпуск=3, Part 2|номер=|страницы=95–99|ссылка=https://www.ams.org/journals/bull/1958-64-03/S0002-9904-1958-10206-2/S0002-9904-1958-10206-2.pdf|doi=10.1090/s0002-9904-1958-10206-2|arxiv=|bibcode=|язык=en|archivedate=2024-01-20|archiveurl=https://web.archive.org/web/20240120073106/https://www.ams.org/journals/bull/1958-64-03/S0002-9904-1958-10206-2/S0002-9904-1958-10206-2.pdf}}</ref> с большим упором на формализацию процесса [[Измерение (квантовая механика)|измерения]], статистическую природу нашего знания о реальности и [[Интерпретация квантовой механики|философские рассуждения о «наблюдателе»]]. С тех пор она проникла во многие дисциплины, включая квантовую химию, [[Квантовая оптика|квантовую электронику]], [[Квантовая оптика|квантовую оптику]] и [[Квантовая информатика|квантовую информатику]]. Она также объясняет особенности современной [[Периодическая система химических элементов|периодической таблицы элементов]] и описывает поведение [[атом]]ов во время образования [[Химическая связь|химической связи]] и ток [[электрон]]ов в [[полупроводник]]ах, и поэтому играет решающую роль во многих современных технологиях. Хотя квантовая механика была создана для описания мира на очень маленьких масштабах, она также необходима для объяснения некоторых [[Макроскопический масштаб|макроскопических]] явлений, таких как [[Сверхпроводимость|сверхпроводники]]<ref name="feynman2015">{{Cite web|url=http://www.feynmanlectures.caltech.edu/III_21.html#Ch21-S5|title=The Feynman Lectures on Physics '''III''' 21-4|author=Feynman|first=Richard|author-link=Фейнман, Ричард|publisher=[[California Institute of Technology]]|access-date=2015-11-24|quote=...it was long believed that the wave function of the Schrödinger equation would never have a macroscopic representation analogous to the macroscopic representation of the amplitude for photons. On the other hand, it is now realized that the phenomena of superconductivity presents us with just this situation.|archive-date=2020-07-28|archive-url=https://web.archive.org/web/20200728102607/https://www.feynmanlectures.caltech.edu/III_21.html#Ch21-S5|url-status=live}}</ref> и [[Сверхтекучесть|сверхтекучие жидкости]]<ref>{{Cite web|url=http://physics.berkeley.edu/sites/default/files/_/lt24_berk_expts_on_macro_sup_effects.pdf|title=Berkeley Experiments on Superfluid Macroscopic Quantum Effects|author=Packard|first=Richard|archive-url=https://web.archive.org/web/20151125112132/http://research.physics.berkeley.edu/packard/publications/Articles/LT24_Berk_expts_on_macro_sup_effects.pdf|archive-date=2015-11-25|access-date=2015-11-24}}</ref>. В 1957 году [[Бардин, Джон|Дж. Бардин]] [[Купер, Леон|Л. Купер]] и [[Шриффер, Джон Роберт|Дж. Шриффер]] построили теорию сверхпроводников первого рода<ref>{{статья|автор=Bardeen J., Cooper L. N., Schrieffer J. R. |заглавие=Microscopic Theory of Superconductivity|издание=[[Physical Review]]|год=1957|том=106 |выпуск=1|номер=|страницы=162–164|ссылка=|doi=10.1103/PhysRev.106.162|arxiv=|bibcode=1957PhRv..106..162B|язык=en}}</ref><ref name=BardeenCooperSchrieffer>{{статья|автор=Bardeen J., Cooper L. N., Schrieffer J. R.|заглавие=Theory of Superconductivity|издание=[[Physical Review]]|год=1957|том=108 |выпуск=5 |номер=|страницы=1175–1205 |ссылка=|doi=10.1103/PhysRev.108.1175|arxiv=|bibcode=1957PhRv..108.1175B|язык=en}}</ref>. |
||
|author = J. Bardeen |
|||
|author2 = L. N. Cooper |
|||
|author3 = J. R. Schrieffer |
|||
|date = 1957 |
|||
|title = Microscopic Theory of Superconductivity |
|||
|journal = [[Physical Review]] |
|||
|volume = 106 |issue = 1 |pages = 162–164 |
|||
|doi = 10.1103/PhysRev.106.162 |
|||
|bibcode = 1957PhRv..106..162B |doi-access = free |
|||
}}</ref><ref name=BardeenCooperSchrieffer>{{cite journal |
|||
|author = J. Bardeen |
|||
|author2 = L. N. Cooper |
|||
|author3 = J. R. Schrieffer |
|||
|date = 1957 |
|||
|title = Theory of Superconductivity |
|||
|journal = [[Physical Review]] |
|||
|volume = 108 |issue = 5 |pages = 1175–1205 |
|||
|doi = 10.1103/PhysRev.108.1175|bibcode = 1957PhRv..108.1175B |doi-access = free |
|||
}}</ref>. |
|||
В 1954 |
В 1954 году благодаря работам [[Таунс, Чарлз Хард|Ч. Таунса]], [[Басов, Николай Геннадьевич|Н. Г. Басова]] и [[Прохоров, Александр Михайлович|А. М. Прохорова]] появились первые квантовые [[микроволновое излучение|микроволновые]] генераторы — [[мазер]]ы на [[аммиак]]е<ref name="fundamentals">{{cite web |
||
|author = François Balembois et Sébastien Forget |
|author = François Balembois et Sébastien Forget |
||
|url = http://www.optique-ingenieur.org/en/courses/OPI_ang_M01_C01/co/Contenu_02.html |
|url = http://www.optique-ingenieur.org/en/courses/OPI_ang_M01_C01/co/Contenu_02.html |
||
|title = Laser : Fundamentals // Some important dates |
|title = Laser : Fundamentals // Some important dates |
||
|publisher = Optics4Engineers |
|publisher = Optics4Engineers |
||
| |
|access-date = 2013-12-11 |
||
|lang = en |
|lang = en |
||
| |
|url-status = live |
||
| |
|archive-url = https://web.archive.org/web/20131216004846/http://www.optique-ingenieur.org/en/courses/OPI_ang_M01_C01/co/Contenu_02.html |
||
|archive-date = 2013-12-16 |
|archive-date = 2013-12-16 |
||
}}</ref><ref name="popmech" />. Для усиления излучения в [[видимое излучение|оптическом диапазоне]] |
}}</ref><ref name="popmech" />. Для усиления излучения в [[видимое излучение|оптическом диапазоне]] [[Майман, Теодор|Т. Мейманом]] в 1960 году был использован [[рубин]]<ref>{{статья|автор=[[Майман, Теодор|Maiman T. H.]] |
||
|заглавие=Stimulated optical radiation in ruby |
|заглавие=Stimulated optical radiation in ruby |
||
|издание=Nature |
|издание=Nature |
||
⚫ | |||
|том=187 |
|том=187 |
||
|номер=4736 |
|номер=4736 |
||
Строка 123: | Строка 88: | ||
|doi=10.1038/187493a0 |
|doi=10.1038/187493a0 |
||
|язык=en |
|язык=en |
||
⚫ | |||
|автор=[[Майман, Теодор|Maiman, T.H.]] |
|||
⚫ | |||
⚫ | |||
|author = Алексей Левин |
|author = Алексей Левин |
||
| |
|date = 2006-06-01 |
||
|url = http://www.popmech.ru/article/381-kvantovyiy-svetoch/ |
|url = http://www.popmech.ru/article/381-kvantovyiy-svetoch/ |
||
|title = Квантовый светоч: История одного из самых важных изобретений XX века |
|title = Квантовый светоч: История одного из самых важных изобретений XX века — лазера |
||
|publisher = |
|publisher = [[Популярная механика]] |
||
| |
|access-date = 2024-02-10 |
||
| |
|url-status = live |
||
|archive-date = 2011- |
|archive-date = 2011-09-01 |
||
|archive-url = https:// |
|archive-url = https://web.archive.org/web/20110901060521/http://www.popmech.ru/article/381-kvantovyiy-svetoch/ |
||
}}</ref>. |
}}</ref>. |
||
В 1980 |
В 1980 году Пол Бениофф описал первую квантовомеханическую модель компьютера, показав в этой работе, что компьютер может работать в соответствии с законами квантовой механики, использовав уравнение Шрёдингера для описания [[Машина Тьюринга|машин Тьюринга]] и заложив основу для дальнейшей работы в области [[Квантовый компьютер|квантовых вычислений]]<ref>{{статья|автор=Benioff P.|заглавие=The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines|издание=Journal of Statistical Physics|год=1980 |том=22 |выпуск=5 |номер=|страницы=563–591|ссылка=|doi=10.1007/bf01011339|arxiv=|bibcode=1980JSP....22..563B |язык=en}}</ref>. Первая экспериментальная демонстрация двух[[кубит]]ного квантового компьютера, работающего на явлении [[Ядерный магнитный резонанс|ядерного магнитного резонанса]], была выполнена в 1998 году<ref>{{статья|автор==Chuang I. L., Gershenfeld N., Kubinec M.|заглавие=Experimental Implementation of Fast Quantum Searching|издание=[[Physical Review Letters]]|год=1998 |том=80 |выпуск=15 |страницы=3408–3411 |ссылка=https://semanticscholar.org/paper/6c055053f4f1605fdc0bd474c7a350dcd01f627d |doi=10.1103/PhysRevLett.80.3408|arxiv=|bibcode=1998PhRvL..80.3408C|язык=en}}</ref>. В октябре 2019 года компания [[Google (компания)|Google]] объявила, что ей удалось построить 53-кубитный сверхпроводящий квантовый процессор [[Sycamore (процессор)|Sycamore]] и продемонстрировать «[[квантовое превосходство]]» над обычными компьютерами<ref>{{статья |автор=Arute F. et al. |заглавие=Quantum supremacy using a programmable superconducting processor |издание=[[Nature]] |год=2019 |том=574 |выпуск= |номер= |страницы=505—510 |ссылка=https://www.nature.com/articles/s41586-019-1666-5 |doi= |arxiv= |bibcode= |язык=en |archivedate=2019-10-23 |archiveurl=https://web.archive.org/web/20191023124420/https://www.nature.com/articles/s41586-019-1666-5 }}</ref><ref>[https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html Quantum Supremacy Using a Programmable Superconducting Processor] {{Wayback|url=https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html |date=20191023092725 }} Wednesday, October 23, 2019 Posted by John Martinis, Chief Scientist Quantum Hardware and Sergio Boixo, Chief Scientist Quantum Computing Theory, Google AI Quantum</ref><ref>[[Meduza]] 20:05, 24 октября 2019 ''Александр Ершов'' [https://meduza.io/feature/2019/10/24/ura-fiziki-dostigli-kvantovogo-prevoshodstva-a-mozhet-i-ne-dostigli-my-ne-znaem-oni-ne-znayut-nikto-ne-znaet-na-to-ono-i-kvantovoe Ура, физики из Google достигли квантового превосходства! А может, и не достигли! Мы не знаем, они не знают, никто не знает — на то оно и квантовое…] {{Wayback|url=https://meduza.io/feature/2019/10/24/ura-fiziki-dostigli-kvantovogo-prevoshodstva-a-mozhet-i-ne-dostigli-my-ne-znaem-oni-ne-znayut-nikto-ne-znaet-na-to-ono-i-kvantovoe |date=20191026165211 }}</ref>. |
||
== Математическая формулировка == |
== Математическая формулировка == |
||
{{main|Математические основы квантовой механики}} |
{{main|Математические основы квантовой механики}} |
||
В математически строгой формулировке квантовой механики состояние квантовомеханической системы представляет собой вектор <math>\psi</math> заданный в комплексном ([[Сепарабельное пространство|сепарабельном]]) [[Гильбертово пространство|гильбертовом пространстве]] <math>\mathcal H</math>. Постулируется, что этот вектор нормирован относительно скалярного произведения гильбертова пространства, то есть подчиняется условию <math>\langle \psi,\psi \rangle = 1</math> |
В математически строгой формулировке квантовой механики состояние квантовомеханической системы представляет собой вектор <math>\psi</math>, заданный в комплексном ([[Сепарабельное пространство|сепарабельном]]) [[Гильбертово пространство|гильбертовом пространстве]] <math>\mathcal H</math>. Постулируется, что этот вектор нормирован относительно скалярного произведения гильбертова пространства, то есть подчиняется условию <math>\langle \psi,\psi \rangle = 1,</math> и он корректно определён с точностью до комплексного числа по модулю 1 (глобальной фазы), или, другими словами, состояния <math>\psi</math> и <math>e^{i\alpha}\psi</math> представляют собой одну и ту же физическую систему{{sfn|Auletta|2000|p=36}}{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=274}}. Возможные состояния — это точки [[Проективное пространство|проективного]] гильбертова пространства, обычно называемого {{iw|комплексное проективное пространство|комплексным проективным пространством|en|Complex projective space}}. Точная природа этого гильбертова пространства зависит от рассматриваемой системы — например, для описания координаты и импульса частицы гильбертово пространство — это пространство комплексных {{iw|квадратично интегрируемая функция|квадратично интегрируемых функций|en|Square-integrable function}} <math>L^2(\mathbb C)</math>{{Refn|Класс этих функций очень широк, но физически можно ограничить рассмотрение только функциями, которые определены повсюду, непрерывны и бесконечно дифференцируемы{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=114}}|group=К}}, а гильбертово пространство для [[спин]]а одиночной частицы — это просто пространство двумерных комплексных векторов <math>\mathbb C^2</math> с обычным [[Скалярное произведение|скалярным произведением]]<ref>{{книга|автор=Bongaarts P.|часть=|заглавие=Quantum theory : a mathematical approach|оригинал= |ссылка=|издание=|ответственный=|место=Cham |издательство=Springer |год=2015 |том=|страницы=118 |страниц=|isbn=3319095609 |тираж=|язык=en}}</ref>. |
||
Интересующие физические величины — координата, импульс, энергия, спин — представлены наблюдаемыми величинами (или просто наблюдаемыми), которым поставлены в соответствие [[Сопряжённый оператор|эрмитовые]] (точнее, [[самосопряжённый оператор| |
Интересующие физические величины — координата, импульс, энергия, спин — представлены наблюдаемыми величинами (или просто наблюдаемыми), которым поставлены в соответствие [[Сопряжённый оператор|эрмитовые]] (точнее, [[самосопряжённый оператор|самосопряжённые]]) линейные [[Оператор (физика)|операторы]], действующие в гильбертовом пространстве. Квантовое состояние может быть [[Собственный вектор|собственным вектором]] для оператора наблюдаемой, или [[Квантовое состояние|собственным состоянием]], а связанное с ним [[Собственный вектор|собственное значение]] соответствует значению наблюдаемой в этом собственном состоянии{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=169—170}}. В более общем смысле квантовое состояние задаётся линейной комбинацией собственных состояний, известной как [[Принцип суперпозиции (квантовая механика)|квантовая суперпозиция]]{{sfn|Auletta|2000|p=39}}. При измерении наблюдаемой результатом будет одно из её дискретных собственных значений с вероятностью, заданной [[Правило Борна|правилом Борна]]: в простейшем случае собственное значение <math>\lambda</math> является невырожденным, а вероятность определяется выражением <math>|\langle \vec\lambda,\psi\rangle|^2</math>, где <math> \vec\lambda</math> — его собственный вектор{{sfn|Auletta|2000|p=38}}. В более общем случае собственное значение вырождено, а вероятность определяется выражением <math>\langle \psi,P_\lambda\psi\rangle,</math> где <math>P_\lambda</math> — проектор на связанное с ним собственное пространство{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=272}}. В случае, когда рассматривается непрерывный спектр собственных значений, эти формулы используют понятие [[Плотность вероятности|плотности вероятности]]{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=273}}. |
||
После измерения, если получен результат <math>\lambda</math>, то постулируется, что квантовое состояние [[Редукция фон Неймана|коллапсирует]] до <math> \vec\lambda</math>, в невырожденном случае, или <math>P_\lambda\psi/\sqrt{\langle \psi,P_\lambda\psi\rangle}</math>, в общем случае{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=277}}. Таким образом, [[Вероятность|вероятностный]] характер квантовой механики проистекает из процесса измерения. Это один из самых сложных для понимания физических аспектов квантовых систем. Эта тема была центральным вопросом знаменитых [[Дискуссия Бора и Эйнштейна|дебатов Бора и Эйнштейна]], в которых два учёных пытались прояснить эти фундаментальные принципы с помощью [[Мысленный эксперимент|мысленных экспериментов]]. В течение десятилетий после формулировки квантовой механики широко изучался вопрос о том, что представляет собой |
После измерения, если получен результат <math>\lambda</math>, то постулируется, что квантовое состояние [[Редукция фон Неймана|коллапсирует]] до <math> \vec\lambda</math>, в невырожденном случае, или <math>P_\lambda\psi/\sqrt{\langle \psi,P_\lambda\psi\rangle}</math>, в общем случае{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=277}}. Таким образом, [[Вероятность|вероятностный]] характер квантовой механики проистекает из процесса измерения. Это один из самых сложных для понимания физических аспектов квантовых систем. Эта тема была центральным вопросом знаменитых [[Дискуссия Бора и Эйнштейна|дебатов Бора и Эйнштейна]], в которых два учёных пытались прояснить эти фундаментальные принципы с помощью [[Мысленный эксперимент|мысленных экспериментов]]. В течение десятилетий после формулировки квантовой механики широко изучался вопрос о том, что представляет собой процесс [[Измерение (квантовая механика)|измерения физической величины]]. Были сформулированы более современные [[Интерпретация квантовой механики|интерпретации квантовой механики]], которые избавляются от концепции «[[Редукция фон Неймана|редукции (коллапса) волновой функции]]» (см., например, [[многомировая интерпретация]]). Основная идея заключается в том, что когда квантовая система взаимодействует с измерительным прибором, их соответствующие волновые функции [[Квантовая запутанность|запутываются]], так что исходная квантовая система перестаёт существовать как независимая сущность. Подробнее см. в статье об [[Измерение (квантовая механика)|измерении в квантовой механике]]<ref name="google215">{{книга|автор=Greenstein G., Zajonc A.|часть=|заглавие=The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics|оригинал= |ссылка=https://books.google.com/books?id=5t0tm0FB1CsC&pg=PA215|издание=2nd Ed|ответственный=|место=|издательство=Jones and Bartlett Publishers, Inc|год=2006|том=|страницы=215|страниц=|isbn=978-0-7637-2470-2|тираж=|язык=en}}</ref>. |
||
Эволюция квантового состояния во времени описывается [[Уравнение Шрёдингера|уравнением Шрёдингера]]{{sfn|Auletta|2000|p=48}}: |
Эволюция квантового состояния во времени описывается [[Уравнение Шрёдингера|уравнением Шрёдингера]]{{sfn|Auletta|2000|p=48}}: |
||
Строка 151: | Строка 114: | ||
: <math>i\hbar {\frac {d}{dt}} \psi (t) =H \psi (t)\,. </math> |
: <math>i\hbar {\frac {d}{dt}} \psi (t) =H \psi (t)\,. </math> |
||
Здесь <math>H</math> — [[Гамильтониан (квантовая механика)|гамильтониан]] системы, или оператор наблюдаемой, соответствующей [[Энергия|полной энергии]] системы, и <math>\hbar</math> — |
Здесь <math>H</math> — [[Гамильтониан (квантовая механика)|гамильтониан]] системы, или оператор наблюдаемой, соответствующей [[Энергия|полной энергии]] системы, и <math>\hbar</math> — [[приведённая постоянная Планка]]. Постоянная <math>i\hbar</math> вводится так, что гамильтониан сводится к [[Гамильтонова механика|классическому гамильтониану]] в случаях, когда квантовая система близка по своим свойствам к соответствующей классической модели; возможность сделать такое приближение в определённом пределе называется [[Принцип соответствия|принципом соответствия]]{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=278}}. |
||
Формальное решение этого дифференциального уравнения задаётся выражением{{sfn|Auletta|2000|p=49}} |
Формальное решение этого дифференциального уравнения задаётся следующим выражением{{sfn|Auletta|2000|p=49}}: |
||
: <math> \psi(t) = e^{-iHt/\hbar }\psi(0)\,. </math> |
: <math> \psi(t) = e^{-iHt/\hbar }\psi(0)\,. </math> |
||
Оператор <math>U(t) = e^{-iHt/\hbar } </math> известен как [[оператор эволюции]] и обладает важным свойством [[Унитарность (физика)|унитарности]]. |
Оператор <math>U(t) = e^{-iHt/\hbar } </math> известен как [[оператор эволюции]] и обладает важным свойством [[Унитарность (физика)|унитарности]]. В этом случае эволюция системы [[Детерминизм|детерминирована]] в том смысле, что если задано начальное квантовое состояние <math>\psi(0),</math> то этот оператор даёт определённое предсказание того, какое квантовое состояние <math>\psi(t)</math> будет в любой другой последующий момент времени {{math|''t''}}<ref>{{книга|автор=[[Вайнберг, Стивен|Weinberg S.]]|часть=|заглавие=Dreams Of A Final Theory: The Search for The Fundamental Laws of Nature|оригинал= |ссылка=https://books.google.com/books?id=OLrZkgPsZR0C|издание=|ответственный=|место=|издательство=Random House|год=2010|том=|страницы=[https://books.google.com/books?id=OLrZkgPsZR0C&pg=PT82 82]|страниц=|isbn=978-1-4070-6396-6|тираж=|язык=en}}</ref>. |
||
[[Файл:Atomic-orbital-clouds_spd_m0.png|мини| [[Плотность вероятности|Плотности вероятностей]], соответствующие волновым функциям электрона в атоме водорода, |
[[Файл:Atomic-orbital-clouds_spd_m0.png|мини| [[Плотность вероятности|Плотности вероятностей]], соответствующие волновым функциям электрона в атоме водорода, обладающем определёнными энергетическими уровнями (возрастающими от верхней части изображения до нижней части: {{nobr|{{math|''n''}} {{=}} 1, 2, 3, …}}) и угловыми моментами (возрастающие слева направо: {{math|''s'', ''p'', ''d'', …}}). Более плотные области соответствуют более высокой плотности вероятности при измерении положения. Такие волновые функции прямо сравнимы с [[Хладни, Эрнст Флоренс Фридрих|фигурами Хладни]] [[Акустика|акустических]] мод колебаний в [[Классическая физика|классической физике]] и также являются модами колебаний, обладающими определённой [[Энергия|энергией]] и соответствующей ей [[Частота|частотой]]. [[Момент импульса|Угловой момент]] и энергия [[Квантование (физика)|квантованы]] и принимают '''только''' дискретные значения, подобные показанным (как в случае с [[Резонанс|резонансными частотами]] в акустике)]] |
||
Некоторые волновые функции описывают распределения вероятностей, которые не зависят от времени, такие как [[Квантовое состояние|собственные состояния гамильтониана]]. Многие динамические системы, рассматриваемые в классической механике, описываются такими «стационарными» волновыми функциями. Например, один [[электрон]] в невозбуждённом [[атом]]е классически изображается как частица, движущаяся по круговой траектории вокруг [[Атомное ядро|ядра атома]], тогда как в квантовой механике он описывается стационарной волновой функцией, окружающей ядро{{sfn|Griffiths and Schroeter|2018|p=183—200}}. Например, волновая функция электрона для невозбуждённого атома водорода представляет собой сферически |
Некоторые волновые функции описывают распределения вероятностей, которые не зависят от времени, такие как [[Квантовое состояние|собственные состояния гамильтониана]]. Многие динамические системы, рассматриваемые в классической механике, описываются такими «стационарными» волновыми функциями. Например, один [[электрон]] в невозбуждённом [[атом]]е классически изображается как частица, движущаяся по круговой траектории вокруг [[Атомное ядро|ядра атома]], тогда как в квантовой механике он описывается стационарной волновой функцией, окружающей ядро{{sfn|Griffiths and Schroeter|2018|p=183—200}}. Например, волновая функция электрона для невозбуждённого атома водорода представляет собой сферически симметричную функцию, известную как [[Атомная орбиталь|{{math|''s''}}-орбиталь]]{{sfn|Griffiths and Schroeter|2018|p=195}}. |
||
Аналитические решения уравнения Шрёдингера известны для очень немногих относительно простых {{iw|Список квантово-механических систем с аналитическими решениями| модельных гамильтонианов|en|List of quantum-mechanical systems with analytical solutions}}<ref>{{статья |автор = Cooper, |
Аналитические решения уравнения Шрёдингера известны для очень немногих относительно простых {{iw|Список квантово-механических систем с аналитическими решениями| модельных гамильтонианов|en|List of quantum-mechanical systems with analytical solutions}}<ref>{{статья |автор = Cooper F., Khare A., Sukhatme U. |заглавие = Supersymmetry and quantum mechanics|оригинал = |ссылка = |издание = Phys. Rep.|год = 1995|том =251 |страницы = 267—385 |doi = 10.1016/0370-1573(94)00080-M|pmid = |bibcode = |arxiv = |ref = Cooper, Khare and Sukhatme}}</ref>, включающих [[квантовый гармонический осциллятор]]{{sfn|Флюгге|1974|с=81}}, [[Квантовая яма с бесконечными стенками|частицу в ящике]]{{sfn|Флюгге|1974|с=66}}, [[молекулярный ион водорода]]<ref>{{статья|автор=Scott T. C., Aubert-Frécon M., Grotendorst J.|заглавие=New Approach for the Electronic Energies of the Hydrogen Molecular Ion|издание=Chem. Phys.|год=2006 |том=324 |выпуск=2–3 |номер=|страницы=323–338|ссылка=|doi=10.1016/j.chemphys.2005.10.031|arxiv=physics/0607081|bibcode=2006CP....324..323S|язык=en}}</ref>, [[атом водорода]]{{sfn|Флюгге|1974|с=180}}{{sfn|Griffiths and Schroeter|2018|p=183}} и другие. Даже атом [[Гелий|гелия]], который содержит всего два электрона, бросил вызов всем попыткам построить полностью аналитическое решение<ref>{{книга|автор=Griffiths D., Schroeter D. F.|часть=|заглавие=Introduction to quantum mechanics|оригинал= |ссылка=https://archive.org/details/introductiontoqu0000grif|издание=|ответственный=|место=Cambridge, United Kingdom|издательство=Cambridge University Press|год=2018 |том=|страницы=|страниц=|isbn=1107189632 |тираж=|язык=en|ref=Griffiths and Schroeter}}</ref>. |
||
Существуют методы нахождения приближённых решений. Один метод, называемый [[Стационарная теория возмущений в квантовой механике|теорией возмущений]], использует аналитический результат для простой квантовомеханической модели, чтобы построить решение для родственной, но более сложной модели, например, путём добавления малой [[Потенциальная энергия|потенциальной энергии]]<ref>{{ |
Существуют методы нахождения приближённых решений. Один метод, называемый [[Стационарная теория возмущений в квантовой механике|теорией возмущений]], использует аналитический результат для простой квантовомеханической модели, чтобы построить решение для родственной, но более сложной модели, например, путём добавления малой [[Потенциальная энергия|потенциальной энергии]]<ref>{{статья|автор=Sulejmanpasic T., Ünsal M.|заглавие=Aspects of perturbation theory in quantum mechanics: The BenderWuMathematica® package|издание=Computer Physics Communications|год=2018|том=228|выпуск=|номер=|страницы=273–289|ссылка=|doi=10.1016/j.cpc.2017.11.018|arxiv=|bibcode=2018CoPhC.228..273S|язык=en }} {{free access}}</ref>. Другой метод называется «квазиклассическим уравнением движения» и применяется к системам, для которых квантовая механика даёт лишь небольшие отклонения от классического поведения. Эти отклонения можно вычислить на основе классического движения<ref>{{книга|автор=Маслов В. П., Федорюк М. В.|часть=|заглавие= Квазиклассическое приближение для уравнений квантовой механики |оригинал= |ссылка=|издание=|ответственный=|место= М.|издательство=Наука|год=1976|том=|страницы=|страниц=296|isbn=|тираж=|язык=ru}}</ref>. Этот подход особенно важен в области [[Квантовый хаос|квантового хаоса]]<ref>{{книга|автор=Haake F.|часть=|заглавие=Quantum signatures of chaos|оригинал= |ссылка=https://archive.org/details/quantumsignature0000haak |издание=|ответственный=|место=Berlin, New York|издательство=Springer |год=2001 |том=|страницы=|страниц=|isbn=9783540677239 |тираж=|язык=en|ref=Haake}}</ref>. |
||
=== Принцип неопределённости === |
=== Принцип неопределённости === |
||
{{main|Принцип неопределённости}} |
{{main|Принцип неопределённости}} |
||
Одним из следствий формализма квантовой механики является [[принцип неопределённости]]. В своей наиболее известной форме он утверждает, что для квантовой частицы нельзя одновременно точно предсказать её координату и импульс |
Одним из следствий формализма квантовой механики является [[принцип неопределённости]]. В своей наиболее известной форме он утверждает, что для квантовой частицы нельзя одновременно точно предсказать её координату и импульс{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000}}<ref name="L&L">{{Ландафшиц|т=3|г=2001}}</ref>. Координата и импульс являются наблюдаемыми, то есть они представимы в виде эрмитовых операторов. [[Оператор координаты]] <math>\hat{X}</math> и [[оператор импульса]] <math>\hat{P}</math> не коммутируют друг с другом, а удовлетворяют [[Каноническое коммутационное соотношение|каноническому коммутационному соотношению]]{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=235}}: |
||
: <math>[\hat{X}, \hat{P}] = i\hbar\,.</math> |
: <math>[\hat{X}, \hat{P}] = i\hbar\,.</math> |
||
При заданном квантовом состоянии правило Борна позволяет вычислить математические ожидания для <math>X</math> |
При заданном квантовом состоянии правило Борна позволяет вычислить математические ожидания для <math>X,</math> <math>P</math> и их степеней. Задавая неопределённость наблюдаемой по формуле [[Среднеквадратическое отклонение|стандартного отклонения]], можно записать для координаты |
||
: <math>\sigma_X=\sqrt{\langle {X}^2 \rangle-\langle {X}\rangle^2}\ |
: <math>\sigma_X=\sqrt{\langle {X}^2 \rangle-\langle {X}\rangle^2}\,</math> |
||
и аналогично для импульса: |
и аналогично для импульса: |
||
Строка 183: | Строка 146: | ||
: <math>\sigma_X \sigma_P \geq \frac{\hbar}{2}\,.</math> |
: <math>\sigma_X \sigma_P \geq \frac{\hbar}{2}\,.</math> |
||
Любое стандартное отклонение в принципе можно сделать сколь угодно малым, но не обе величины одновременно<ref name="ballentine1970">Section 3.2 |
Любое стандартное отклонение в принципе можно сделать сколь угодно малым, но не обе величины одновременно<ref name="ballentine1970">Section 3.2 in: {{статья|автор=Ballentine L. E.|заглавие=The Statistical Interpretation of Quantum Mechanics|издание=Reviews of Modern Physics|год=1970|том=42|выпуск=4|номер=|страницы=358–381|ссылка=|doi=10.1103/RevModPhys.42.358|arxiv=|bibcode=|язык=en}}</ref><ref>Этот факт экспериментально хорошо известен, например, в квантовой оптике; см. гл. 2 и рис. 2.1 в: {{книга|автор=Leonhardt U.|часть=|заглавие=Measuring the Quantum State of Light|оригинал=|ссылка=https://books.google.com/books?id=wmsJy1A_cyIC|издание=|ответственный=|место=|издательство=Cambridge University Press|год=1997|том=|страницы=|страниц=|isbn=9780521497305|серия=Cambridge Studies in Modern Optics, Vol. 22|язык=en|access-date=2024-05-14|archive-date=2023-11-07|archive-url=https://web.archive.org/web/20231107235357/https://books.google.com/books?id=wmsJy1A_cyIC|url-status=live}}</ref>. Это неравенство обобщается на произвольные пары самосопряжённых операторов <math>A</math> и <math>B</math>. [[Коммутатор (алгебра)|Коммутатор]] этих двух операторов по определению равен |
||
: <math>[A,B]=AB-BA,</math> |
: <math>[A,B]=AB-BA,</math> |
||
Строка 191: | Строка 154: | ||
: <math>\sigma_A \sigma_B \geq \frac{1}{2}\left|\langle[A,B]\rangle \right|.</math> |
: <math>\sigma_A \sigma_B \geq \frac{1}{2}\left|\langle[A,B]\rangle \right|.</math> |
||
Из канонического коммутационного соотношения следует, что операторы координаты и импульса являются [[Преобразование Фурье|преобразованиями Фурье]] друг друга. Описание объекта в импульсном пространстве задаётся преобразованием Фурье его координатного описания. Тот факт, что зависимость от импульса является преобразованием Фурье координатной зависимости, означает, что оператор импульса эквивалентен (с точностью до <math>i/\hbar</math> множителя) взятию производной по координате, так как в анализе Фурье операции [[Преобразование Фурье|дифференцирования соответствует умножение в двойственном пространстве]]. Поэтому в квантовых уравнениях в координатном представлении импульс <math> p_i</math> заменяется выражением <math>-i \hbar \frac {\partial}{\partial x}</math>, и, в частности, в [[Уравнение Шрёдингера|нерелятивистском уравнении Шрёдингера в координатном пространстве]] квадрат импульса заменён умноженным на <math>-\hbar^2</math> [[лапласиан]]ом |
Из канонического коммутационного соотношения следует, что операторы координаты и импульса являются [[Преобразование Фурье|преобразованиями Фурье]] друг друга. Описание объекта в импульсном пространстве задаётся преобразованием Фурье его координатного описания. Тот факт, что зависимость от импульса является преобразованием Фурье координатной зависимости, означает, что оператор импульса эквивалентен (с точностью до <math>i/\hbar</math> множителя) взятию производной по координате, так как в анализе Фурье операции [[Преобразование Фурье|дифференцирования соответствует умножение в двойственном пространстве]]. Поэтому в квантовых уравнениях в координатном представлении импульс <math> p_i</math> заменяется выражением <math>-i \hbar \frac {\partial}{\partial x}</math>, и, в частности, в [[Уравнение Шрёдингера|нерелятивистском уравнении Шрёдингера в координатном пространстве]] квадрат импульса заменён умноженным на <math>-\hbar^2</math> [[лапласиан]]ом{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000}}. |
||
=== Составные системы и запутанность === |
=== Составные системы и запутанность === |
||
Строка 207: | Строка 170: | ||
: <math>\tfrac{1}{\sqrt{2}} \left ( \psi_A \otimes \psi_B + \phi_A \otimes \phi_B \right )</math> |
: <math>\tfrac{1}{\sqrt{2}} \left ( \psi_A \otimes \psi_B + \phi_A \otimes \phi_B \right )</math> |
||
описывает допустимое совместное состояние, которое не является разделимым. Состояния, которые не являются разделимыми, называются [[Квантовая запутанность|запутанными]] или сцепленными<ref name=":0">{{ |
описывает допустимое совместное состояние, которое не является разделимым. Состояния, которые не являются разделимыми, называются [[Квантовая запутанность|запутанными]] или сцепленными<ref name=":0">{{книга|автор=Nielsen M. A., Chuang I. L.|часть=|заглавие=Quantum Computation and Quantum Information|оригинал= |ссылка=|издание==2nd Ed|ответственный=|место=Cambridge|издательство=Cambridge University Press|год=2010|том=|страницы=|страниц=|isbn=978-1-107-00217-3|тираж=|язык=en}}</ref><ref name=":1">{{книга|автор=Rieffel E. G., Polak W. H.|часть=|заглавие=Quantum Computing: A Gentle Introduction|оригинал= |ссылка=|издание=|ответственный=|место=|издательство=MIT Press|год=2011 |том=|страницы=|страниц=|isbn=978-0-262-01506-6|тираж=|язык=en}}</ref>. |
||
Если состояние составной системы запутано, то ни компонентную систему {{Mvar|A}} ни систему {{Mvar|B}} невозможно описать вектором состояния. Вместо этого можно определить [[Квантовая запутанность|матрицы плотности подсистемы]], которые описывают результаты, которые можно получить, выполняя измерения только над любым из компонент системы. Однако это неизбежно приводит к потере информации: знания матриц плотности отдельных систем недостаточно для восстановления состояния составной системы<ref name=":0" /><ref name=":1" />. Точно так же, как матрицы плотности определяют состояние подсистемы более крупной системы |
Если состояние составной системы запутано, то ни компонентную систему {{Mvar|A}} ни систему {{Mvar|B}} невозможно описать вектором состояния. Вместо этого можно определить [[Квантовая запутанность|матрицы плотности подсистемы]], которые описывают результаты, которые можно получить, выполняя измерения только над любым из компонент системы. Однако это неизбежно приводит к потере информации: знания [[Матрица плотности|матриц плотности]] отдельных систем недостаточно для восстановления состояния составной системы<ref name=":0" /><ref name=":1" />. Точно так же, как матрицы плотности определяют состояние подсистемы более крупной системы, аналогичным образом {{iw|POVM|положительные операторнозначные меры|en|POVM}} (POVM) описывают влияние на подсистему измерения, выполненного в более крупной системе. POVM широко используются в квантовой теории информации<ref name=":0" /><ref name="wilde">{{книга|автор=Wilde M. M.|часть=|заглавие=Quantum Information Theory|оригинал=|ссылка=https://www.cambridge.org/core/books/quantum-information-theory/247A740E156416531AA8CB97DFDAE438|издание=2nd Ed.|ответственный=|место=|издательство=Cambridge University Press|год=2017|том=|страницы=|страниц=|isbn=9781107176164|doi=10.1017/9781316809976.001|язык=en|access-date=2024-05-14|archive-date=2024-01-05|archive-url=https://web.archive.org/web/20240105014328/https://www.cambridge.org/core/books/quantum-information-theory/247A740E156416531AA8CB97DFDAE438|url-status=live}}</ref>. |
||
Как описано выше, запутанность — это ключевая особенность моделей процесса измерения, в котором детектор запутывается с измеряемой системой. Системы, взаимодействующие с окружающей средой, в которой они находятся, обычно запутываются с этой средой — явление, известное как [[Декогеренция|квантовая декогеренция]]. Оно может объяснить, почему на практике квантовые эффекты трудно наблюдать в макроскопических системах<ref>{{ |
Как описано выше, запутанность — это ключевая особенность моделей процесса измерения, в котором детектор запутывается с измеряемой системой. Системы, взаимодействующие с окружающей средой, в которой они находятся, обычно запутываются с этой средой — явление, известное как [[Декогеренция|квантовая декогеренция]]. Оно может объяснить, почему на практике квантовые эффекты трудно наблюдать в макроскопических системах<ref>{{статья|автор=Schlosshauer M.|заглавие=Quantum decoherence|издание=Physics Reports|год=2019|том=831 |выпуск=|номер=|страницы=1–57 |ссылка=|doi=10.1016/j.physrep.2019.10.001 |arxiv=1911.06282 |bibcode=2019PhR...831....1S|язык=en}}</ref>. |
||
=== Эквивалентность формулировок === |
=== Эквивалентность формулировок === |
||
Существует множество математически эквивалентных формулировок квантовой механики. Одной из старейших и наиболее распространённых является «{{iw|Теория трансформации (квантовая механика)|теория преобразований|en|Transformation theory (quantum mechanics)}}», предложенная [[Дирак, Поль|Полем Дираком]], которая объединяет и обобщает две самые ранние формулировки квантовой механики — [[Матричная квантовая механика|матричную механику]] (изобретена [[Гейзенберг, Вернер|Вернером Гейзенбергом]]) и [[Уравнение Шрёдингера|волновую механику]] (изобретена [[Шрёдингер, Эрвин|Эрвином |
Существует множество математически эквивалентных формулировок квантовой механики. Одной из старейших и наиболее распространённых является «{{iw|Теория трансформации (квантовая механика)|теория преобразований|en|Transformation theory (quantum mechanics)}}», предложенная [[Дирак, Поль|Полем Дираком]], которая объединяет и обобщает две самые ранние формулировки квантовой механики — [[Матричная квантовая механика|матричную механику]] (изобретена [[Гейзенберг, Вернер|Вернером Гейзенбергом]]) и [[Уравнение Шрёдингера|волновую механику]] (изобретена [[Шрёдингер, Эрвин|Эрвином Шрёдингером]])<ref>{{статья|автор=Rechenberg H.|заглавие=Erwin Schrödinger and the creation of wave mechanics|издание=[[Acta Physica Polonica B]]|год=1987|том=19|выпуск=8|номер=|страницы=683–695|ссылка=http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=19&page=683|doi=|arxiv=|bibcode=|язык=en|archive-url=https://web.archive.org/web/20210224213502/http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=19&page=683|archivedate=2022-01-18|archiveurl=https://web.archive.org/web/20220118182346/http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=19&page=683}}</ref>. Альтернативно, квантовую механику можно [[Формулировка квантовой теории через интегралы по траекториям|сформулировать на языке интеграла по траекториям]] [[Фейнман, Ричард|Фейнмана]], в которой квантовомеханическая амплитуда рассматривается как сумма всех возможных классических и неклассических путей между начальным и конечным состояниями, что представляется собой квантовомеханический аналог [[Действие (физическая величина)|принципа действия]] в классической механике<ref>{{книга |
||
|автор = Фейнман Р., Хибс А. |
|автор = Фейнман Р., Хибс А. |
||
|заглавие = Квантовая механика и интегралы по траекториям |
|заглавие = Квантовая механика и интегралы по траекториям |
||
Строка 225: | Строка 188: | ||
=== Симметрии и законы сохранения === |
=== Симметрии и законы сохранения === |
||
{{main|Теорема Нётер}} |
{{main|Теорема Нётер}} |
||
Гамильтониан <math>H</math> известен как ''генератор'' эволюции во времени, поскольку он определяет унитарный оператор эволюции во времени <math>U(t) = e^{-iHt/\hbar}</math> для каждого значения <math>t</math>{{sfn|Griffiths and Schroeter|2018|p=336}}. Из этого соотношения между <math>U(t)</math> и <math>H</math> следует, что любая наблюдаемая <math>A</math> |
Гамильтониан <math>H</math> известен как ''генератор'' эволюции во времени, поскольку он определяет унитарный оператор эволюции во времени <math>U(t) = e^{-iHt/\hbar}</math> для каждого значения <math>t</math>{{sfn|Griffiths and Schroeter|2018|p=336}}. Из этого соотношения между <math>U(t)</math> и <math>H</math> следует, что любая наблюдаемая <math>A,</math> которая коммутирует с <math>H,</math> будет ''сохраняться,'' поскольку его ожидаемое значение не изменяется с течением времени{{sfn|Griffiths and Schroeter|2018|p=307}}. Это утверждение обобщается таким образом: любой эрмитов оператор <math>A</math> может порождать семейство унитарных операторов, параметризованных переменной <math>t</math>{{sfn|Griffiths and Schroeter|2018|p=307}}. Под эволюцией, порождённой <math>A</math>, здесь понимается, что любая наблюдаемая <math>B</math>, которая коммутирует с <math>A,</math> будет сохраняться. Более того, если <math>B</math> сохраняется при эволюции, порождённой <math>A</math>, тогда <math>A</math> сохраняется при эволюции, порождённой <math>B</math>. Это подразумевает квантовую версию результата, доказанного [[Нётер, Эмми|Эмми Нётер]] в классической ([[Лагранжева механика|лагранжевой]]) механике: для каждого непрерывного преобразования [[Симметрия (физика)|симметрии]], оставляющего [[Действие (физическая величина)|действие]] инвариантным, имеется соответствующий [[Законы сохранения|закон сохранения]]{{sfn|Ченг и Ли|1987|с=154}}. |
||
== Примеры == |
== Примеры == |
||
Строка 231: | Строка 194: | ||
=== Свободная частица === |
=== Свободная частица === |
||
{{main|Свободная частица}} |
{{main|Свободная частица}} |
||
[[Файл:Guassian_Dispersion.gif|справа|мини| Плотность вероятности гауссового [[Волновой пакет|волнового пакета]] в координатном пространстве, движущегося в одном измерении в свободном пространстве |
[[Файл:Guassian_Dispersion.gif|справа|мини| Плотность вероятности гауссового [[Волновой пакет|волнового пакета]] в координатном пространстве, движущегося в одном измерении в свободном пространстве]] |
||
Простейшим примером квантовой системы с координатной степенью свободы является свободная частица в одном пространственном измерении{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=75—79}}. Свободная частица — это частица, не подверженная внешним воздействиям, поэтому её гамильтониан состоит только из её кинетической энергии, а уравнение Шрёдингера принимает вид{{sfn|Флюгге|1974|с=40}}: |
Простейшим примером квантовой системы с координатной степенью свободы является свободная частица в одном пространственном измерении{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=75—79}}. Свободная частица — это частица, не подверженная внешним воздействиям, поэтому её гамильтониан состоит только из её кинетической энергии, а уравнение Шрёдингера принимает вид{{sfn|Флюгге|1974|с=40}}: |
||
Строка 239: | Строка 202: | ||
: <math>\psi (x,t)=\int_{-\infty}^{+\infty}C(k)e^{i(kx-\omega t)}dk\,,</math> |
: <math>\psi (x,t)=\int_{-\infty}^{+\infty}C(k)e^{i(kx-\omega t)}dk\,,</math> |
||
где <math>\omega</math> — частота, <math>k</math> — волновое число и условие конечности интеграла: <math>\lim_{|k|\rightarrow\infty}C(k)\approx |k|^{-\alpha}</math> при <math>\alpha \geq 1</math>. В частном случае гауссова пакета волновая функция для частицы с волновым числом <math>k_0</math> в момент времени <math>t=0</math> представляется в виде{{sfn|Флюгге|1974|с=44}} |
где <math>\omega</math> — частота, <math>k</math> — волновое число, и выполняется условие конечности интеграла: <math>\lim_{|k|\rightarrow\infty}C(k)\approx |k|^{-\alpha}</math> при <math>\alpha \geq 1</math>. В частном случае гауссова пакета волновая функция для частицы с волновым числом <math>k_0</math> в момент времени <math>t=0</math> представляется в виде{{sfn|Флюгге|1974|с=44}} |
||
: <math>\psi (x,0)=A\exp\left(-\frac{x^2}{2a^2}+ik_0x\right)\,,</math> |
: <math>\psi (x,0)=A\exp\left(-\frac{x^2}{2a^2}+ik_0x\right)\,,</math> |
||
где <math>a</math> — размер волнового пакета, <math>A</math> — нормировочный множитель. Для такой частицы скорость задаётся выражением <math>v_0=\hbar k_0/m\,.</math> Это выражение можно разложить по плоским волнам, чтобы найти коэффициент <math>C(k)\,,</math> который выражается в явном виде |
где <math>a</math> — размер волнового пакета, <math>A</math> — нормировочный множитель. Для такой частицы скорость задаётся выражением <math>v_0=\hbar k_0/m\,.</math> Это выражение можно разложить по плоским волнам, чтобы найти коэффициент <math>C(k)\,,</math> который выражается в явном виде |
||
: <math>C(k) =\frac{Aa}{\sqrt{2\pi}}\exp\left[-\frac{1}{2}(k-k_0)\right]\,.</math> |
: <math>C(k) =\frac{Aa}{\sqrt{2\pi}}\exp\left[-\frac{1}{2}(k-k_0)\right]\,.</math> |
||
Чтобы найти поведение волновой функции в любой момент времени достаточно проинтегрировать. Плотность задаётся квадратом модуля волновой функции. Она равна в любой момент времени |
Чтобы найти поведение волновой функции в любой момент времени, достаточно проинтегрировать. Плотность задаётся квадратом модуля волновой функции. Она равна в любой момент времени |
||
: <math>\rho(x,t)=|\psi(x,t)|^2=\frac{|A|^2}{\sqrt{1+\left(\frac{\hbar t}{ma^2}\right)^2}}\exp\left[-\frac{\left(x-\frac{\hbar k_0}{m}t\right)}{a^2\left[1+\left(\frac{\hbar t}{ma^2}\right)^2\right]}\right]\,.</math> |
: <math>\rho(x,t)=|\psi(x,t)|^2=\frac{|A|^2}{\sqrt{1+\left(\frac{\hbar t}{ma^2}\right)^2}}\exp\left[-\frac{\left(x-\frac{\hbar k_0}{m}t\right)^2}{a^2\left[1+\left(\frac{\hbar t}{ma^2}\right)^2\right]}\right]\,.</math> |
||
Центр гауссового волнового пакета движется в пространстве с постоянной скоростью <math>\hbar k_0/m</math> |
Центр гауссового волнового пакета движется в пространстве с постоянной скоростью <math>\hbar k_0/m,</math> как классическая частица, на которую не действуют никакие силы. Однако с течением времени волновой пакет также будет расплываться на величину <math>\hbar t/ma,</math> то есть положение становится всё более и более неопределённым, как показано на анимации{{sfn|Флюгге|1974|с=45}}. |
||
=== Частица в ящике === |
=== Частица в ящике === |
||
{{main|Квантовая яма с бесконечными стенками}} |
{{main|Квантовая яма с бесконечными стенками}} |
||
[[Файл:Infinite_potential_well.svg|мини| |
[[Файл:Infinite_potential_well.svg|мини|Одномерный ящик потенциальной энергии (или бесконечная потенциальная яма)]][[Файл:Particle in a box wavefunctions.svg|мини|Волновые функции частицы, удовлетворяющие граничным условиям бесконечной потенциальной ямы]] |
||
Частица в одномерном потенциале с бесконечными стенками является математически наиболее простым примером, где ограничения приводят к квантованию энергетических уровней. Ящик определяется как |
Частица в одномерном потенциале с бесконечными стенками является математически наиболее простым примером, где ограничения приводят к квантованию энергетических уровней. Ящик определяется как потенциал, задающий для частицы нулевую потенциальную энергию везде ''внутри'' определённой области и бесконечную потенциальную энергию повсюду ''за пределами'' этой области{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000}}. Для одномерного случая вдоль оси <math>x</math> независимое от времени уравнение Шрёдингера можно записать в виде |
||
: <math> - \frac {\hbar ^2}{2m} \frac {d ^2 \psi}{dx^2} = E \psi\,.</math> |
|||
С дифференциальным оператором, определённым как |
|||
: <math> \ |
: <math> - \frac {\hbar ^2}{2m} \frac {d ^2 \psi}{dx^2} = E \psi.</math> |
||
предыдущее уравнение |
Если ввести дифференциальный оператор импульса <math> \hat{p}_x = -i\hbar\, d/dx,</math> предыдущее уравнение можно записать в виде, напоминающем классическую формулу для [[Кинетическая энергия|кинетической энергии]], |
||
: <math> \frac{1}{2m} \hat{p}_x^2 = E\,,</math> |
: <math> \frac{1}{2m} \hat{p}_x^2 = E\,,</math> |
||
с состоянием <math>\psi</math> |
с состоянием <math>\psi</math>, энергия которого <math>E</math> в этом случае совпадает с кинетической энергией частицы. |
||
Общие решения уравнения |
Общие решения уравнения Шрёдингера для пространственной части волновой функции частицы в одномерном ящике таковы{{sfn|Флюгге|1974|с=46}}: |
||
: <math> \psi(x) = A e^{ikx} + B e ^{-ikx} \qquad\qquad E = \frac{\hbar^2 k^2}{2m}</math> |
: <math> \psi(x) = A e^{ikx} + B e ^{-ikx}, \qquad\qquad E = \frac{\hbar^2 k^2}{2m},</math> |
||
или, [[Формула Эйлера| |
или, по [[Формула Эйлера|формуле Эйлера]], |
||
: <math> \psi(x) = C \sin |
: <math> \psi(x) = C \sin kx + D \cos kx\,.</math> |
||
Бесконечные потенциальные стенки ящика определяют значения неопределённых коэффициентов <math>C, D |
Бесконечные потенциальные стенки ящика определяют значения неопределённых коэффициентов <math>C, D</math> и <math>k</math> из условия, что в точках <math>x=0</math> и <math>x=L</math> волновая функция <math>\psi</math> должна быть равна нулю. Таким образом, при <math>x=0</math> |
||
: <math>\psi(0) = 0 = C\sin |
: <math>\psi(0) = 0 = C\sin 0 + D\cos 0 = D, </math> |
||
откуда <math>D=0</math>. В точке <math>x=L</math> |
|||
: <math> \psi(L) = 0 = C\sin |
: <math> \psi(L) = 0 = C\sin kL \,;</math> |
||
здесь ни <math>C,</math> ни <math>k</math> не могут быть равными нулю, так как это сделало бы <math>\psi</math> тождественно равной нулю, вопреки постулату о том, что <math>\psi</math> имеет норму, равную 1. Следовательно, поскольку <math>\sin kL = 0,</math> аргумент <math>kL</math> должен быть кратен <math>\pi,</math> то есть |
|||
: <math>k_n = \frac{n\pi}{L}\qquad\qquad n=1,2,3,\ldots\,.</math> |
: <math>k_n = \frac{n\pi}{L},\qquad\qquad n=\plusmn 1, \plusmn 2, \plusmn 3,\ldots\,.</math> |
||
Это ограничение на <math>k</math> ограничивает возможные собственные функции системы набором [[Стоячая волна|стоячих волн]], в которых полуволны укладываются целое число раз на длине потенциальной ямы. Возможные значения энергии частицы при этом ограничены дискретным набором{{sfn|Флюгге|1974|с=47}} |
|||
Это ограничение на <math>k</math> подразумевает ограничение на уровни энергии, что даёт{{sfn|Флюгге|1974|с=47}} |
|||
: <math>E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2} = \frac{n^2h^2}{8mL^2}\,.</math> |
: <math>E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2} = \frac{n^2h^2}{8mL^2}\,.</math> |
||
[[Прямоугольная квантовая яма]] — это обобщение задачи с бесконечной потенциальной ямой на потенциальные ямы конечной глубины. Проблема конечной потенциальной ямы математически более сложна, чем задача о частице в ящике, поскольку волновая функция не |
[[Прямоугольная квантовая яма]] — это обобщение задачи с бесконечной потенциальной ямой на потенциальные ямы конечной глубины. Проблема конечной потенциальной ямы математически более сложна, чем задача о частице в ящике, поскольку волновая функция не обязана быть равной нулю на стенках ямы. Вместо этого волновая функция должна удовлетворять более сложным граничным условиям, поскольку она, вообще говоря, отлична от нуля в областях вне ямы{{sfn|Флюгге|1974|с=62—63}}. Другая родственная проблема связана с [[Туннелирование через прямоугольный барьер|прямоугольным потенциальным барьером]], который представляет собой модель [[Квантовое туннелирование|эффекта квантового туннелирования]]{{sfn|Коэн-Таннуджи, Диу и Лалоэ|2000|с=87—88}}, играющего важную роль в работе современных технологий, таких как [[Флеш-память|флэш-память]]<ref>{{статья |автор = Bez R., Camerlenghi E., Modelli A., Visconti A.|заглавие = Introduction to flash memory|оригинал = |ссылка = |издание = Proceedings of the IEEE|год = 2003|том = 91(4)|страницы = 489—502 |doi = 10.1109/jproc.2003.811702|pmid = |bibcode = |arxiv = |язык=en |ref = }}</ref> и [[Сканирующий туннельный микроскоп|сканирующая туннельная микроскопия]]<ref>{{статья|автор=Binnig G., Rohrer H.|заглавие=Scanning tunneling microscopy — from birth to adolescence|издание=Reviews of Modern Physics|год=1987|том=59|выпуск=3|номер=|страницы=615–625|ссылка=|doi=10.1103/RevModPhys.59.615|arxiv=|bibcode=1987RvMP...59..615B|язык=en}}{{free access}}</ref>. |
||
=== Гармонический осциллятор === |
=== Гармонический осциллятор === |
||
{{main|Квантовый гармонический осциллятор}} |
{{main|Квантовый гармонический осциллятор}} |
||
[[Файл:QuantumHarmonicOscillatorAnimation.gif|справа|мини| Некоторые траектории [[Гармонический осциллятор|гармонического осциллятора]], то есть шарика, прикреплённого к [[Закон Гука|пружине]], в [[Классическая механика|классической механике]] (AB) и квантовой механике (CH). В квантовой механике положение шарика представлено [[Волна|волной]] (называемой [[Волновая функция|волновой функцией]]), [[Комплексное число|реальная часть которой]] показана синим цветом, а [[Комплексное число|мнимая |
[[Файл:QuantumHarmonicOscillatorAnimation.gif|справа|мини| Некоторые траектории [[Гармонический осциллятор|гармонического осциллятора]], то есть шарика, прикреплённого к [[Закон Гука|пружине]], в [[Классическая механика|классической механике]] (AB) и квантовой механике (CH). В квантовой механике положение шарика представлено [[Волна|волной]] (называемой [[Волновая функция|волновой функцией]]), [[Комплексное число|реальная часть которой]] показана синим цветом, а [[Комплексное число|мнимая]] — красным. Некоторые траектории (например, C, D, E и F) представляют собой [[Стоячая волна|стоячие волны]] (или «[[Стационарное состояние (квантовая физика)|стационарные состояния]]»). Каждая частота стоячей волны пропорциональна возможному [[Энергетический уровень|уровню энергии]] осциллятора. Это «квантование энергии» не происходит в классической физике, где осциллятор может иметь ''любую'' энергию]] |
||
Потенциал квантового гармонического осциллятора как и в классическом случае определяется выражением{{sfn|Флюгге|1974|с=81}} |
Потенциал квантового гармонического осциллятора, как и в классическом случае, определяется выражением{{sfn|Флюгге|1974|с=81}} |
||
: <math>V(x)=\frac{1}{2}m\omega^2x^2\,.</math> |
: <math>V(x)=\frac{1}{2}m\omega^2x^2\,.</math> |
||
Уровни энергии и функции состояния квантового гармонического осциллятора можно определить либо путём непосредственного решения уравнения Шрёдингера, что не является тривиальной задачей{{sfn|Флюгге|1974|с=81—84}}, либо с помощью более элегантного «[[Лестничный оператор|лестничного метода]]», впервые предложенного Полем Дираком{{sfn|Флюгге|1974|с=87—89}}. Собственные [[Квантовое состояние|состояния]] квантового гармонического осциллятора задаются как{{sfn|Флюгге|1974|с=83}} |
|||
: <math> \psi_n(x) = \sqrt{\frac{1}{2^n\, n!}} \left(\frac{\lambda}{\pi}\right)^{1/4} e^{ |
: <math> \psi_n(x) = \sqrt{\frac{1}{2^n\, n!}} \left(\frac{\lambda}{\pi}\right)^{1/4} e^{ |
||
- \frac{\lambda x^2}{2}} H_n\left(\sqrt{\lambda} x \right)\,,</math> |
- \frac{\lambda x^2}{2}} H_n\left(\sqrt{\lambda} x \right)\,,</math> |
||
где <math>\lambda=m\omega/\hbar</math> и <math>n = 0,1,2,\ldots\,,</math> ''H<sub>n</sub>'' — [[Многочлены Эрмита|полиномы Эрмита]]{{sfn|Флюгге|1974|с=88}} |
где <math>\lambda=m\omega/\hbar</math> и <math>n = 0,1,2,\ldots\,,</math> {{math|''H<sub>n</sub>''}} — [[Многочлены Эрмита|полиномы Эрмита]]{{sfn|Флюгге|1974|с=88}} |
||
: <math>H_n(x)=(-1)^n e^{x^2}\frac{d^n}{dx^n}\left(e^{-x^2}\right),</math> |
: <math>H_n(x)=(-1)^n e^{x^2}\frac{d^n}{dx^n}\left(e^{-x^2}\right),</math> |
||
Строка 315: | Строка 274: | ||
=== Интерферометр Маха — Цендера === |
=== Интерферометр Маха — Цендера === |
||
{{main|Интерферометр Маха — Цендера}} |
{{main|Интерферометр Маха — Цендера}} |
||
[[Файл:Mach-Zehnder_interferometer.svg|справа|мини| Схема интерферометра Маха — Цендера |
[[Файл:Mach-Zehnder_interferometer.svg|справа|мини| Схема интерферометра Маха — Цендера]] |
||
Интерферометр Маха — Цендера иллюстрирует концепции суперпозиции и интерференции с линейной алгеброй в дискретном пространстве размерности 2 без использования дифференциальных уравнений. Его можно рассматривать как упрощённую версию эксперимента с двумя щелями, хотя он представляет интерес сам по себе, например, в эксперименте о [[Квантовый ластик |
Интерферометр Маха — Цендера иллюстрирует концепции суперпозиции и интерференции с линейной алгеброй в дискретном пространстве размерности 2 без использования дифференциальных уравнений. Его можно рассматривать как упрощённую версию эксперимента с двумя щелями, хотя он представляет интерес сам по себе, например, в эксперименте о [[Квантовый ластик|квантовом ластике]] с [[Квантовый ластик с отложенным выбором|отложенным выбором]], {{iw|эксперимент Элицура — Вайдмана|эксперименте с бомбами Элицура — Вайдмана||Elitzur–Vaidman bomb tester}} и в исследованиях квантовой запутанности<ref name="Paris1999">{{статья|автор=Paris M. G. A.|заглавие=Entanglement and visibility at the output of a Mach–Zehnder interferometer|издание=[[Physical Review A]]|год=1999|том=59|выпуск=2|номер=|страницы=1615–1621|ссылка=|doi=10.1103/PhysRevA.59.1615|arxiv=quant-ph/9811078|bibcode=1999PhRvA..59.1615P|язык=en}}</ref><ref name="Haack2010">{{статья|автор=Haack G. R.|заглавие=Parity detection and entanglement with a Mach-Zehnder interferometer|издание=[[Physical Review B]]|год=2010|том=82 |выпуск=15 |номер=|страницы=155303 |ссылка=|doi=10.1103/PhysRevB.82.155303|arxiv=1005.3976|bibcode=2010PhRvB..82o5303H|язык=en}}</ref>. |
||
Если рассмотреть фотон, проходящий через интерферометр, то в каждой точке он может находиться в суперпозиции только двух путей: «нижнего» пути, который начинается слева, проходит прямо через оба светоделителя и заканчивается вверху, и « |
Если рассмотреть фотон, проходящий через интерферометр, то в каждой точке он может находиться в суперпозиции только двух путей: «нижнего» пути, который начинается слева, проходит прямо через оба светоделителя и заканчивается вверху, и «верхнего» пути, который начинается снизу, проходит прямо через оба светоделителя и заканчивается справа. Таким образом, квантовое состояние фотона представляет собой вектор <math>\psi \in \mathbb{C}^2</math> — это суперпозиция «нижнего» пути <math>\psi_l = \begin{pmatrix} 1 \\ 0 \end{pmatrix}</math> и «верхнего» пути <math>\psi_u = \begin{pmatrix} 0 \\ 1 \end{pmatrix}</math>, или <math>\psi = \alpha \psi_l + \beta \psi_u</math> для комплексных коэффициентов <math>\alpha,\beta</math>. Для соблюдения постулата <math>\langle \psi,\psi\rangle = 1</math> требуется, чтобы <math>|\alpha|^2+|\beta|^2 = 1</math>{{sfn|Vedral|2006|p=25}}<ref>{{статья |автор = Marshman E., Singh C.|заглавие = Interactive tutorial to improve student understanding of single photon experiments involving a Mach–Zehnder interferometer|оригинал = |ссылка = |издание = Eur. J. Phys.|год = 2016|том = 37|страницы = 024001 |doi =10.1088/0143-0807/37/2/024001 |pmid = |bibcode = |arxiv = 1602.06162|язык=en |ref = Marshman and Singh}}</ref>. |
||
Нижний и верхний |
Нижний и верхний {{iw|Светоделитель|светоделители|en|Beam splitter}} задаются матрицами <math>B_l = \frac1{\sqrt2}\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}</math> и <math>B_u = \frac1{\sqrt2}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}</math>, что означает, что когда фотон встречает светоделитель, он либо остаётся на том же пути с амплитудой вероятности <math>1/\sqrt{2}</math>, либо отражается на другой путь с амплитудой вероятности <math>1/\sqrt{2}</math> (со сдвигом фазы на {{math|π}}). Зеркало задаётся матрицей <math>M = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}\,.</math> Фазовращатель на плече моделируется унитарной матрицей <math>P = \begin{pmatrix} e^{i\Delta\Phi} & 0 \\ 0 & 1 \end{pmatrix},</math> что означает, что если фотон находится на «верхнем» пути, то он приобретёт относительную фазу <math>\Delta\Phi</math>, или останется неизменным, если он находится на нижнем пути{{sfn|Vedral|2006|p=102}}{{sfn|Marshman and Singh|2016}}. |
||
Фотон, который входит в интерферометр слева, затем подвергается воздействию светоделителя <math>B_l</math>, зеркала, фазовращателя <math>P</math> и ещё одного светоделителя <math>B_u</math>, оказывается в состоянии |
Фотон, который входит в интерферометр слева, затем подвергается воздействию светоделителя <math>B_l</math>, зеркала, фазовращателя <math>P</math> и ещё одного светоделителя <math>B_u</math>, оказывается в состоянии |
||
Строка 331: | Строка 290: | ||
: <math> p(l) = |\langle \psi_l, B_uPMB_l\psi_l \rangle|^2 = \sin^2 \frac{\Delta \Phi}{2}\,.</math> |
: <math> p(l) = |\langle \psi_l, B_uPMB_l\psi_l \rangle|^2 = \sin^2 \frac{\Delta \Phi}{2}\,.</math> |
||
Поэтому можно использовать интерферометр Маха — Цендера для оценки [[Фаза колебаний|фазового сдвига]] путём расчёта этих вероятностей{{sfn|Marshman and |
Поэтому можно использовать интерферометр Маха — Цендера для оценки [[Фаза колебаний|фазового сдвига]] путём расчёта этих вероятностей{{sfn|Marshman and Singh|2016}}. |
||
Можно также определить, что произошло бы, если бы фотон с определённостью находился либо на «нижнем», либо на «верхнем» пути между светоделителями. Этого можно добиться, заблокировав один из путей или, что то же самое, удалив первый светоделитель (и запуская фотон слева или снизу, по желанию). В обоих случаях между путями больше не будет интерференции, и вероятности определяются выражением <math>p(u)=p(l) = 1/2</math> |
Можно также определить, что произошло бы, если бы фотон с определённостью находился либо на «нижнем», либо на «верхнем» пути между светоделителями. Этого можно добиться, заблокировав один из путей или, что то же самое, удалив первый светоделитель (и запуская фотон слева или снизу, по желанию). В обоих случаях между путями больше не будет интерференции, и вероятности определяются выражением <math>p(u)=p(l) = 1/2,</math> независимо от фазы <math>\Delta\Phi</math>. Из этого можно заключить, что фотон не выбирает тот или иной путь после первого светоделителя, а скорее находится в подлинной квантовой суперпозиции двух путей<ref name="vedral">{{книга|автор=Vedral V.|часть=|заглавие=Introduction to Quantum Information Science|оригинал= |ссылка=|издание=|ответственный=|место=|издательство=Oxford University Press|год=2006|том=|страницы=|страниц=|isbn=9780199215706 |тираж=|язык=en|ref=Vedral}}</ref>. |
||
== Приложения == |
== Приложения == |
||
Квантовая механика добилась огромных успехов, объяснив многие особенности нашего мира в отношении физических явлений на мелком масштабе, дискретных величин и взаимодействий, которые невозможно объяснить [[Классическая физика|классическими методами]]{{Refn| |
Квантовая механика добилась огромных успехов, объяснив многие особенности нашего мира в отношении физических явлений на мелком масштабе, дискретных величин и взаимодействий, которые невозможно объяснить [[Классическая физика|классическими методами]]{{Refn|См., например, «[[Фейнмановские лекции по физике]]», где приведён ряд примеров технических приложений квантовой механики, таких как [[транзистор]]ы, [[Интегральная схема|интегральные микросхемы]] и [[лазер]]ы.}}. Квантовая механика часто оказывается единственной теорией, которая может раскрыть индивидуальное поведение [[Субатомная частица|субатомных частиц]], составляющих все формы материи ([[электрон]]ы, [[протон]]ы, [[нейтрон]]ы, [[фотон]]ы и другие). Законы [[Физика твёрдого тела|физики твёрдого тела]] и [[материаловедение|материаловедения]] находят объяснение в квантовой механике<ref name="marvincohen2008">{{статья|автор=Cohen M. L.|заглавие=Essay: Fifty Years of Condensed Matter Physics|издание=Physical Review Letters|год=2008|том=101|выпуск=25|номер=|страницы=|ссылка=http://prl.aps.org/edannounce/PhysRevLett.101.250001|doi=10.1103/PhysRevLett.101.250001|pmid=19113681|arxiv=|bibcode=2008PhRvL.101y0001C|язык=en|archivedate=2022-08-19|archiveurl=https://web.archive.org/web/20220819013419/https://journals.aps.org/prl/edannounce/PhysRevLett.101.250001}}</ref>. |
||
Во многих аспектах современные технологии работают в таких масштабах, где существенны квантовые эффекты. Важные приложения квантовой теории включают [[Квантовая химия|квантовую химию]], [[Квантовая оптика|квантовую оптику]], [[Квантовый компьютер|квантовые вычисления]], [[Сверхпроводящий магнит|сверхпроводящие магниты]], [[Светодиод|светоизлучающие диоды]], [[EDFA|оптические усилители]] и [[лазер]]ы, [[транзистор]]ы и [[ |
Во многих аспектах современные технологии работают в таких масштабах, где существенны квантовые эффекты. Важные приложения квантовой теории включают [[Квантовая химия|квантовую химию]], [[Квантовая оптика|квантовую оптику]], [[Квантовый компьютер|квантовые вычисления]], [[Сверхпроводящий магнит|сверхпроводящие магниты]], [[Светодиод|светоизлучающие диоды]], [[EDFA|оптические усилители]] и [[лазер]]ы, [[транзистор]]ы и [[полупроводник]]и, [[микропроцессор]]ы, [[Медицинская визуализация|медицинскую и исследовательскую визуализацию]] (такие как [[магнитно-резонансная томография]] и [[Электронный микроскоп|электронная микроскопия]])<ref>{{cite magazine|last1=Matson|first1=John|title=What Is Quantum Mechanics Good for?|url=http://www.scientificamerican.com/article/everyday-quantum-physics/|magazine=Scientific American|access-date=2016-05-18|archive-date=2022-01-25|archive-url=https://web.archive.org/web/20220125184026/https://www.scientificamerican.com/article/everyday-quantum-physics/|url-status=live}}</ref>. Объяснения многих биологических явлений исходят из природы химической связи, в частности в макромолекулах [[Дезоксирибонуклеиновая кислота|ДНК]]<ref>{{книга|автор=[[Полинг, Лайнус|Pauling L.]]|часть=|заглавие=The Nature of the Chemical Bond and the Structure of Molecules and Crystals|оригинал= |ссылка=|издание=|ответственный=|место=|издательство=Cornell University Press|год=1939 |том=|страницы=|страниц=|isbn=|тираж=|язык=en}}</ref>. |
||
По сути, вся современная полупроводниковая электроника построена на квантовой механике, поскольку она опирается на знание [[Зонная теория|зонной структуры]] твёрдых тел. Технология позволяет [[Легирование (металлургия)|легировать]] различными элементами слои кремния и создавать транзисторы в нанометровом масштабе. Множество таких элементов составляют компьютерные чипы, на которых работают все технологические устройства: настольные компьютеры, ноутбуки, планшеты, смартфоны, бытовая техника и детские игрушки. Источниками света, используемыми для отправки сообщений по оптоволоконным кабелям |
По сути, вся современная полупроводниковая электроника построена на квантовой механике, поскольку она опирается на знание [[Зонная теория|зонной структуры]] твёрдых тел. Технология позволяет [[Легирование (металлургия)|легировать]] различными элементами слои кремния и создавать транзисторы в нанометровом масштабе. Множество таких элементов составляют компьютерные чипы, на которых работают все технологические устройства: настольные компьютеры, ноутбуки, планшеты, смартфоны, бытовая техника и детские игрушки. Источниками света, используемыми для отправки сообщений по оптоволоконным кабелям во [[Всемирная сеть|всемирной сети]], являются лазеры, созданные при помощи знания о квантовых свойствах материалов. Навигация смартфона обеспечивается [[Спутниковая система навигации|спутниковыми глобальными системами позиционирования]], которые функционируют благодаря измерению точного времени. Приёмник [[GPS]] в смартфоне, чтобы определить расстояние от каждого из спутников с [[Атомные часы|атомными часами]] на орбите, принимает от них сигнал, чтобы вычислить единственную точку своего местонахождения с точностью до нескольких метров. Оптический переход, используемый для атомных часов, является сверхтонким переходом, описываемым с помощью квантовой механики. На ядерном магнитном резонансе основаны исследования мягких тканей пациента посредством [[Магнитно-резонансная томография|магнитно-резонансной томографии]]<ref>{{cite web|author = Orzel, Chad|url = https://www.forbes.com/sites/chadorzel/2015/08/13/what-has-quantum-mechanics-ever-done-for-us/?sh=479812540468|title = What Has Quantum Mechanics Ever Done For Us?|lang = en|website = https://www.forbes.com|publisher = Forbes|date = 2015-08-13|access-date = 2022-04-20|archive-date = 2022-04-20|archive-url = https://web.archive.org/web/20220420055001/https://www.forbes.com/sites/chadorzel/2015/08/13/what-has-quantum-mechanics-ever-done-for-us/?sh=479812540468|url-status = live}}</ref>. |
||
== Связь с другими научными теориями == |
== Связь с другими научными теориями == |
||
Строка 347: | Строка 306: | ||
{{main|Классическая механика}} |
{{main|Классическая механика}} |
||
[[Файл:Physicsdomains ru.svg|мини|Области применения классической и квантовой механики|300пкс]] |
[[Файл:Physicsdomains ru.svg|мини|Области применения классической и квантовой механики|300пкс]] |
||
Постулаты квантовой механики гласят, что пространство состояний квантовой системы является [[Гильбертово пространство|гильбертовым пространством]] |
Постулаты квантовой механики гласят, что пространство состояний квантовой системы является [[Гильбертово пространство|гильбертовым пространством]] и что наблюдаемым системы соответствуют [[самосопряжённый оператор|эрмитовые операторы]], действующие на векторы в этом пространстве, — хотя сами постулаты не конкретизируют гильбертово пространство и операторы. Их нужно выбирать соответствующим образом, чтобы получить количественное описание квантовой системы, что является необходимым шагом для предсказания поведения физических систем. Для этого пользуются [[принцип соответствия|принципом соответствия]], эвристикой, которая утверждает, что предсказания квантовой механики сводятся к предсказаниям классической механики в пределе больших [[Квантовое число|квантовых чисел]]<ref name="Tipler">{{книга|автор=Tipler P., Llewellyn R.|часть=|заглавие=Modern Physics|оригинал= |ссылка=https://archive.org/details/modernphysicsfif00paul|издание= 5th Ed.|ответственный=|место=|издательство=W.H. Freeman and Company|год=2008|том=|страницы=[https://archive.org/details/modernphysicsfif00paul/page/n177 160]–161|страниц=|isbn=978-0-7167-7550-8|тираж=|язык=en}}</ref>. Можно также начать с установленной классической модели конкретной системы, а затем попытаться угадать лежащую в основе квантовую модель, которая сводится к классической модели в пределе соответствия{{sfn|Блохинцев|1976|с=237—241}}. Этот подход известен как [[Каноническое квантование|квантование]]{{sfn|Садовский|2003|с=45}}. |
||
Когда квантовая механика была первоначально сформулирована, она применялась к моделям, пределом соответствия которых была [[Теория относительности|нерелятивистская]] [[классическая механика]]. Например, широко исследованная модель [[Квантовый гармонический осциллятор|квантового гармонического осциллятора]] использует явно нерелятивистское выражение для [[Кинетическая энергия|кинетической энергии]] осциллятора и, таким образом, является квантовой версией [[Гармонический осциллятор|классического гармонического осциллятора]]{{sfn|Флюгге|1974|с=81—84}}. |
Когда квантовая механика была первоначально сформулирована, она применялась к моделям, пределом соответствия которых была [[Теория относительности|нерелятивистская]] [[классическая механика]]. Например, широко исследованная модель [[Квантовый гармонический осциллятор|квантового гармонического осциллятора]] использует явно нерелятивистское выражение для [[Кинетическая энергия|кинетической энергии]] осциллятора и, таким образом, является квантовой версией [[Гармонический осциллятор|классического гармонического осциллятора]]{{sfn|Флюгге|1974|с=81—84}}. |
||
Строка 353: | Строка 312: | ||
Сложности квантования возникают с [[Теория хаоса|хаотическими системами]], у которых нет хороших квантовых чисел, и [[квантовый хаос]] изучает взаимосвязь между классическими и квантовыми описаниями в этих системах{{sfn|Haake|2001}}. |
Сложности квантования возникают с [[Теория хаоса|хаотическими системами]], у которых нет хороших квантовых чисел, и [[квантовый хаос]] изучает взаимосвязь между классическими и квантовыми описаниями в этих системах{{sfn|Haake|2001}}. |
||
[[Декогеренция|Квантовая декогеренция]] — это механизм, посредством которого квантовые системы теряют [[Когерентность (физика)|когерентность]] и, таким образом, становятся неспособными демонстрировать многие типично квантовые эффекты: [[Принцип суперпозиции (квантовая механика)|квантовая суперпозиция]] становится просто суммой вероятностей, а [[квантовая запутанность]] — просто классическими корреляциями. Квантовая когерентность обычно не проявляется в макроскопических масштабах, за исключением случая температур, приближающихся к [[Абсолютный нуль температуры|абсолютному нулю]], при которых квантовое поведение может проявляться макроскопически{{Refn|Смотрите {{iw|Макроскопические квантовые явления||en|macroscopic quantum phenomena}}, [[конденсат Бозе — Эйнштейна]] и [[квантовая машина]]|group=К}}<ref name="Schlosshauer">{{ |
[[Декогеренция|Квантовая декогеренция]] — это механизм, посредством которого квантовые системы теряют [[Когерентность (физика)|когерентность]] и, таким образом, становятся неспособными демонстрировать многие типично квантовые эффекты: [[Принцип суперпозиции (квантовая механика)|квантовая суперпозиция]] становится просто суммой вероятностей, а [[квантовая запутанность]] — просто классическими корреляциями. Квантовая когерентность обычно не проявляется в макроскопических масштабах, за исключением случая температур, приближающихся к [[Абсолютный нуль температуры|абсолютному нулю]], при которых квантовое поведение может проявляться макроскопически{{Refn|Смотрите {{iw|Макроскопические квантовые явления||en|macroscopic quantum phenomena}}, [[конденсат Бозе — Эйнштейна]] и [[квантовая машина]]|group=К}}<ref name="Schlosshauer">{{статья|автор=Schlosshauer M.|заглавие=Decoherence, the measurement problem, and interpretations of quantum mechanics|издание=[[Reviews of Modern Physics]]|год=2005 |том=76 |выпуск=4 |номер=|страницы=1267–1305|ссылка=|doi=10.1103/RevModPhys.76.1267|arxiv=quant-ph/0312059|bibcode=2004RvMP...76.1267S|язык=en}}</ref>. |
||
Многие макроскопические свойства классической системы являются прямым следствием квантового поведения её частей. Например, стабильность объёмного вещества (состоящего из атомов и [[Молекула|молекул]], которые быстро разрушились бы под действием одних только электрических сил), жёсткость твёрдых тел, а также механические, термические, химические, оптические и магнитные свойства вещества — всё это результат взаимодействия [[Электрический заряд|электрических зарядов]] по законам квантовой механики<ref>{{Cite web|url=http://academic.brooklyn.cuny.edu/physics/sobel/Nucphys/atomprop.html|title=Atomic Properties|publisher=Academic.brooklyn.cuny.edu|access-date= |
Многие макроскопические свойства классической системы являются прямым следствием квантового поведения её частей. Например, стабильность объёмного вещества (состоящего из атомов и [[Молекула|молекул]], которые быстро разрушились бы под действием одних только электрических сил), жёсткость твёрдых тел, а также механические, термические, химические, оптические и магнитные свойства вещества — всё это результат взаимодействия [[Электрический заряд|электрических зарядов]] по законам квантовой механики<ref>{{Cite web|url=http://academic.brooklyn.cuny.edu/physics/sobel/Nucphys/atomprop.html|title=Atomic Properties|publisher=Academic.brooklyn.cuny.edu|access-date=2012-08-18|archive-date=2012-04-06|archive-url=https://web.archive.org/web/20120406095616/http://academic.brooklyn.cuny.edu/physics/sobel/Nucphys/atomprop.html|url-status=live}}</ref>. |
||
Экспериментально наблюдалось проявление квантовых эффектов в макроскопическом масштабе в активном ([[Броуновское движение|броуновском]]) движении гранул с размерами в десятые доли миллиметра в [[Сверхтекучий гелий-4|сверхтекучем гелии]]<ref name="Petrov">{{ |
Экспериментально наблюдалось проявление квантовых эффектов в макроскопическом масштабе в активном ([[Броуновское движение|броуновском]]) движении гранул с размерами в десятые доли миллиметра в [[Сверхтекучий гелий-4|сверхтекучем гелии]]<ref name="Petrov">{{статья|автор=Petrov O. F., Boltnev R. E., Vasiliev M. M.|заглавие=Experimental evolution of active Brownian grains driven by quantum effects in superfluid helium|издание=[[Scientific Reports]]|год=2022 |том=12 |выпуск=|номер=|страницы=6085 |ссылка=|doi=10.1038/s41598-022-09523-z|arxiv=|bibcode=|язык=en}}</ref>. |
||
=== Специальная теория относительности и электродинамика === |
=== Специальная теория относительности и электродинамика === |
||
{{main|Специальная теория относительности|Электродинамика}} |
{{main|Специальная теория относительности|Электродинамика}} |
||
Ранние попытки объединить квантовую механику со [[Специальная теория относительности|специальной теорией относительности]] включали замену уравнения Шрёдингера ковариантным уравнением, таким как уравнение [[Уравнение Клейна — Гордона|Клейна — Гордона]] или [[уравнение Дирака]]. Хотя эти теории были успешными в объяснении многих экспериментальных результатов, они имели некоторые неудовлетворительные свойства, проистекающие из пренебрежения рождением и аннигиляцией частиц. Полностью релятивистская квантовая теория потребовала развития [[Квантовая теория поля|квантовой теории поля]], которая использует квантование поля, а не фиксированный набор частиц. Первая согласованная квантовая теория поля — [[квантовая электродинамика]], даёт полное описание [[Электромагнетизм|электромагнитного взаимодействия]]. Квантовая электродинамика, наряду с [[Общая теория относительности|общей теорией относительности]], является одной из самых точных когда-либо созданных физических теорий<ref>{{cite book|url=https://books.google.com/books?id=6a-agBFWuyQC&pg=PA61|title=The Nature of Space and Time|date=2010|isbn=978-1400834747|last1=Hawking|first1=Stephen|last2=Penrose|first2=Roger}} {{ |
Ранние попытки объединить квантовую механику со [[Специальная теория относительности|специальной теорией относительности]] включали замену уравнения Шрёдингера ковариантным уравнением, таким как уравнение [[Уравнение Клейна — Гордона|Клейна — Гордона]] или [[уравнение Дирака]]. Хотя эти теории были успешными в объяснении многих экспериментальных результатов, они имели некоторые неудовлетворительные свойства, проистекающие из пренебрежения рождением и аннигиляцией частиц. Полностью релятивистская квантовая теория потребовала развития [[Квантовая теория поля|квантовой теории поля]], которая использует квантование поля, а не фиксированный набор частиц. Первая согласованная квантовая теория поля — [[квантовая электродинамика]], даёт полное описание [[Электромагнетизм|электромагнитного взаимодействия]]. Квантовая электродинамика, наряду с [[Общая теория относительности|общей теорией относительности]], является одной из самых точных когда-либо созданных физических теорий<ref>{{cite book|url=https://books.google.com/books?id=6a-agBFWuyQC&pg=PA61|title=The Nature of Space and Time|date=2010|isbn=978-1400834747|last1=Hawking|first1=Stephen|last2=Penrose|first2=Roger}} {{Cite web |url=https://books.google.com/books?id=6a-agBFWuyQC&pg=PA61 |title=Источник |access-date=2022-01-26 |archive-date=2020-07-28 |archive-url=https://web.archive.org/web/20200728102613/https://books.google.com/books?id=6a-agBFWuyQC&pg=PA61 |url-status=unfit }}</ref><ref> |
||
{{Cite journal|author=Tatsumi Aoyama|year=2012|title=Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant|journal=[[Physical Review Letters]]|volume=109|issue=11|doi=10.1103/PhysRevLett.109.111807|arxiv=1205.5368|bibcode=2012PhRvL.109k1807A|pmid=23005618}}</ref>. |
{{Cite journal|author=Tatsumi Aoyama|year=2012|title=Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant|journal=[[Physical Review Letters]]|volume=109|issue=11|doi=10.1103/PhysRevLett.109.111807|arxiv=1205.5368|bibcode=2012PhRvL.109k1807A|pmid=23005618}}</ref>. |
||
Полный аппарат квантовой теории поля часто не нужен для описания электродинамических систем. Более простой подход, который использовался с момента зарождения квантовой механики, состоит в том, чтобы рассматривать [[Электрический заряд|заряженные]] частицы как объекты квантовой механики, на которые воздействует классическое [[электромагнитное поле]]<ref>{{cite book | last1 = Simmen| first1 = Benjamin | last2 = Reiher| first2 = Markus | title = Many-electron approaches in physics, chemistry and mathematics : a multidisciplinary view |chapter=Relativistic Quantum Theory of Many-Electron Systems| publisher = Springer | location = Cham | year = 2014 |page=4| isbn = 3319063782 }}</ref>. Например, элементарная квантовая модель [[Атом водорода|атома водорода]] описывает [[электрическое поле]] атома водорода с помощью классического <math>\textstyle -e^2/(4 \pi\epsilon_{_0}r)</math> [[Электростатический потенциал|кулоновского потенциала]]{{sfn|Флюгге|1974|с=180}}{{sfn|Griffiths and Schroeter|2018|p=183}}. Этот «полуклассический» подход терпит неудачу, если квантовые флуктуации электромагнитного поля играют важную роль, например, при излучении [[фотон]]ов [[Заряженная частица|заряженными частицами]]<ref>{{статья |автор = Wistisen, Tobias N.|заглавие = Quantum synchrotron radiation in the case of a field with finite extension|оригинал = |ссылка = |издание = Phys. Rev. D|год = 2015|том = 92|страницы = 045045 |doi =10.1103/PhysRevD.92.045045}}</ref>. |
Полный аппарат квантовой теории поля часто не нужен для описания электродинамических систем. Более простой подход, который использовался с момента зарождения квантовой механики, состоит в том, чтобы рассматривать [[Электрический заряд|заряженные]] частицы как объекты квантовой механики, на которые воздействует классическое [[электромагнитное поле]]<ref>{{cite book | last1 = Simmen| first1 = Benjamin | last2 = Reiher| first2 = Markus | title = Many-electron approaches in physics, chemistry and mathematics : a multidisciplinary view |chapter=Relativistic Quantum Theory of Many-Electron Systems| publisher = Springer | location = Cham | year = 2014 |page=4| isbn = 3319063782 }}</ref>. Например, элементарная квантовая модель [[Атом водорода|атома водорода]] описывает [[электрическое поле]] атома водорода с помощью классического <math>\textstyle -e^2/(4 \pi\epsilon_{_0}r)</math> [[Электростатический потенциал|кулоновского потенциала]]{{sfn|Флюгге|1974|с=180}}{{sfn|Griffiths and Schroeter|2018|p=183}}. Этот «полуклассический» подход терпит неудачу, если квантовые флуктуации электромагнитного поля играют важную роль, например, при излучении [[фотон]]ов [[Заряженная частица|заряженными частицами]]<ref>{{статья |автор = Wistisen, Tobias N.|заглавие = Quantum synchrotron radiation in the case of a field with finite extension|оригинал = |ссылка = |издание = Phys. Rev. D|год = 2015|том = 92|страницы = 045045 |doi =10.1103/PhysRevD.92.045045}}</ref>. |
||
Также были разработаны [[Поле (физика)|квантовые]] теории поля для [[Сильное взаимодействие|сильного ядерного взаимодействия]] и [[Слабое взаимодействие|слабого ядерного взаимодействия]]. Квантовая теория поля сильного ядерного взаимодействия называется [[Квантовая хромодинамика|квантовой хромодинамикой]] и описывает взаимодействия субъядерных частиц, таких как [[кварк]]и и [[глюон]]ы. Слабое ядерное взаимодействие и электромагнитное взаимодействие были объединены в их квантованных формах в единую квантовую теорию поля (известную как [[Электрослабое взаимодействие|электрослабая теория]]) физиками [[Абдус Салам|Абдусом Саламом]], [[Глэшоу, Шелдон Ли|Шелдоном Глэшоу]] и [[Вайнберг, Стивен|Стивеном Вайнбергом]]<ref>{{Cite web|url=http://nobelprize.org/nobel_prizes/physics/laureates/1979/index.html|title=The Nobel Prize in Physics 1979|publisher=Nobel Foundation|access-date= |
Также были разработаны [[Поле (физика)|квантовые]] теории поля для [[Сильное взаимодействие|сильного ядерного взаимодействия]] и [[Слабое взаимодействие|слабого ядерного взаимодействия]]. Квантовая теория поля сильного ядерного взаимодействия называется [[Квантовая хромодинамика|квантовой хромодинамикой]] и описывает взаимодействия субъядерных частиц, таких как [[кварк]]и и [[глюон]]ы. Слабое ядерное взаимодействие и электромагнитное взаимодействие были объединены в их квантованных формах в единую квантовую теорию поля (известную как [[Электрослабое взаимодействие|электрослабая теория]]) физиками [[Абдус Салам|Абдусом Саламом]], [[Глэшоу, Шелдон Ли|Шелдоном Глэшоу]] и [[Вайнберг, Стивен|Стивеном Вайнбергом]]<ref>{{Cite web|url=http://nobelprize.org/nobel_prizes/physics/laureates/1979/index.html|title=The Nobel Prize in Physics 1979|publisher=Nobel Foundation|access-date=2020-12-16|archive-date=2009-02-26|archive-url=https://web.archive.org/web/20090226040152/http://nobelprize.org/nobel_prizes/physics/laureates/1979/index.html|url-status=live}}</ref>. |
||
=== Отношение к общей теории относительности === |
=== Отношение к общей теории относительности === |
||
{{main|Общая теория относительности}} |
{{main|Общая теория относительности}} |
||
Несмотря на то, что предсказания как квантовой теории, так и общей теории относительности были подтверждены строгими и повторяющимися [[Эмпирические данные|эмпирическими данными]], их абстрактные формализмы противоречат друг другу, в результате их оказалось чрезвычайно трудно включить в одну непротиворечивую связную модель<ref>«There is as yet no logically consistent and complete relativistic quantum field theory.», p. 4. — V.B. Berestetskii, [[Evgeny Lifshitz|E.M. Lifshitz]], L.P. Pitaevskii (1971). J.B. Sykes, J.S. Bell (translators). ''Relativistic Quantum Theory'' '''4, part I'''. ''Course of Theoretical Physics (Landau and Lifshitz)'' {{isbn|0-08-016025-5}}</ref>. Гравитацией можно пренебречь во многих областях физики элементарных частиц, поэтому объединение общей теории относительности и квантовой механики не является насущной проблемой в этих конкретных приложениях. Однако отсутствие правильной теории [[Квантовая гравитация|квантовой гравитации]] — это важная проблема [[Космология|физической космологии]] и поиска физиками элегантной «[[Теория всего|Теории всего]]». Следовательно, устранение несоответствий между обеими теориями стало главной целью физики 20-го и 21-го веков. Эта теория всего объединит не только модели субатомной физики, но и выведет четыре фундаментальные силы природы из одной силы или явления<ref>{{cite web|url=http://www.damtp.cam.ac.uk/strings02/dirac/hawking/|title=Stephen Hawking; Gödel and the end of physics|date=|work=cam.ac.uk| |
Несмотря на то, что предсказания как квантовой теории, так и общей теории относительности были подтверждены строгими и повторяющимися [[Эмпирические данные|эмпирическими данными]], их абстрактные формализмы противоречат друг другу, в результате их оказалось чрезвычайно трудно включить в одну непротиворечивую связную модель<ref>«There is as yet no logically consistent and complete relativistic quantum field theory.», p. 4. — V.B. Berestetskii, [[Evgeny Lifshitz|E.M. Lifshitz]], L.P. Pitaevskii (1971). J.B. Sykes, J.S. Bell (translators). ''Relativistic Quantum Theory'' '''4, part I'''. ''Course of Theoretical Physics (Landau and Lifshitz)'' {{isbn|0-08-016025-5}}</ref>. Гравитацией можно пренебречь во многих областях физики элементарных частиц, поэтому объединение общей теории относительности и квантовой механики не является насущной проблемой в этих конкретных приложениях. Однако отсутствие правильной теории [[Квантовая гравитация|квантовой гравитации]] — это важная проблема [[Космология|физической космологии]] и поиска физиками элегантной «[[Теория всего|Теории всего]]». Следовательно, устранение несоответствий между обеими теориями стало главной целью физики 20-го и 21-го веков. Эта теория всего объединит не только модели субатомной физики, но и выведет четыре фундаментальные силы природы из одной силы или явления<ref>{{cite web|url=http://www.damtp.cam.ac.uk/strings02/dirac/hawking/|title=Stephen Hawking; Gödel and the end of physics|date=|work=cam.ac.uk|access-date=2015-09-11|archive-url=https://web.archive.org/web/20110521123113/http://www.damtp.cam.ac.uk/strings02/dirac/hawking/|archive-date=2011-05-21|url-status=dead}}</ref>. |
||
Одним из предложений для этого является [[теория струн]], которая утверждает, что [[Материальная точка|точечные]] [[Физика элементарных частиц|частицы в физике]] элементарных частиц заменяются [[Размерность пространства|одномерными]] объектами, называемыми [[Квантовая струна|струнами]]. Теория струн описывает, как эти струны распространяются в пространстве и взаимодействуют друг с другом. На масштабах расстояний, превышающих масштаб струны, струна выглядит как обычная частица, а её [[масса]], [[Заряд (физика)|заряд]] и другие свойства определяются [[Вибрация|колебательным]] состоянием струны. В теории струн одно из многих колебательных состояний струны соответствует [[гравитон]]у, квантовомеханической частице, переносчика гравитационного взаимодействия<ref>{{cite book|last1=Becker |first1=Katrin |last2=Becker |first2=Melanie |last3=Schwarz |first3=John |title=String theory and M-theory: A modern introduction |date=2007 |publisher=Cambridge University Press |isbn=978-0-521-86069-7}}</ref><ref>{{cite book |last1=Zwiebach |first1=Barton |title=A First Course in String Theory |date=2009 |publisher=Cambridge University Press |isbn=978-0-521-88032-9 |author-link=Barton Zwiebach}}</ref>. |
Одним из предложений для этого является [[теория струн]], которая утверждает, что [[Материальная точка|точечные]] [[Физика элементарных частиц|частицы в физике]] элементарных частиц заменяются [[Размерность пространства|одномерными]] объектами, называемыми [[Квантовая струна|струнами]]. Теория струн описывает, как эти струны распространяются в пространстве и взаимодействуют друг с другом. На масштабах расстояний, превышающих масштаб струны, струна выглядит как обычная частица, а её [[масса]], [[Заряд (физика)|заряд]] и другие свойства определяются [[Вибрация|колебательным]] состоянием струны. В теории струн одно из многих колебательных состояний струны соответствует [[гравитон]]у, квантовомеханической частице, переносчика гравитационного взаимодействия<ref>{{cite book|last1=Becker |first1=Katrin |last2=Becker |first2=Melanie |last3=Schwarz |first3=John |title=String theory and M-theory: A modern introduction |date=2007 |publisher=Cambridge University Press |isbn=978-0-521-86069-7}}</ref><ref>{{cite book |last1=Zwiebach |first1=Barton |title=A First Course in String Theory |url=https://archive.org/details/firstcourseinstr0002edzwie |date=2009 |publisher=Cambridge University Press |isbn=978-0-521-88032-9 |author-link=Barton Zwiebach}}</ref>. |
||
Другой популярной теорией является [[петлевая квантовая гравитация]], которая описывает квантовые свойства гравитации и, таким образом, является теорией [[Квантовое пространство-время|квантового пространства-времени]]. Петлевая теория гравитации — это попытка объединить и адаптировать стандартную квантовую механику и стандартную общую теорию относительности. Эта теория описывает пространство как чрезвычайно тонкую ткань, «сотканную» из конечных петель, называемых [[Спиновая сеть|спиновыми сетями]]. Эволюция спиновой сети во времени называется [[пена спина|спиновой пеной]]. Характерным масштабом длины спиновой пены является [[планковская длина]], приблизительно равная 1,616 × 10<sup>−35</sup> м, поэтому длины короче планковской длины не имеют физического смысла в петлевой теории гравитации<ref>{{Cite book|last1=Rovelli|first1=Carlo|url=https://books.google.com/books?id=w6z0BQAAQBAJ|title=Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory|last2=Vidotto|first2=Francesca|date=13 November 2014|publisher=Cambridge University Press|isbn=978-1-316-14811-2|language=en}} {{ |
Другой популярной теорией является [[петлевая квантовая гравитация]], которая описывает квантовые свойства гравитации и, таким образом, является теорией [[Квантовое пространство-время|квантового пространства-времени]]. Петлевая теория гравитации — это попытка объединить и адаптировать стандартную квантовую механику и стандартную общую теорию относительности. Эта теория описывает пространство как чрезвычайно тонкую ткань, «сотканную» из конечных петель, называемых [[Спиновая сеть|спиновыми сетями]]. Эволюция спиновой сети во времени называется [[пена спина|спиновой пеной]]. Характерным масштабом длины спиновой пены является [[планковская длина]], приблизительно равная 1,616 × 10<sup>−35</sup> м, поэтому длины короче планковской длины не имеют физического смысла в петлевой теории гравитации<ref>{{Cite book|last1=Rovelli|first1=Carlo|url=https://books.google.com/books?id=w6z0BQAAQBAJ|title=Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory|last2=Vidotto|first2=Francesca|date=13 November 2014|publisher=Cambridge University Press|isbn=978-1-316-14811-2|language=en}} {{Cite web |url=https://books.google.com/books?id=w6z0BQAAQBAJ |title=Источник |access-date=2022-01-26 |archive-date=2022-01-18 |archive-url=https://web.archive.org/web/20220118183310/https://books.google.com/books?id=w6z0BQAAQBAJ |url-status=unfit }}</ref>. |
||
== Философские последствия == |
== Философские последствия == |
||
Строка 380: | Строка 339: | ||
С момента своего создания многие результаты и нелогичные аспекты квантовой механики вызывали сильные [[Философия|философские]] споры и возникновение множества [[Интерпретация квантовой механики|интерпретаций]]. Дискуссии затрагивают вероятностную природу квантовой механики, трудности с [[Редукция фон Неймана|коллапсом волновой функции]] и связанных с этим [[Проблема измерения|проблему измерения]], а также [[Квантовая нелокальность|квантовую нелокальность]]. Возможно, единственный консенсус, который существует по этим вопросам, заключается в отсутствие консенсуса. [[Фейнман, Ричард|Ричард Фейнман]] однажды сказал: «Думаю, я могу с уверенностью сказать, что никто не понимает квантовую механику»<ref>{{Cite book|last=Feynman|first=Richard|title=The Character of Physical Law|title-link=The Character of Physical Law|publisher=MIT Press|year=1967|isbn=0-262-56003-8|pages=[https://archive.org/details/characterphysica00feyn_995/page/n131 129]|language=en|author-link=Richard Feynman}}</ref>. По словам [[Вайнберг, Стивен|Стивена Вайнберга]]: «на мой взгляд, в настоящее время нет полностью удовлетворительной интерпретации квантовой механики»<ref>{{Cite journal|arxiv=1109.6462|doi=10.1103/PhysRevA.85.062116|title=Collapse of the state vector|journal=Physical Review A|volume=85|issue=6|pages=062116|year=2012|author=Weinberg|first=Steven|bibcode=2012PhRvA..85f2116W}}</ref>. |
С момента своего создания многие результаты и нелогичные аспекты квантовой механики вызывали сильные [[Философия|философские]] споры и возникновение множества [[Интерпретация квантовой механики|интерпретаций]]. Дискуссии затрагивают вероятностную природу квантовой механики, трудности с [[Редукция фон Неймана|коллапсом волновой функции]] и связанных с этим [[Проблема измерения|проблему измерения]], а также [[Квантовая нелокальность|квантовую нелокальность]]. Возможно, единственный консенсус, который существует по этим вопросам, заключается в отсутствие консенсуса. [[Фейнман, Ричард|Ричард Фейнман]] однажды сказал: «Думаю, я могу с уверенностью сказать, что никто не понимает квантовую механику»<ref>{{Cite book|last=Feynman|first=Richard|title=The Character of Physical Law|title-link=The Character of Physical Law|publisher=MIT Press|year=1967|isbn=0-262-56003-8|pages=[https://archive.org/details/characterphysica00feyn_995/page/n131 129]|language=en|author-link=Richard Feynman}}</ref>. По словам [[Вайнберг, Стивен|Стивена Вайнберга]]: «на мой взгляд, в настоящее время нет полностью удовлетворительной интерпретации квантовой механики»<ref>{{Cite journal|arxiv=1109.6462|doi=10.1103/PhysRevA.85.062116|title=Collapse of the state vector|journal=Physical Review A|volume=85|issue=6|pages=062116|year=2012|author=Weinberg|first=Steven|bibcode=2012PhRvA..85f2116W}}</ref>. |
||
Взгляды [[Бор, Нильс|Нильса Бора]], [[Гейзенберг, Вернер|Вернера Гейзенберга]] и других физиков на квантовую механику часто объединяют в «[[Копенгагенская интерпретация|копенгагенскую интерпретацию]]»<ref>{{Cite journal|author=Howard|first=Don|date=December 2004|title=Who Invented the 'Copenhagen Interpretation'? A Study in Mythology|url=https://www.journals.uchicago.edu/doi/10.1086/425941|journal=Philosophy of Science|language=en|volume=71|issue=5|pages=669–682|doi=10.1086/425941|issn=0031-8248|access-date=2022-01-26|archive-date=2022-01-18|archive-url=https://web.archive.org/web/20220118182350/https://www.journals.uchicago.edu/doi/10.1086/425941| |
Взгляды [[Бор, Нильс|Нильса Бора]], [[Гейзенберг, Вернер|Вернера Гейзенберга]] и других физиков на квантовую механику часто объединяют в «[[Копенгагенская интерпретация|копенгагенскую интерпретацию]]»<ref>{{Cite journal|author=Howard|first=Don|date=December 2004|title=Who Invented the 'Copenhagen Interpretation'? A Study in Mythology|url=https://www.journals.uchicago.edu/doi/10.1086/425941|journal=Philosophy of Science|language=en|volume=71|issue=5|pages=669–682|doi=10.1086/425941|issn=0031-8248|access-date=2022-01-26|archive-date=2022-01-18|archive-url=https://web.archive.org/web/20220118182350/https://www.journals.uchicago.edu/doi/10.1086/425941|url-status=live}}</ref><ref>{{Cite journal|author=Camilleri|first=Kristian|date=May 2009|title=Constructing the Myth of the Copenhagen Interpretation|url=http://www.mitpressjournals.org/doi/10.1162/posc.2009.17.1.26|journal=Perspectives on Science|language=en|volume=17|issue=1|pages=26–57|doi=10.1162/posc.2009.17.1.26|issn=1063-6145|access-date=2022-01-26|archive-date=2020-09-15|archive-url=https://web.archive.org/web/20200915042835/https://www.mitpressjournals.org/doi/10.1162/posc.2009.17.1.26|url-status=live}}</ref>. Согласно этим взглядам, вероятностный характер квантовой механики — это не ''временное'' свойство, которое в будущем будет заменено детерминистской теорией, а ''окончательный'' отказ от классической идеи «причинности». Бор, в частности, подчёркивал, что любое чётко определённое применение квантовомеханического формализма всегда должно ссылаться на экспериментальную установку из-за [[Принцип дополнительности|взаимодополняющего]] характера результатов, полученных в различных экспериментальных ситуациях. Интерпретации копенгагенского типа остаются популярными и в 21 веке<ref name=":25">{{Cite journal|author=Schlosshauer|first=Maximilian|date=1 August 2013|title=A snapshot of foundational attitudes toward quantum mechanics|journal=Studies in History and Philosophy of Science Part B|volume=44|issue=3|pages=222–230|arxiv=1301.1069|bibcode=2013SHPMP..44..222S|doi=10.1016/j.shpsb.2013.04.004}}</ref>. |
||
[[Эйнштейн, Альберт|Альберта Эйнштейна]], одного из основателей [[Старая квантовая теория|квантовой теории]], беспокоило её явное несоблюдение некоторых заветных метафизических принципов, таких как [[детерминизм]] и [[Принцип локальности|локальность]]. Давний обмен мнениями между Эйнштейном и Бором о значении и статусе квантовой механики теперь известен как [[Дискуссия Бора и Эйнштейна|дебаты Бора и Эйнштейна]]. Эйнштейн считал, что в основе квантовой механики должна лежать теория, явно запрещающая [[Дальнодействие и короткодействие|действие на расстоянии]]. Он утверждал, что квантовая механика была неполной; теория была верной, но не фундаментальной, аналогично тому, как [[Термодинамика|верна термодинамика]], но фундаментальной теорией, лежащей в её основе, является [[статистическая механика]]. В 1935 |
[[Эйнштейн, Альберт|Альберта Эйнштейна]], одного из основателей [[Старая квантовая теория|квантовой теории]], беспокоило её явное несоблюдение некоторых заветных метафизических принципов, таких как [[детерминизм]] и [[Принцип локальности|локальность]]. Давний обмен мнениями между Эйнштейном и Бором о значении и статусе квантовой механики теперь известен как [[Дискуссия Бора и Эйнштейна|дебаты Бора и Эйнштейна]]. Эйнштейн считал, что в основе квантовой механики должна лежать теория, явно запрещающая [[Дальнодействие и короткодействие|действие на расстоянии]]. Он утверждал, что квантовая механика была неполной; теория была верной, но не фундаментальной, аналогично тому, как [[Термодинамика|верна термодинамика]], но фундаментальной теорией, лежащей в её основе, является [[статистическая механика]]. В 1935 году Эйнштейн и его сотрудники [[Подольский, Борис Яковлевич|Борис Подольский]] и [[Розен, Натан|Натан Розен]] опубликовали аргумент о том, что принцип локальности подразумевает неполноту квантовой механики. Их [[мысленный эксперимент]], позже назовут [[Парадокс Эйнштейна — Подольского — Розена|парадоксом Эйнштейна — Подольского — Розена]] (ЭПР){{Refn|The published form of the EPR argument was due to Podolsky, and Einstein himself was not satisfied with it. In his own publications and correspondence, Einstein used a different argument to insist that quantum mechanics is an incomplete theory<ref name="spekkens">{{cite journal|first1=Nicholas |last1=Harrigan |first2=Robert W. |last2=Spekkens |title=Einstein, incompleteness, and the epistemic view of quantum states |journal=[[Foundations of Physics]] |volume=40 |issue=2 |pages=125 |year=2010 |doi=10.1007/s10701-009-9347-0 |arxiv=0706.2661|bibcode=2010FoPh...40..125H }}</ref><ref name="howard">{{cite journal |last1=Howard |first1=D. |title=Einstein on locality and separability |journal=Studies in History and Philosophy of Science Part A |date=1985 |volume=16 |issue=3 |pages=171–201 |doi=10.1016/0039-3681(85)90001-9}}</ref><ref>{{Cite journal|last=Sauer|first=Tilman|date=1 December 2007|title=An Einstein manuscript on the EPR paradox for spin observables|url=http://philsci-archive.pitt.edu/3222/|journal=Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics|language=en|volume=38|issue=4|pages=879–887|doi=10.1016/j.shpsb.2007.03.002|issn=1355-2198|bibcode=2007SHPMP..38..879S|citeseerx=10.1.1.571.6089|access-date=2022-01-26|archive-date=2022-01-18|archive-url=https://web.archive.org/web/20220118230746/http://philsci-archive.pitt.edu/3222/|url-status=live}}</ref><ref>{{cite encyclopedia |last=Einstein |first=Albert |title=Autobiographical Notes |encyclopedia=Albert Einstein: Philosopher-Scientist |year=1949 |publisher=Open Court Publishing Company |editor-last=Schilpp |editor-first=Paul Arthur}}</ref>}}. В 1964 году [[Белл, Джон Стюарт|Джон Белл]] показал, что принцип локальности ЭПР вместе с детерминизмом несовместимы с квантовой механикой: они подразумевают ограничения на корреляции, создаваемые системами на расстоянии, теперь известные как [[неравенства Белла]], которые могут нарушаться запутанными частицами<ref>{{Cite journal|author=Bell|first=J. S.|authorlink=John Stewart Bell|date=1 November 1964|title=On the Einstein Podolsky Rosen paradox|journal=[[Physics Physique Fizika]]|language=en|volume=1|issue=3|pages=195–200|doi=10.1103/PhysicsPhysiqueFizika.1.195}}</ref>. С тех пор было проведено {{iw|Проверка неравенств Белла|несколько опытов|en|Bell test}}, в которых измерялись эти корреляции, в результате чего оказалось, что неравенства Белла действительно нарушаются и, таким образом, фальсифицируют соединение локальности с детерминизмом<ref name="wiseman15" /><ref name="wolchover17" />. |
||
[[Теория де Бройля — Бома|Бомовская механика]] показывает, что можно переформулировать квантовую механику, сделав её детерминированной, ценой явной нелокальности. Она приписывает физической системе не только волновую функцию, но и реальное положение, которое детерминистически развивается под нелокальным управляющим уравнением. Эволюция физической системы во все времена задаётся [[Уравнение Шрёдингера|уравнением Шрёдингера]] вместе с ведущим уравнением; никогда не бывает коллапса волновой функции. Этот подход разрешает проблему измерения<ref>{{Cite book|last=Goldstein|first=Sheldon|chapter=Bohmian Mechanics|title=Stanford Encyclopedia of Philosophy|year=2017|publisher=Metaphysics Research Lab, Stanford University}}</ref>. |
[[Теория де Бройля — Бома|Бомовская механика]] показывает, что можно переформулировать квантовую механику, сделав её детерминированной, ценой явной нелокальности. Она приписывает физической системе не только волновую функцию, но и реальное положение, которое детерминистически развивается под нелокальным управляющим уравнением. Эволюция физической системы во все времена задаётся [[Уравнение Шрёдингера|уравнением Шрёдингера]] вместе с ведущим уравнением; никогда не бывает коллапса волновой функции. Этот подход разрешает проблему измерения<ref>{{Cite book|last=Goldstein|first=Sheldon|chapter=Bohmian Mechanics|title=Stanford Encyclopedia of Philosophy|year=2017|publisher=Metaphysics Research Lab, Stanford University}}</ref>. |
||
Многомировая [[Многомировая интерпретация|интерпретация]] Эверетта, сформулированная в 1956 |
Многомировая [[Многомировая интерпретация|интерпретация]] Эверетта, сформулированная в 1956 году, утверждает, что ''все'' возможности, описываемые квантовой теорией, ''одновременно'' возникают в мультивселенной, состоящей в основном из независимых параллельных вселенных. Это исключает проблему коллапса волнового пакета, поскольку все возможные состояния измеряемой системы и измерительного прибора вместе с наблюдателем присутствуют в реальной физической [[Принцип суперпозиции (квантовая механика)|квантовой суперпозиции]]. В то время как мультивселенная детерминирована, мы воспринимаем недетерминистическое поведение, управляемое вероятностями, потому что мы не наблюдаем мультивселенную в целом, а только одну параллельную вселенную в каждый момент времени. Как именно это должно работать, было предметом многочисленных споров. Было предпринято несколько попыток вывода правила Борна<ref name=dewitt73>{{cite book |editor-last1=DeWitt |editor-first1=Bryce |editor-link1=Bryce DeWitt |editor-last2=Graham |editor-first2=R. Neill |last1=Everett |first1=Hugh |author-link1=Hugh Everett III |last2=Wheeler |first2=J. A. |author-link2=John Archibald Wheeler |last3=DeWitt |first3=B. S. |author-link3=Bryce DeWitt |last4=Cooper |first4=L. N. |author-link4=Leon Cooper |last5=Van Vechten |first5=D. |last6=Graham |first6=N. |title=The Many-Worlds Interpretation of Quantum Mechanics |url=https://archive.org/details/manyworldsinterp0000dewi |series=Princeton Series in Physics |publisher=[[Princeton University Press]] |location=Princeton, NJ |year=1973 |isbn=0-691-08131-X |page=v }}</ref><ref name="wallace2003">{{cite journal|last1=Wallace|first1=David|year=2003|title=Everettian Rationality: defending Deutsch's approach to probability in the Everett interpretation|journal=Stud. Hist. Phil. Mod. Phys.|volume=34|issue=3|pages=415–438|arxiv=quant-ph/0303050|bibcode=2003SHPMP..34..415W|doi=10.1016/S1355-2198(03)00036-4 }}</ref> без единого мнения о том, были ли они успешными<ref name="ballentine1973">{{cite journal|first1=L. E. |last1=Ballentine|date=1973|title=Can the statistical postulate of quantum theory be derived? – A critique of the many-universes interpretation|url=https://archive.org/details/sim_foundations-of-physics_1973_3_2/page/229 |journal=Foundations of Physics|volume=3|issue=2|pages=229–240|doi=10.1007/BF00708440|bibcode=1973FoPh....3..229B }}</ref><ref>{{cite book|first=N. P. |last=Landsman |chapter=The Born rule and its interpretation |chapter-url=http://www.math.ru.nl/~landsman/Born.pdf |quote=The conclusion seems to be that no generally accepted derivation of the Born rule has been given to date, but this does not imply that such a derivation is impossible in principle. |title=Compendium of Quantum Physics |editor-first1=F. |editor-last1=Weinert |editor-first2=K. |editor-last2=Hentschel |editor-first3=D. |editor-last3=Greenberger |editor-first4=B. |editor-last4=Falkenburg |publisher=Springer |year=2008 |isbn=978-3-540-70622-9}}</ref><ref name="kent2009">{{Cite book|last1=Kent|first1=Adrian|author-link=Adrian Kent|title=Many Worlds? Everett, Quantum Theory and Reality|publisher=Oxford University Press|year=2010|editor=S. Saunders|chapter=One world versus many: The inadequacy of Everettian accounts of evolution, probability, and scientific confirmation|arxiv=0905.0624|bibcode=2009arXiv0905.0624K|editor2=J. Barrett|editor3=A. Kent|editor4=D. Wallace}}</ref>. |
||
[[Реляционная квантовая механика]] появилась в конце 1990-х годов как современная производная от идей копенгагенского типа<ref>{{Cite journal|author=Van Fraassen|first=Bas C.|authorlink=Bas van Fraassen|date=April 2010|title=Rovelli's World|url=http://link.springer.com/10.1007/s10701-009-9326-5|journal=[[Foundations of Physics]]|language=en|volume=40|issue=4|pages=390–417|doi=10.1007/s10701-009-9326-5|bibcode=2010FoPh...40..390V|issn=0015-9018|access-date=2022-01-26|archive-date=2022-10-07|archive-url=https://web.archive.org/web/20221007183608/https://link.springer.com/article/10.1007/s10701-009-9326-5| |
[[Реляционная квантовая механика]] появилась в конце 1990-х годов как современная производная от идей копенгагенского типа<ref>{{Cite journal|author=Van Fraassen|first=Bas C.|authorlink=Bas van Fraassen|date=April 2010|title=Rovelli's World|url=http://link.springer.com/10.1007/s10701-009-9326-5|journal=[[Foundations of Physics]]|language=en|volume=40|issue=4|pages=390–417|doi=10.1007/s10701-009-9326-5|bibcode=2010FoPh...40..390V|issn=0015-9018|access-date=2022-01-26|archive-date=2022-10-07|archive-url=https://web.archive.org/web/20221007183608/https://link.springer.com/article/10.1007/s10701-009-9326-5|url-status=live}}</ref>, а несколько лет спустя была разработана теория [[Квантовое байесианство|квантового байесианства]]<ref name=":23">{{Cite book|last=Healey|first=Richard|title=[[Stanford Encyclopedia of Philosophy]]|publisher=Metaphysics Research Lab, Stanford University|year=2016|editor-last=Zalta|editor-first=Edward N.|chapter=Quantum-Bayesian and Pragmatist Views of Quantum Theory|chapter-url=https://plato.stanford.edu/entries/quantum-bayesian/}}</ref>. |
||
== Примечания == |
== Примечания == |
||
Строка 409: | Строка 368: | ||
* ''Дирак П. А. М.'' [http://eqworld.ipmnet.ru/ru/library/books/Dirak1979ru.djvu Принципы квантовой механики] {{Wayback|url=http://eqworld.ipmnet.ru/ru/library/books/Dirak1979ru.djvu |date=20071111051227 }} (2-е издание), — {{М}}: Наука, 1979. |
* ''Дирак П. А. М.'' [http://eqworld.ipmnet.ru/ru/library/books/Dirak1979ru.djvu Принципы квантовой механики] {{Wayback|url=http://eqworld.ipmnet.ru/ru/library/books/Dirak1979ru.djvu |date=20071111051227 }} (2-е издание), — {{М}}: Наука, 1979. |
||
* ''[[Поль Дирак|Дирак П.]]'' [http://eqworld.ipmnet.ru/ru/library/books/Dirak1979ru.djvu Принципы квантовой механики]. 2-е изд. {{М.}}: Наука, 1979. — 480 с. {{Wayback|url=http://eqworld.ipmnet.ru/ru/library/books/Dirak1979ru.djvu |date=20071111051227 }} |
* ''[[Поль Дирак|Дирак П.]]'' [http://eqworld.ipmnet.ru/ru/library/books/Dirak1979ru.djvu Принципы квантовой механики]. 2-е изд. {{М.}}: Наука, 1979. — 480 с. {{Wayback|url=http://eqworld.ipmnet.ru/ru/library/books/Dirak1979ru.djvu |date=20071111051227 }} |
||
* ''Байков Ю. А., [[Кузнецов, Вадим Михайлович|Кузнецов В. М.]]'' Квантовая механика : учеб. пос. - М.: БИНОМ. Лаб. знаний, 2012. - 291 с.; ISBN 978-5-9963-1159-0. |
|||
* {{книга | автор = Иванов М. Г.| часть = | заглавие = Как понимать квантовую механику| оригинал = | ссылка = | издание = | ответственный = | место = М.-Ижевск| издательство = НИЦ «Регулярная и хаотическая динамика»| год = 2012| том = | страницы = | страниц = 516| isbn = 978-5-93972-944-4|ref=Иванов}} |
* {{книга | автор = Иванов М. Г.| часть = | заглавие = Как понимать квантовую механику| оригинал = | ссылка = | издание = | ответственный = | место = М.-Ижевск| издательство = НИЦ «Регулярная и хаотическая динамика»| год = 2012| том = | страницы = | страниц = 516| isbn = 978-5-93972-944-4|ref=Иванов}} |
||
* Начальные главы квантовой механики / ''[[Карлов, Николай Васильевич|Н. В. Карлов]], [[Кириченко, Николай Александрович (физик)|Н. А. Кириченко]]'' — М. : [[Физматлит]], 2004 (ОАО Моск. тип. ј 6). — 359 с. : ил., табл.; 22 см; ISBN 5-9221-0538-8 |
* Начальные главы квантовой механики / ''[[Карлов, Николай Васильевич|Н. В. Карлов]], [[Кириченко, Николай Александрович (физик)|Н. А. Кириченко]]'' — М. : [[Физматлит]], 2004 (ОАО Моск. тип. ј 6). — 359 с. : ил., табл.; 22 см; ISBN 5-9221-0538-8 |
Текущая версия от 14:01, 23 сентября 2024
Ква́нтовая (волнова́я) меха́ника — фундаментальная физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Она лежит в основании всей квантовой физики, включая квантовую химию, квантовую теорию поля, квантовую технологию и квантовую информатику .
Классическая физика, совокупность теорий, существовавших до появления квантовой механики, описывает многие аспекты природы в обычном масштабе, но недостаточна для их количественного описания в малых (атомных и субатомных) масштабах. Большинство теорий классической физики можно вывести из квантовой механики как приближения, справедливые в больших (макроскопических) масштабах[2] .
Квантовая механика отличается от классической физики тем, что энергия, импульс, угловой момент и другие величины связанного состояния системы не могут принимать произвольные значения, но ограничены дискретными значениями (квантование), объекты обладают характеристиками как частиц, так и волн (корпускулярно-волновой дуализм) , и существуют пределы нашей возможности точно предсказать значение физической величины до её измерения при заданном полном наборе начальных условий (принцип неопределённости) .
Квантовая механика постепенно возникла из теорий, объясняющих наблюдения, которые не могли быть согласованы с понятиями классической физики, таких как решение Макса Планка в 1900 году проблемы излучения абсолютно чёрного тела[англ.]* и соответствие между энергией и частотой кванта света в статье Альберта Эйнштейна 1905 года, которая объяснила фотоэффект. Эти ранние попытки понять микроскопические явления, теперь известные как «старая квантовая теория», привели к стремительному развитию квантовой механики в середине 1920-х годов в работах Нильса Бора, Эрвина Шрёдингера, Вернера Гейзенберга, Макса Борна и других . Современная теория формулируется с использованием различных специально разработанных математических формализмов . В одном из них математическая сущность, называемая волновой функцией, предоставляет информацию в виде амплитуд вероятности о том, к чему приводят измерения энергии, импульса и других физических свойств частицы .
Обзор и основные понятия
[править | править код]Квантовая механика позволяет рассчитывать свойства и поведение физических систем. Обычно её применяют к микроскопическим системам: молекулам, атомам и субатомным частицам[3]:1.1. Также было показано, что квантовая механика верно описывает поведение сложных молекул с тысячами атомов[4], хотя при попытке применить её к людям возникают философские вопросы и парадоксы, такие как друг Вигнера, и её применение ко Вселенной в целом также остаётся спекулятивным[5]. Предсказания квантовой механики были подтверждены экспериментально с чрезвычайно высокой степенью точности[К 1][8].
Фундаментальной особенностью квантовой теории является то, что она обычно не может с определённостью предсказать значения физических величин (динамических переменных), а только даёт вероятности их измерения[9]. Математически вероятность находится путём возведения в квадрат абсолютного значения комплексного числа, известного как амплитуда вероятности[10][11]. Это утверждение известно как правило Борна, названное в честь физика Макса Борна[12][13]. Например, квантовая частица, такая как электрон, описывается волновой функцией, которая задаёт для каждой точки пространства амплитуду вероятности. Применение правила Борна к этим амплитудам определяет функцию плотности вероятности для координаты частицы, когда будет проведён эксперимент по её измерению. Это лучшее, что может дать теория; нельзя точно сказать, где будет найден электрон. Уравнение Шрёдингера описывает эволюцию системы во времени, то есть связывает набор амплитуд вероятности, относящихся к одному моменту времени, с набором амплитуд вероятностей, относящихся к другому моменту времени[14][13].
Одним из следствий математических правил квантовой механики является компромисс при попытке определить различные измеримые величины. Самая известная форма такого компромисса — принципа неопределённости гласит, что как бы ни было приготовлено состояние квантовой частицы, или как бы тщательно ни были поставлены над этой частицей опыты, при измерении невозможно точное предсказание значений её положения и импульса в один момент времени[15].
Ещё одним следствием математических правил квантовой механики является квантовая интерференция, в качестве примера которой рассматривается опыт с двумя щелями. В базовом варианте этого эксперимента когерентный источник света, например лазер, освещает непрозрачную пластину, с прорезанными двумя параллельными щелями, и свет, проходящий через щели, наблюдается на экране позади пластины[3]:1.1–1.8[16]:102–111. Волновая природа света означает, что световые волны проходят через две щели, интерферируя и создавая на экране яркие и тёмные полосы — результат, которого нельзя было бы ожидать, если бы свет состоял из классических частиц[16]. Однако опыт всегда показывает, что свет поглощается экраном в отдельных точках в виде отдельных частиц, а не волн; интерференционная картина проявляется из-за различной плотности засветки фотографической пластины при попадании этих частиц на экран. Кроме того, в других вариациях опыта, включающих детекторы в щелях, обнаруживают, что каждый наблюдаемый фотон проходит через одну щель (как классическая частица), а не через обе щели (как волна)[16]:109[17][18]. Из таких экспериментов следует вывод, что частицы не образуют интерференционную картину, если определить, через какую щель они проходят. Было обнаружено, что другие объекты атомного масштаба, такие как электроны, демонстрируют такое же поведение, когда падают на экран с двумя щелями[3]. Такое поведение микрообъектов известно как корпускулярно-волновой дуализм — он «лежит в сердце» квантовой механики[19].
Ещё одно противоречащее повседневному опыту явление, предсказанное квантовой механикой — квантовое туннелирование, когда частица, столкнувшись с потенциальным барьером, может преодолеть его, даже если её кинетическая энергия меньше максимума потенциала[20]. В классической механике эта частица всегда отражается от барьера. Квантовое туннелирование имеет несколько важных наблюдаемых последствий, включающих радиоактивный распад, ядерный синтез в звёздах и такие приложения, как сканирующая туннельная микроскопия и создание туннельных диодов[21].
Когда квантовые системы взаимодействуют, результатом может быть возникновение квантовой запутанности: их свойства становятся настолько переплетёнными, что описание целого исключительно в терминах отдельных частей больше невозможно. Шрёдингер назвал запутывание[22]
«… характерной чертой квантовой механики — тем, что вызывает её полный отход от классических путей понимания»
Оригинальный текст (англ.)„… the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought“
Квантовая запутанность реализует нелогичные свойства квантовой псевдотелепатии[англ.] и может оказаться ценным методом в протоколах связи, таких как квантовое распределение ключей и сверхплотное кодирование[23]. Вопреки распространённому заблуждению, запутанность не позволяет посылать сигналы быстрее скорости света, что демонстрирует теорема об отсутствии связи[англ.][23].
Другая возможность, открываемая запутанностью, — это проверка существования «скрытых переменных», гипотетических свойств, более фундаментальных, чем величины, рассматриваемые в самой квантовой теории, знание которых позволило бы делать более точные предсказания, чем может дать квантовая теория. Множество полученных результатов, в первую очередь теорема Белла, продемонстрировало, что широкие классы таких теорий со скрытыми переменными несовместимы с квантовой физикой. Согласно теореме Белла, если природа действительно описывается какой-либо теорией локальных скрытых переменных, то результаты проверки неравенств Белла будут ограничены определённым образом, поддающимся количественной оценке. Было проведено множество тестов Белла с использованием запутанных частиц, и они показали результаты, несовместимые с ограничениями, налагаемыми теориями с локальными скрытыми переменными[24][25].
Невозможно представить эти понятия более чем поверхностно, не вводя при этом фактическую математику; понимание квантовой механики требует не только манипулирования комплексными числами, но и линейной алгебры, дифференциальных уравнений, теории групп и других более сложных областей математики. Физик Джон К. Баэз предупреждает[26]:
«… нельзя понять интерпретацию квантовой механики, не умея решать квантовомеханические задачи, — чтобы понять эту теорию, нужно уметь использовать её (и наоборот)».
Оригинальный текст (англ.)„… there’s no way to understand the interpretation of quantum mechanics without also being able to solve quantum mechanics problems — to understand the theory, you need to be able to use it (and vice versa)“.
Карл Саган обрисовал в общих чертах «математическое обоснование» квантовой механики и написал[27]:
«Для большинства студентов-физиков это может занять у них период, скажем, от третьего класса до начала аспирантуры — примерно 15 лет. (…) Объём работы популяризатора науки, чтобы попытаться донести какое-то представление о квантовой механике до широкой аудитории, не прошедшей через этот обряд инициации, пугает. Действительно, на мой взгляд, нет успешного популярного изложения квантовой механики — отчасти по этой причине».
Оригинальный текст (англ.)„For most physics students, this might occupy them from, say, third grade to early graduate school – roughly 15 years. […] The job of the popularizer of science, trying to get across some idea of quantum mechanics to a general audience that has not gone through these initiation rites, is daunting. Indeed, there are no successful popularizations of quantum mechanics in my opinion – partly for this reason.“
Соответственно, в этой статье будет представлена математическая формулировка квантовой механики и рассмотрено её применение на некоторых полезных и часто изучаемых примерах.
История
[править | править код]Квантовая механика была разработана в первые десятилетия XX века из-за необходимости объяснить явления, которые не нашли объяснения в рамках классического подхода[28]. Научные исследования волновой природы света начались в XVII и XVIII веках, когда такие учёные, как Роберт Гук, Христиан Гюйгенс и Леонард Эйлер, предложили волновую теорию света, основанную на экспериментальных наблюдениях[29]. В 1803 году английский эрудит Томас Юнг описал знаменитый эксперимент с двумя щелями. Этот эксперимент сыграл важную роль в общем признании волновой теории света[30].
В начале XIX века химические исследования Джона Дальтона и Амедео Авогадро придали вес атомной теории материи, идее, на которой Джеймс Клерк Максвелл, Людвиг Больцман и другие построили кинетическую теорию газов. Успехи кинетической теории ещё больше укрепили веру в идею о том, что материя состоит из атомов, однако у этой теории также были недостатки, которые можно было устранить только с развитием квантовой механики[31]. В то время как ранняя концепция атомов из греческой философии состояла в том, что они были неделимыми единицами — слово «атом» происходит от греческого «неразрезаемый» — в XIX веке были сформулированы гипотезы о субатомной структуре. Одним из важных открытий в этом отношении было наблюдение Майклом Фарадеем в 1838 году свечения, вызванного электрическим разрядом внутри стеклянной трубки, содержащей газ при низком давлении. Юлиус Плюккер, Иоганн Вильгельм Гитторф и Ойген Гольдштейн продолжили и усовершенствовали работу Фарадея, что привело к идентификации катодных лучей, которые, как обнаружил Дж. Дж. Томсон, состоят из субатомных частиц, названных впоследствии электронами[32][33].
Проблема излучения чёрного тела была открыта Густавом Кирхгофом в 1859 году[34]. В 1900 году Макс Планк выдвинул гипотезу о том, что энергия излучается и поглощается дискретными «квантами» (или энергетическими пакетами). Это позволило объяснить наблюдаемый спектр излучения абсолютно чёрного тела[35]. Слово «квант» происходит от латинского quantus, что означает «сколько»[36]. Согласно Планку, количество энергии можно рассматривать как разделённое на «элементы», величина которых (E) будет пропорциональна их частоте (ν):
где h — постоянная Планка. Планк осторожно настаивал на том, что это лишь аспект процессов поглощения и испускания излучения, а не физическая реальность излучения[37]. Он не мог выбрать, считать ли свою квантовую гипотезу математическим трюком для получения правильного ответа или значительным открытием[38][39]. Однако в 1905 году Альберт Эйнштейн реалистично интерпретировал квантовую гипотезу Планка и использовал её для объяснения фотоэлектрического эффекта, при котором свет, падающий на определённые материалы, может выбивать электроны из материала[19][40]. Затем Нильс Бор развил идею Планка об излучении, включив её в модель атома, которая успешно предсказала спектральные линии водорода[41]. Эйнштейн развил эту идею, чтобы показать, что электромагнитная волна, такая как свет, также может быть описана как частица (позже названная фотоном) с дискретным количеством энергии, которое зависит от его частоты[42][43]. В своей статье «К квантовой теории излучения» (нем. Zur Quantentheorie der Strahlung)[44], опубликованной в 1916 году, Эйнштейн расширил взаимосвязь между энергией и материей, чтобы объяснить поглощение и испускание энергии атомами. Хотя в то время его общая теория относительности затмила эту идею, в этой статье был сформулирован механизм, лежащий в основе стимулированного излучения, который стал основным принципом работы лазеров[45].
Эта фаза развития квантовой теории известна как старая квантовая теория. Она никогда не была полной и непротиворечивой, и была скорее набором эвристических поправок к классической механике[46]. Старая теория теперь понимается как полуклассическое приближение[47] к современной квантовой механике[48]. Заметные результаты этого периода включают, помимо работ Планка, Эйнштейна и Бора, упомянутых выше, работы Эйнштейна и Петера Дебая по удельной теплоёмкости твёрдых тел[49], доказательство Бора и Хендрики Йоханны ван Леувен, что классическая физика не может объяснить диамагнетизм и расширение Арнольдом Зоммерфельдом модели Бора, включающее релятивистские эффекты[50].
В середине 1920-х годов была разработана квантовая механика, ставшая стандартной формулировкой атомной физики. В 1923 году французский физик Луи де Бройль выдвинул теорию волн материи, заявив, что частицы могут проявлять волновые характеристики и наоборот. Основанная на подходе де Бройля, современная квантовая механика родилась в 1925 году, когда немецкие физики Вернер Гейзенберг, Макс Борн и Паскуаль Йордан[51][52] разработали матричную механику, а австрийский физик Эрвин Шрёдингер изобрёл волновую механику. Борн представил вероятностную интерпретацию волновой функции Шрёдингера в июле 1926 года[53]. Таким образом, возникла целая область квантовой физики, что привело к её более широкому признанию на Пятой Сольвеевской конференции в 1927 году[54].
В 1927 году В. Гайтлер и Ф. Лондон рассчитали спектр молекулы водорода и объяснили возникновение химической связи в молекулах. Ф. Блох заложил основы движения частиц в периодическом потенциале кристаллической решётки. В том же году В. Паули обобщил уравнение Шрёдингера с учётом спина электрона[55], а в следующем году появилось релятивистское уравнение для электрона — уравнение Дирака, которое предсказало существование античастиц[56].
Эйнштейн не признавал квантовую механику как законченную теорию, то есть теорию, которая полностью описывает природу. Поэтому в 1935 году появилась статья о парадоксе, возникающем в запутанной системе, который сейчас называется парадоксом Эйнштейна — Подольского — Розена. Шрёдингер поддержал идею ЭПР и придумал в том же году парадокс, известный под названием «кот Шрёдингера». Эти парадоксы привлекают внимание исследователей основ квантовой механики[57].
Решение уравнения Шрёдингера для атома водорода имеет аналитическую форму, но для многоэлектронного атома аналитическое решение не известно, в связи с чем возникают различные приближённые методы вычисления волновых функций. Например, в 1928 году Дугласом Хартри был предложен метод самосогласованного поля, а в 1930 году В. А. Фок расширил этот подход с учётом спина электрона[58].
К 1930 году квантовая механика была дополнительно унифицирована и формализована Давидом Гильбертом, Полом Дираком и Джоном фон Нейманом[59] с большим упором на формализацию процесса измерения, статистическую природу нашего знания о реальности и философские рассуждения о «наблюдателе». С тех пор она проникла во многие дисциплины, включая квантовую химию, квантовую электронику, квантовую оптику и квантовую информатику. Она также объясняет особенности современной периодической таблицы элементов и описывает поведение атомов во время образования химической связи и ток электронов в полупроводниках, и поэтому играет решающую роль во многих современных технологиях. Хотя квантовая механика была создана для описания мира на очень маленьких масштабах, она также необходима для объяснения некоторых макроскопических явлений, таких как сверхпроводники[60] и сверхтекучие жидкости[61]. В 1957 году Дж. Бардин Л. Купер и Дж. Шриффер построили теорию сверхпроводников первого рода[62][63].
В 1954 году благодаря работам Ч. Таунса, Н. Г. Басова и А. М. Прохорова появились первые квантовые микроволновые генераторы — мазеры на аммиаке[64][65]. Для усиления излучения в оптическом диапазоне Т. Мейманом в 1960 году был использован рубин[66]. В 1963 году Ж. Алфёров создал первые полупроводниковые гетероструктуры, на основе которых создаются современные полупроводниковые лазеры[65].
В 1980 году Пол Бениофф описал первую квантовомеханическую модель компьютера, показав в этой работе, что компьютер может работать в соответствии с законами квантовой механики, использовав уравнение Шрёдингера для описания машин Тьюринга и заложив основу для дальнейшей работы в области квантовых вычислений[67]. Первая экспериментальная демонстрация двухкубитного квантового компьютера, работающего на явлении ядерного магнитного резонанса, была выполнена в 1998 году[68]. В октябре 2019 года компания Google объявила, что ей удалось построить 53-кубитный сверхпроводящий квантовый процессор Sycamore и продемонстрировать «квантовое превосходство» над обычными компьютерами[69][70][71].
Математическая формулировка
[править | править код]В математически строгой формулировке квантовой механики состояние квантовомеханической системы представляет собой вектор , заданный в комплексном (сепарабельном) гильбертовом пространстве . Постулируется, что этот вектор нормирован относительно скалярного произведения гильбертова пространства, то есть подчиняется условию и он корректно определён с точностью до комплексного числа по модулю 1 (глобальной фазы), или, другими словами, состояния и представляют собой одну и ту же физическую систему[72][73]. Возможные состояния — это точки проективного гильбертова пространства, обычно называемого комплексным проективным пространством[англ.]. Точная природа этого гильбертова пространства зависит от рассматриваемой системы — например, для описания координаты и импульса частицы гильбертово пространство — это пространство комплексных квадратично интегрируемых функций[англ.] [К 2], а гильбертово пространство для спина одиночной частицы — это просто пространство двумерных комплексных векторов с обычным скалярным произведением[75].
Интересующие физические величины — координата, импульс, энергия, спин — представлены наблюдаемыми величинами (или просто наблюдаемыми), которым поставлены в соответствие эрмитовые (точнее, самосопряжённые) линейные операторы, действующие в гильбертовом пространстве. Квантовое состояние может быть собственным вектором для оператора наблюдаемой, или собственным состоянием, а связанное с ним собственное значение соответствует значению наблюдаемой в этом собственном состоянии[76]. В более общем смысле квантовое состояние задаётся линейной комбинацией собственных состояний, известной как квантовая суперпозиция[77]. При измерении наблюдаемой результатом будет одно из её дискретных собственных значений с вероятностью, заданной правилом Борна: в простейшем случае собственное значение является невырожденным, а вероятность определяется выражением , где — его собственный вектор[78]. В более общем случае собственное значение вырождено, а вероятность определяется выражением где — проектор на связанное с ним собственное пространство[79]. В случае, когда рассматривается непрерывный спектр собственных значений, эти формулы используют понятие плотности вероятности[80].
После измерения, если получен результат , то постулируется, что квантовое состояние коллапсирует до , в невырожденном случае, или , в общем случае[81]. Таким образом, вероятностный характер квантовой механики проистекает из процесса измерения. Это один из самых сложных для понимания физических аспектов квантовых систем. Эта тема была центральным вопросом знаменитых дебатов Бора и Эйнштейна, в которых два учёных пытались прояснить эти фундаментальные принципы с помощью мысленных экспериментов. В течение десятилетий после формулировки квантовой механики широко изучался вопрос о том, что представляет собой процесс измерения физической величины. Были сформулированы более современные интерпретации квантовой механики, которые избавляются от концепции «редукции (коллапса) волновой функции» (см., например, многомировая интерпретация). Основная идея заключается в том, что когда квантовая система взаимодействует с измерительным прибором, их соответствующие волновые функции запутываются, так что исходная квантовая система перестаёт существовать как независимая сущность. Подробнее см. в статье об измерении в квантовой механике[82].
Эволюция квантового состояния во времени описывается уравнением Шрёдингера[83]:
Здесь — гамильтониан системы, или оператор наблюдаемой, соответствующей полной энергии системы, и — приведённая постоянная Планка. Постоянная вводится так, что гамильтониан сводится к классическому гамильтониану в случаях, когда квантовая система близка по своим свойствам к соответствующей классической модели; возможность сделать такое приближение в определённом пределе называется принципом соответствия[84].
Формальное решение этого дифференциального уравнения задаётся следующим выражением[85]:
Оператор известен как оператор эволюции и обладает важным свойством унитарности. В этом случае эволюция системы детерминирована в том смысле, что если задано начальное квантовое состояние то этот оператор даёт определённое предсказание того, какое квантовое состояние будет в любой другой последующий момент времени t[86].
Некоторые волновые функции описывают распределения вероятностей, которые не зависят от времени, такие как собственные состояния гамильтониана. Многие динамические системы, рассматриваемые в классической механике, описываются такими «стационарными» волновыми функциями. Например, один электрон в невозбуждённом атоме классически изображается как частица, движущаяся по круговой траектории вокруг ядра атома, тогда как в квантовой механике он описывается стационарной волновой функцией, окружающей ядро[87]. Например, волновая функция электрона для невозбуждённого атома водорода представляет собой сферически симметричную функцию, известную как s-орбиталь[88].
Аналитические решения уравнения Шрёдингера известны для очень немногих относительно простых модельных гамильтонианов[англ.][89], включающих квантовый гармонический осциллятор[90], частицу в ящике[91], молекулярный ион водорода[92], атом водорода[93][94] и другие. Даже атом гелия, который содержит всего два электрона, бросил вызов всем попыткам построить полностью аналитическое решение[95].
Существуют методы нахождения приближённых решений. Один метод, называемый теорией возмущений, использует аналитический результат для простой квантовомеханической модели, чтобы построить решение для родственной, но более сложной модели, например, путём добавления малой потенциальной энергии[96]. Другой метод называется «квазиклассическим уравнением движения» и применяется к системам, для которых квантовая механика даёт лишь небольшие отклонения от классического поведения. Эти отклонения можно вычислить на основе классического движения[97]. Этот подход особенно важен в области квантового хаоса[98].
Принцип неопределённости
[править | править код]Одним из следствий формализма квантовой механики является принцип неопределённости. В своей наиболее известной форме он утверждает, что для квантовой частицы нельзя одновременно точно предсказать её координату и импульс[99][100]. Координата и импульс являются наблюдаемыми, то есть они представимы в виде эрмитовых операторов. Оператор координаты и оператор импульса не коммутируют друг с другом, а удовлетворяют каноническому коммутационному соотношению[101]:
При заданном квантовом состоянии правило Борна позволяет вычислить математические ожидания для и их степеней. Задавая неопределённость наблюдаемой по формуле стандартного отклонения, можно записать для координаты
и аналогично для импульса:
Принцип неопределённости гласит, что[102]
Любое стандартное отклонение в принципе можно сделать сколь угодно малым, но не обе величины одновременно[103][104]. Это неравенство обобщается на произвольные пары самосопряжённых операторов и . Коммутатор этих двух операторов по определению равен
что задаёт нижнюю границу произведения стандартных отклонений:
Из канонического коммутационного соотношения следует, что операторы координаты и импульса являются преобразованиями Фурье друг друга. Описание объекта в импульсном пространстве задаётся преобразованием Фурье его координатного описания. Тот факт, что зависимость от импульса является преобразованием Фурье координатной зависимости, означает, что оператор импульса эквивалентен (с точностью до множителя) взятию производной по координате, так как в анализе Фурье операции дифференцирования соответствует умножение в двойственном пространстве. Поэтому в квантовых уравнениях в координатном представлении импульс заменяется выражением , и, в частности, в нерелятивистском уравнении Шрёдингера в координатном пространстве квадрат импульса заменён умноженным на лапласианом[99].
Составные системы и запутанность
[править | править код]Когда две разные квантовые системы рассматриваются вместе, гильбертово пространство объединённой системы представляет собой тензорное произведение гильбертовых пространств двух компонент. Например, пусть A и B — две квантовые системы с гильбертовыми пространствами и соответственно. Тогда гильбертово пространство составной системы равно
Если состояние для первой системы есть вектор , а состояние для второй системы — , то состояние составной системы равно
Не все состояния в совместном гильбертовом пространстве можно записать в такой форме, потому что принцип суперпозиции подразумевает, что линейные комбинации этих «разделимых» или «составных» состояний также возможны. Например, если и оба возможных состояния системы , и и — возможные состояния системы , тогда новое состояние
описывает допустимое совместное состояние, которое не является разделимым. Состояния, которые не являются разделимыми, называются запутанными или сцепленными[105][106].
Если состояние составной системы запутано, то ни компонентную систему A ни систему B невозможно описать вектором состояния. Вместо этого можно определить матрицы плотности подсистемы, которые описывают результаты, которые можно получить, выполняя измерения только над любым из компонент системы. Однако это неизбежно приводит к потере информации: знания матриц плотности отдельных систем недостаточно для восстановления состояния составной системы[105][106]. Точно так же, как матрицы плотности определяют состояние подсистемы более крупной системы, аналогичным образом положительные операторнозначные меры[англ.] (POVM) описывают влияние на подсистему измерения, выполненного в более крупной системе. POVM широко используются в квантовой теории информации[105][107].
Как описано выше, запутанность — это ключевая особенность моделей процесса измерения, в котором детектор запутывается с измеряемой системой. Системы, взаимодействующие с окружающей средой, в которой они находятся, обычно запутываются с этой средой — явление, известное как квантовая декогеренция. Оно может объяснить, почему на практике квантовые эффекты трудно наблюдать в макроскопических системах[108].
Эквивалентность формулировок
[править | править код]Существует множество математически эквивалентных формулировок квантовой механики. Одной из старейших и наиболее распространённых является «теория преобразований[англ.]», предложенная Полем Дираком, которая объединяет и обобщает две самые ранние формулировки квантовой механики — матричную механику (изобретена Вернером Гейзенбергом) и волновую механику (изобретена Эрвином Шрёдингером)[109]. Альтернативно, квантовую механику можно сформулировать на языке интеграла по траекториям Фейнмана, в которой квантовомеханическая амплитуда рассматривается как сумма всех возможных классических и неклассических путей между начальным и конечным состояниями, что представляется собой квантовомеханический аналог принципа действия в классической механике[110].
Симметрии и законы сохранения
[править | править код]Гамильтониан известен как генератор эволюции во времени, поскольку он определяет унитарный оператор эволюции во времени для каждого значения [111]. Из этого соотношения между и следует, что любая наблюдаемая которая коммутирует с будет сохраняться, поскольку его ожидаемое значение не изменяется с течением времени[112]. Это утверждение обобщается таким образом: любой эрмитов оператор может порождать семейство унитарных операторов, параметризованных переменной [112]. Под эволюцией, порождённой , здесь понимается, что любая наблюдаемая , которая коммутирует с будет сохраняться. Более того, если сохраняется при эволюции, порождённой , тогда сохраняется при эволюции, порождённой . Это подразумевает квантовую версию результата, доказанного Эмми Нётер в классической (лагранжевой) механике: для каждого непрерывного преобразования симметрии, оставляющего действие инвариантным, имеется соответствующий закон сохранения[113].
Примеры
[править | править код]Свободная частица
[править | править код]Простейшим примером квантовой системы с координатной степенью свободы является свободная частица в одном пространственном измерении[114]. Свободная частица — это частица, не подверженная внешним воздействиям, поэтому её гамильтониан состоит только из её кинетической энергии, а уравнение Шрёдингера принимает вид[115]:
где — мнимая единица, — редуцированная постоянная Планка, — масса частицы. Это уравнение допускает разделение переменных, и общее решение уравнения Шрёдингера даётся выражением в виде любого сходящегося интеграла, который описывает волновой пакет плоских волн общего вида[116]
где — частота, — волновое число, и выполняется условие конечности интеграла: при . В частном случае гауссова пакета волновая функция для частицы с волновым числом в момент времени представляется в виде[117]
где — размер волнового пакета, — нормировочный множитель. Для такой частицы скорость задаётся выражением Это выражение можно разложить по плоским волнам, чтобы найти коэффициент который выражается в явном виде
Чтобы найти поведение волновой функции в любой момент времени, достаточно проинтегрировать. Плотность задаётся квадратом модуля волновой функции. Она равна в любой момент времени
Центр гауссового волнового пакета движется в пространстве с постоянной скоростью как классическая частица, на которую не действуют никакие силы. Однако с течением времени волновой пакет также будет расплываться на величину то есть положение становится всё более и более неопределённым, как показано на анимации[118].
Частица в ящике
[править | править код]Частица в одномерном потенциале с бесконечными стенками является математически наиболее простым примером, где ограничения приводят к квантованию энергетических уровней. Ящик определяется как потенциал, задающий для частицы нулевую потенциальную энергию везде внутри определённой области и бесконечную потенциальную энергию повсюду за пределами этой области[99]. Для одномерного случая вдоль оси независимое от времени уравнение Шрёдингера можно записать в виде
Если ввести дифференциальный оператор импульса предыдущее уравнение можно записать в виде, напоминающем классическую формулу для кинетической энергии,
с состоянием , энергия которого в этом случае совпадает с кинетической энергией частицы.
Общие решения уравнения Шрёдингера для пространственной части волновой функции частицы в одномерном ящике таковы[119]:
или, по формуле Эйлера,
Бесконечные потенциальные стенки ящика определяют значения неопределённых коэффициентов и из условия, что в точках и волновая функция должна быть равна нулю. Таким образом, при
откуда . В точке
здесь ни ни не могут быть равными нулю, так как это сделало бы тождественно равной нулю, вопреки постулату о том, что имеет норму, равную 1. Следовательно, поскольку аргумент должен быть кратен то есть
Это ограничение на ограничивает возможные собственные функции системы набором стоячих волн, в которых полуволны укладываются целое число раз на длине потенциальной ямы. Возможные значения энергии частицы при этом ограничены дискретным набором[120]
Прямоугольная квантовая яма — это обобщение задачи с бесконечной потенциальной ямой на потенциальные ямы конечной глубины. Проблема конечной потенциальной ямы математически более сложна, чем задача о частице в ящике, поскольку волновая функция не обязана быть равной нулю на стенках ямы. Вместо этого волновая функция должна удовлетворять более сложным граничным условиям, поскольку она, вообще говоря, отлична от нуля в областях вне ямы[121]. Другая родственная проблема связана с прямоугольным потенциальным барьером, который представляет собой модель эффекта квантового туннелирования[122], играющего важную роль в работе современных технологий, таких как флэш-память[123] и сканирующая туннельная микроскопия[124].
Гармонический осциллятор
[править | править код]Потенциал квантового гармонического осциллятора, как и в классическом случае, определяется выражением[90]
Уровни энергии и функции состояния квантового гармонического осциллятора можно определить либо путём непосредственного решения уравнения Шрёдингера, что не является тривиальной задачей[125], либо с помощью более элегантного «лестничного метода», впервые предложенного Полем Дираком[126]. Собственные состояния квантового гармонического осциллятора задаются как[127]
где и Hn — полиномы Эрмита[128]
и соответствующие уровни энергии дискретны
Это ещё один пример, иллюстрирующий дискретизацию энергии для связанных состояний[129].
Интерферометр Маха — Цендера
[править | править код]Интерферометр Маха — Цендера иллюстрирует концепции суперпозиции и интерференции с линейной алгеброй в дискретном пространстве размерности 2 без использования дифференциальных уравнений. Его можно рассматривать как упрощённую версию эксперимента с двумя щелями, хотя он представляет интерес сам по себе, например, в эксперименте о квантовом ластике с отложенным выбором, эксперименте с бомбами Элицура — Вайдмана[англ.] и в исследованиях квантовой запутанности[130][131].
Если рассмотреть фотон, проходящий через интерферометр, то в каждой точке он может находиться в суперпозиции только двух путей: «нижнего» пути, который начинается слева, проходит прямо через оба светоделителя и заканчивается вверху, и «верхнего» пути, который начинается снизу, проходит прямо через оба светоделителя и заканчивается справа. Таким образом, квантовое состояние фотона представляет собой вектор — это суперпозиция «нижнего» пути и «верхнего» пути , или для комплексных коэффициентов . Для соблюдения постулата требуется, чтобы [132][133].
Нижний и верхний светоделители[англ.] задаются матрицами и , что означает, что когда фотон встречает светоделитель, он либо остаётся на том же пути с амплитудой вероятности , либо отражается на другой путь с амплитудой вероятности (со сдвигом фазы на π). Зеркало задаётся матрицей Фазовращатель на плече моделируется унитарной матрицей что означает, что если фотон находится на «верхнем» пути, то он приобретёт относительную фазу , или останется неизменным, если он находится на нижнем пути[134][135].
Фотон, который входит в интерферометр слева, затем подвергается воздействию светоделителя , зеркала, фазовращателя и ещё одного светоделителя , оказывается в состоянии
а вероятности того, что он будет обнаружен справа или вверху, равны соответственно
Поэтому можно использовать интерферометр Маха — Цендера для оценки фазового сдвига путём расчёта этих вероятностей[135].
Можно также определить, что произошло бы, если бы фотон с определённостью находился либо на «нижнем», либо на «верхнем» пути между светоделителями. Этого можно добиться, заблокировав один из путей или, что то же самое, удалив первый светоделитель (и запуская фотон слева или снизу, по желанию). В обоих случаях между путями больше не будет интерференции, и вероятности определяются выражением независимо от фазы . Из этого можно заключить, что фотон не выбирает тот или иной путь после первого светоделителя, а скорее находится в подлинной квантовой суперпозиции двух путей[136].
Приложения
[править | править код]Квантовая механика добилась огромных успехов, объяснив многие особенности нашего мира в отношении физических явлений на мелком масштабе, дискретных величин и взаимодействий, которые невозможно объяснить классическими методами[137]. Квантовая механика часто оказывается единственной теорией, которая может раскрыть индивидуальное поведение субатомных частиц, составляющих все формы материи (электроны, протоны, нейтроны, фотоны и другие). Законы физики твёрдого тела и материаловедения находят объяснение в квантовой механике[138].
Во многих аспектах современные технологии работают в таких масштабах, где существенны квантовые эффекты. Важные приложения квантовой теории включают квантовую химию, квантовую оптику, квантовые вычисления, сверхпроводящие магниты, светоизлучающие диоды, оптические усилители и лазеры, транзисторы и полупроводники, микропроцессоры, медицинскую и исследовательскую визуализацию (такие как магнитно-резонансная томография и электронная микроскопия)[139]. Объяснения многих биологических явлений исходят из природы химической связи, в частности в макромолекулах ДНК[140].
По сути, вся современная полупроводниковая электроника построена на квантовой механике, поскольку она опирается на знание зонной структуры твёрдых тел. Технология позволяет легировать различными элементами слои кремния и создавать транзисторы в нанометровом масштабе. Множество таких элементов составляют компьютерные чипы, на которых работают все технологические устройства: настольные компьютеры, ноутбуки, планшеты, смартфоны, бытовая техника и детские игрушки. Источниками света, используемыми для отправки сообщений по оптоволоконным кабелям во всемирной сети, являются лазеры, созданные при помощи знания о квантовых свойствах материалов. Навигация смартфона обеспечивается спутниковыми глобальными системами позиционирования, которые функционируют благодаря измерению точного времени. Приёмник GPS в смартфоне, чтобы определить расстояние от каждого из спутников с атомными часами на орбите, принимает от них сигнал, чтобы вычислить единственную точку своего местонахождения с точностью до нескольких метров. Оптический переход, используемый для атомных часов, является сверхтонким переходом, описываемым с помощью квантовой механики. На ядерном магнитном резонансе основаны исследования мягких тканей пациента посредством магнитно-резонансной томографии[141].
Связь с другими научными теориями
[править | править код]Классическая механика
[править | править код]Постулаты квантовой механики гласят, что пространство состояний квантовой системы является гильбертовым пространством и что наблюдаемым системы соответствуют эрмитовые операторы, действующие на векторы в этом пространстве, — хотя сами постулаты не конкретизируют гильбертово пространство и операторы. Их нужно выбирать соответствующим образом, чтобы получить количественное описание квантовой системы, что является необходимым шагом для предсказания поведения физических систем. Для этого пользуются принципом соответствия, эвристикой, которая утверждает, что предсказания квантовой механики сводятся к предсказаниям классической механики в пределе больших квантовых чисел[142]. Можно также начать с установленной классической модели конкретной системы, а затем попытаться угадать лежащую в основе квантовую модель, которая сводится к классической модели в пределе соответствия[143]. Этот подход известен как квантование[144].
Когда квантовая механика была первоначально сформулирована, она применялась к моделям, пределом соответствия которых была нерелятивистская классическая механика. Например, широко исследованная модель квантового гармонического осциллятора использует явно нерелятивистское выражение для кинетической энергии осциллятора и, таким образом, является квантовой версией классического гармонического осциллятора[125].
Сложности квантования возникают с хаотическими системами, у которых нет хороших квантовых чисел, и квантовый хаос изучает взаимосвязь между классическими и квантовыми описаниями в этих системах[145].
Квантовая декогеренция — это механизм, посредством которого квантовые системы теряют когерентность и, таким образом, становятся неспособными демонстрировать многие типично квантовые эффекты: квантовая суперпозиция становится просто суммой вероятностей, а квантовая запутанность — просто классическими корреляциями. Квантовая когерентность обычно не проявляется в макроскопических масштабах, за исключением случая температур, приближающихся к абсолютному нулю, при которых квантовое поведение может проявляться макроскопически[К 3][146].
Многие макроскопические свойства классической системы являются прямым следствием квантового поведения её частей. Например, стабильность объёмного вещества (состоящего из атомов и молекул, которые быстро разрушились бы под действием одних только электрических сил), жёсткость твёрдых тел, а также механические, термические, химические, оптические и магнитные свойства вещества — всё это результат взаимодействия электрических зарядов по законам квантовой механики[147].
Экспериментально наблюдалось проявление квантовых эффектов в макроскопическом масштабе в активном (броуновском) движении гранул с размерами в десятые доли миллиметра в сверхтекучем гелии[148].
Специальная теория относительности и электродинамика
[править | править код]Ранние попытки объединить квантовую механику со специальной теорией относительности включали замену уравнения Шрёдингера ковариантным уравнением, таким как уравнение Клейна — Гордона или уравнение Дирака. Хотя эти теории были успешными в объяснении многих экспериментальных результатов, они имели некоторые неудовлетворительные свойства, проистекающие из пренебрежения рождением и аннигиляцией частиц. Полностью релятивистская квантовая теория потребовала развития квантовой теории поля, которая использует квантование поля, а не фиксированный набор частиц. Первая согласованная квантовая теория поля — квантовая электродинамика, даёт полное описание электромагнитного взаимодействия. Квантовая электродинамика, наряду с общей теорией относительности, является одной из самых точных когда-либо созданных физических теорий[149][150].
Полный аппарат квантовой теории поля часто не нужен для описания электродинамических систем. Более простой подход, который использовался с момента зарождения квантовой механики, состоит в том, чтобы рассматривать заряженные частицы как объекты квантовой механики, на которые воздействует классическое электромагнитное поле[151]. Например, элементарная квантовая модель атома водорода описывает электрическое поле атома водорода с помощью классического кулоновского потенциала[93][94]. Этот «полуклассический» подход терпит неудачу, если квантовые флуктуации электромагнитного поля играют важную роль, например, при излучении фотонов заряженными частицами[152].
Также были разработаны квантовые теории поля для сильного ядерного взаимодействия и слабого ядерного взаимодействия. Квантовая теория поля сильного ядерного взаимодействия называется квантовой хромодинамикой и описывает взаимодействия субъядерных частиц, таких как кварки и глюоны. Слабое ядерное взаимодействие и электромагнитное взаимодействие были объединены в их квантованных формах в единую квантовую теорию поля (известную как электрослабая теория) физиками Абдусом Саламом, Шелдоном Глэшоу и Стивеном Вайнбергом[153].
Отношение к общей теории относительности
[править | править код]Несмотря на то, что предсказания как квантовой теории, так и общей теории относительности были подтверждены строгими и повторяющимися эмпирическими данными, их абстрактные формализмы противоречат друг другу, в результате их оказалось чрезвычайно трудно включить в одну непротиворечивую связную модель[154]. Гравитацией можно пренебречь во многих областях физики элементарных частиц, поэтому объединение общей теории относительности и квантовой механики не является насущной проблемой в этих конкретных приложениях. Однако отсутствие правильной теории квантовой гравитации — это важная проблема физической космологии и поиска физиками элегантной «Теории всего». Следовательно, устранение несоответствий между обеими теориями стало главной целью физики 20-го и 21-го веков. Эта теория всего объединит не только модели субатомной физики, но и выведет четыре фундаментальные силы природы из одной силы или явления[155].
Одним из предложений для этого является теория струн, которая утверждает, что точечные частицы в физике элементарных частиц заменяются одномерными объектами, называемыми струнами. Теория струн описывает, как эти струны распространяются в пространстве и взаимодействуют друг с другом. На масштабах расстояний, превышающих масштаб струны, струна выглядит как обычная частица, а её масса, заряд и другие свойства определяются колебательным состоянием струны. В теории струн одно из многих колебательных состояний струны соответствует гравитону, квантовомеханической частице, переносчика гравитационного взаимодействия[156][157].
Другой популярной теорией является петлевая квантовая гравитация, которая описывает квантовые свойства гравитации и, таким образом, является теорией квантового пространства-времени. Петлевая теория гравитации — это попытка объединить и адаптировать стандартную квантовую механику и стандартную общую теорию относительности. Эта теория описывает пространство как чрезвычайно тонкую ткань, «сотканную» из конечных петель, называемых спиновыми сетями. Эволюция спиновой сети во времени называется спиновой пеной. Характерным масштабом длины спиновой пены является планковская длина, приблизительно равная 1,616 × 10−35 м, поэтому длины короче планковской длины не имеют физического смысла в петлевой теории гравитации[158].
Философские последствия
[править | править код]С момента своего создания многие результаты и нелогичные аспекты квантовой механики вызывали сильные философские споры и возникновение множества интерпретаций. Дискуссии затрагивают вероятностную природу квантовой механики, трудности с коллапсом волновой функции и связанных с этим проблему измерения, а также квантовую нелокальность. Возможно, единственный консенсус, который существует по этим вопросам, заключается в отсутствие консенсуса. Ричард Фейнман однажды сказал: «Думаю, я могу с уверенностью сказать, что никто не понимает квантовую механику»[159]. По словам Стивена Вайнберга: «на мой взгляд, в настоящее время нет полностью удовлетворительной интерпретации квантовой механики»[160].
Взгляды Нильса Бора, Вернера Гейзенберга и других физиков на квантовую механику часто объединяют в «копенгагенскую интерпретацию»[161][162]. Согласно этим взглядам, вероятностный характер квантовой механики — это не временное свойство, которое в будущем будет заменено детерминистской теорией, а окончательный отказ от классической идеи «причинности». Бор, в частности, подчёркивал, что любое чётко определённое применение квантовомеханического формализма всегда должно ссылаться на экспериментальную установку из-за взаимодополняющего характера результатов, полученных в различных экспериментальных ситуациях. Интерпретации копенгагенского типа остаются популярными и в 21 веке[163].
Альберта Эйнштейна, одного из основателей квантовой теории, беспокоило её явное несоблюдение некоторых заветных метафизических принципов, таких как детерминизм и локальность. Давний обмен мнениями между Эйнштейном и Бором о значении и статусе квантовой механики теперь известен как дебаты Бора и Эйнштейна. Эйнштейн считал, что в основе квантовой механики должна лежать теория, явно запрещающая действие на расстоянии. Он утверждал, что квантовая механика была неполной; теория была верной, но не фундаментальной, аналогично тому, как верна термодинамика, но фундаментальной теорией, лежащей в её основе, является статистическая механика. В 1935 году Эйнштейн и его сотрудники Борис Подольский и Натан Розен опубликовали аргумент о том, что принцип локальности подразумевает неполноту квантовой механики. Их мысленный эксперимент, позже назовут парадоксом Эйнштейна — Подольского — Розена (ЭПР)[168]. В 1964 году Джон Белл показал, что принцип локальности ЭПР вместе с детерминизмом несовместимы с квантовой механикой: они подразумевают ограничения на корреляции, создаваемые системами на расстоянии, теперь известные как неравенства Белла, которые могут нарушаться запутанными частицами[169]. С тех пор было проведено несколько опытов[англ.], в которых измерялись эти корреляции, в результате чего оказалось, что неравенства Белла действительно нарушаются и, таким образом, фальсифицируют соединение локальности с детерминизмом[24][25].
Бомовская механика показывает, что можно переформулировать квантовую механику, сделав её детерминированной, ценой явной нелокальности. Она приписывает физической системе не только волновую функцию, но и реальное положение, которое детерминистически развивается под нелокальным управляющим уравнением. Эволюция физической системы во все времена задаётся уравнением Шрёдингера вместе с ведущим уравнением; никогда не бывает коллапса волновой функции. Этот подход разрешает проблему измерения[170].
Многомировая интерпретация Эверетта, сформулированная в 1956 году, утверждает, что все возможности, описываемые квантовой теорией, одновременно возникают в мультивселенной, состоящей в основном из независимых параллельных вселенных. Это исключает проблему коллапса волнового пакета, поскольку все возможные состояния измеряемой системы и измерительного прибора вместе с наблюдателем присутствуют в реальной физической квантовой суперпозиции. В то время как мультивселенная детерминирована, мы воспринимаем недетерминистическое поведение, управляемое вероятностями, потому что мы не наблюдаем мультивселенную в целом, а только одну параллельную вселенную в каждый момент времени. Как именно это должно работать, было предметом многочисленных споров. Было предпринято несколько попыток вывода правила Борна[171][172] без единого мнения о том, были ли они успешными[173][174][175].
Реляционная квантовая механика появилась в конце 1990-х годов как современная производная от идей копенгагенского типа[176], а несколько лет спустя была разработана теория квантового байесианства[177].
Примечания
[править | править код]- Комментарии
- ↑ Смотрите, например, Эксперименты по проверке точности КЭД. Было показано, что дальнейшее развитие квантовой механики с учётом теории относительности, известное как квантовая электродинамика (КЭД), согласуется с экспериментом с точностью до 1 части на 108 для некоторых атомных свойств[6][7]
- ↑ Класс этих функций очень широк, но физически можно ограничить рассмотрение только функциями, которые определены повсюду, непрерывны и бесконечно дифференцируемы[74]
- ↑ Смотрите Макроскопические квантовые явления[англ.], конденсат Бозе — Эйнштейна и квантовая машина
- Источники
- ↑ Born, M. (1926). "Zur Quantenmechanik der Stoßvorgänge". Zeitschrift für Physik. 37 (12): 863—867. Bibcode:1926ZPhy...37..863B. doi:10.1007/BF01397477. ISSN 1434-6001.
- ↑ Jaeger, Gregg (September 2014). "What in the (quantum) world is macroscopic?". American Journal of Physics. 82 (9): 896—905. Bibcode:2014AmJPh..82..896J. doi:10.1119/1.4878358.
- ↑ 1 2 3 Feynman, Richard. The Feynman Lectures on Physics / Richard Feynman, Robert Leighton, Matthew Sands. — California Institute of Technology, 1964. — Vol. 3. — ISBN 978-0201500646. Архивная копия от 21 февраля 2023 на Wayback Machine
- ↑ Yaakov Y. Fein (September 2019). "Quantum superposition of molecules beyond 25 kDa". Nature Physics. 15 (12): 1242—1245. Bibcode:2019NatPh..15.1242F. doi:10.1038/s41567-019-0663-9.
- ↑ Bojowald, Martin (2015). "Quantum cosmology: a review". Reports on Progress in Physics. 78 (2). arXiv:1501.04899. Bibcode:2015RPPh...78b3901B. doi:10.1088/0034-4885/78/2/023901. PMID 25582917.
- ↑ B. Odom, D. Hanneke, B. D'Urso, and G. Gabrielse. New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron // Phys. Rev. Lett.. — 2006. — Т. 97. — С. 030801. — doi:10.1103/PhysRevLett.97.030801.
- ↑ D. Hanneke, S. Fogwell, and G. Gabrielse. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant // Phys. Rev. Lett.. — 2008. — Т. 100. — С. 120801. — doi:10.1103/PhysRevLett.100.120801. — arXiv:0801.1134.
- ↑ Иванов, 2012, с. 9.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 113.
- ↑ Auletta, 2000, p. 28.
- ↑ Мартинсон, Л. К.; Смирнов, Е. В. 3.1. Волновая функция . МГТУ им. Н. Э. Баумана (2002). Дата обращения: 23 февраля 2022. Архивировано 22 января 2021 года.
- ↑ Born M. Zur Quantenmechanik der Stoßvorgänge (нем.) // Zeitschrift für Physik. — 1926. — Bd. 37, H. 12. — S. 863—867. — doi:10.1007/BF01397477. — . Архивировано 22 марта 2024 года.
- ↑ 1 2 Иванов, 2012, с. 32.
- ↑ Мартинсон Л. К., Смирнов Е. В. 3.2. Уравнение Шредингера . МГТУ им. Н. Э. Баумана (2002). Дата обращения: 23 февраля 2022. Архивировано 13 августа 2020 года.
- ↑ Мартинсон Л. К., Смирнов Е. В. 2.3. Соотношения неопределенностей . МГТУ им. Н. Э. Баумана (2002). Дата обращения: 23 февраля 2022. Архивировано 7 августа 2020 года.
- ↑ 1 2 3 Lederman L. M., Hill C. T. Quantum Physics for Poets (англ.). — Prometheus Books, 2011. — P. 102—111. — ISBN 978-1616142810.
- ↑ Müller-Kirsten H. J. W. Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral (англ.). — World Scientific, 2006. — P. 14. — ISBN 978-981-2566911.
- ↑ Plotnitsky A. Niels Bohr and Complementarity: An Introduction (англ.). — Springer, 2012. — P. 75. — ISBN 978-1461445173.
- ↑ 1 2 Auletta, 2000, p. 25.
- ↑ Griffiths and Schroeter, 2018.
- ↑ Trixler F. Quantum tunnelling to the origin and evolution of life (англ.) // Current Organic Chemistry. — 2013. — Vol. 17. — P. 1758–1770. — doi:10.2174/13852728113179990083. — PMID 24039543.
- ↑ Bub J. Quantum entanglement // Stanford Encyclopedia of Philosophy (англ.). — Metaphysics Research Lab, Stanford University, 2019.
- ↑ 1 2 Caves C. M. Quantum Information Science: Emerging No More // OSA Century of Optics (англ.). — The Optical Society, 2015. — ISBN 978-1-943580-04-0.
- ↑ 1 2 Wiseman H. Death by experiment for local realism (англ.) // Nature. — 2015. — Vol. 526, iss. 7575. — P. 649–650. — doi:10.1038/nature15631. — PMID 26503054.
- ↑ 1 2 Wolchover, Natalie Experiment Reaffirms Quantum Weirdness (амер. англ.). Quanta Magazine (7 февраля 2017). Дата обращения: 8 февраля 2020. Архивировано 22 мая 2017 года.
- ↑ Baez, John C. How to Learn Math and Physics . University of California, Riverside (20 марта 2020). Дата обращения: 19 декабря 2020. Архивировано 27 января 2022 года.
- ↑ Sagan C. The Demon-Haunted World: Science as a Candle in the Dark (англ.). — Ballantine Books, 1996. — P. 249. — ISBN 0-345-40946-9.
- ↑ Джеммер, 1985, с. 13.
- ↑ Born M., Wolf E. Principles of Optics (англ.). — Cambridge University Press, 1999. — ISBN 0-521-64222-1.
- ↑ Scheider W. Bringing one of the great moments of science to the classroom (англ.) // The Physics Teacher. — 1986. — Vol. 24, iss. 4. — P. 217–219. — .
- ↑ Feynman, Richard. The Feynman Lectures on Physics. — California Institute of Technology, 1966. — ISBN 978-0201500646.
- ↑ Martin A. Cathode Ray Tubes for Industrial and Military Applications (англ.) / Ed. P. Hawkes. — Academic Press, 1986. — P. 183. — (Advances in Electronics and Electron Physics, Volume 67). — ISBN 978-0080577333.
- ↑ Dahl Per F. Flash of the Cathode Rays: A History of J J Thomson's Electron (англ.). — CRC Press, 1997. — ISBN 978-0-7503-0453-5.
- ↑ Джеммер, 1985, с. 14.
- ↑ Mehra J. The Historical Development of Quantum Theory, Vol. 1: The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld. Its Foundation and the Rise of Its Difficulties (1900–1925) (англ.). — ISBN 978-0387906423.
- ↑ Quantum – Definition and More from the Free Merriam-Webster Dictionary . Merriam-webster.com. Дата обращения: 18 августа 2012. Архивировано 19 января 2022 года.
- ↑ Kuhn T. S. Black-body theory and the quantum discontinuity 1894–1912 (англ.). — Oxford: Clarendon Press, 1978. — ISBN 978-0195023831.
- ↑ Джеммер, 1985, с. 33.
- ↑ Kragh H. Max Planck: the reluctant revolutionary . Physics World (1 декабря 2000). Дата обращения: 12 декабря 2020. Архивировано 5 ноября 2018 года.
- ↑ Джеммер, 1985, с. 46.
- ↑ Stachel J. Bohr and the Photon // Quantum Reality, Relativistic Causality and the Closing of the Epistemic Circle (англ.). — Dordrecht: Springer, 2009. — P. 69–83. — (The Western Ontario Series in Philosophy of Science; Vol. 73). — ISBN 978-1-4020-9106-3. — doi:10.1007/978-1-4020-9107-0_5.
- ↑ Джеммер, 1985, с. 47.
- ↑ Einstein A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (нем.) // Annalen der Physik. — 1905. — Bd. 17, H. 6. — S. 132–148. — doi:10.1002/andp.19053220607. — .
- ↑ Einstein A. Zur Quantentheorie der Strahlung (нем.) // Mitt. Phys. Ges. (Zurich). — 1916. — Nr. 18. — S. 47—62. Einstein A. Zur Quantentheorie der Strahlung (нем.) // Physikalische Zeitschrift. — 1917. — Bd. 18. — S. 121–128. — . Переведено на русский язык: Эйнштейн А. К квантовой теории излучения // Альберт Эйнштейн. Собрание научных трудов / Под ред. И. Е. Тамма, Я. А. Смородинского, Б. Г. Кузнецова. — М.: Наука, 1966. — Т. 3. — С. 393—406.
- ↑ Gould, R. Gordon. The LASER, Light Amplification by Stimulated Emission of Radiation // The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959 / Franken, P.A. ; Sands R.H.. — 1959. — P. 128.
- ↑ ter Haar D. The Old Quantum Theory (англ.). — Pergamon Press, 1967. — P. 206. — ISBN 978-0-08-012101-7.
- ↑ Semi-classical approximation . Encyclopedia of Mathematics. Дата обращения: 1 февраля 2020. Архивировано 17 января 2022 года.
- ↑ Sakurai J. J., Napolitano J. Quantum Dynamics // Modern Quantum Mechanics (англ.). — Pearson, 2014. — ISBN 978-1-292-02410-3.
- ↑ Джеммер, 1985, с. 67—68.
- ↑ Джеммер, 1985, с. 100—101.
- ↑ Edwards D. The Mathematical Foundations of Quantum Mechanics (англ.) // Synthese. — 1979. — Vol. 42, no. 1. — P. 1—70.
- ↑ Edwards D. The Mathematical Foundations of Quantum Field Theory: Fermions, Gauge Fields, and Super-symmetry, Part I: Lattice Field Theories (англ.) // International J. of Theor. Phys.. — 1981. — Vol. 20, no. 7.
- ↑ Bernstein J. Max Born and the quantum theory (англ.) // American Journal of Physics. — 2005. — Vol. 73, iss. 11. — P. 999–1008. — doi:10.1119/1.2060717. — .
- ↑ Pais A. A Tale of Two Continents: A Physicist's Life in a Turbulent World (англ.). — Princeton University Press, 1997. — ISBN 0-691-01243-1.
- ↑ Милантьев, 2009, с. 181.
- ↑ Милантьев, 2009, с. 182.
- ↑ Милантьев, 2009, с. 184—185.
- ↑ Милантьев, 2009, с. 201.
- ↑ Van Hove L. Von Neumann's contributions to quantum theory (англ.) // Bulletin of the American Mathematical Society. — 1958. — Vol. 64, iss. 3, Part 2. — P. 95–99. — doi:10.1090/s0002-9904-1958-10206-2. Архивировано 20 января 2024 года.
- ↑ Feynman. The Feynman Lectures on Physics III 21-4 . California Institute of Technology. — «...it was long believed that the wave function of the Schrödinger equation would never have a macroscopic representation analogous to the macroscopic representation of the amplitude for photons. On the other hand, it is now realized that the phenomena of superconductivity presents us with just this situation.» Дата обращения: 24 ноября 2015. Архивировано 28 июля 2020 года.
- ↑ Packard. Berkeley Experiments on Superfluid Macroscopic Quantum Effects . Дата обращения: 24 ноября 2015. Архивировано 25 ноября 2015 года.
- ↑ Bardeen J., Cooper L. N., Schrieffer J. R. Microscopic Theory of Superconductivity (англ.) // Physical Review. — 1957. — Vol. 106, iss. 1. — P. 162–164. — doi:10.1103/PhysRev.106.162. — .
- ↑ Bardeen J., Cooper L. N., Schrieffer J. R. Theory of Superconductivity (англ.) // Physical Review. — 1957. — Vol. 108, iss. 5. — P. 1175–1205. — doi:10.1103/PhysRev.108.1175. — .
- ↑ François Balembois et Sébastien Forget. Laser : Fundamentals // Some important dates (англ.). Optics4Engineers. Дата обращения: 11 декабря 2013. Архивировано 16 декабря 2013 года.
- ↑ 1 2 Алексей Левин. Квантовый светоч: История одного из самых важных изобретений XX века — лазера . Популярная механика (1 июня 2006). Дата обращения: 10 февраля 2024. Архивировано 1 сентября 2011 года.
- ↑ Maiman T. H. Stimulated optical radiation in ruby (англ.) // Nature. — 1960. — Vol. 187, no. 4736. — P. 493—494. — doi:10.1038/187493a0.
- ↑ Benioff P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines (англ.) // Journal of Statistical Physics. — 1980. — Vol. 22, iss. 5. — P. 563–591. — doi:10.1007/bf01011339. — .
- ↑ =Chuang I. L., Gershenfeld N., Kubinec M. Experimental Implementation of Fast Quantum Searching (англ.) // Physical Review Letters. — 1998. — Vol. 80, iss. 15. — P. 3408–3411. — doi:10.1103/PhysRevLett.80.3408. — .
- ↑ Arute F. et al. Quantum supremacy using a programmable superconducting processor (англ.) // Nature. — 2019. — Vol. 574. — P. 505—510. Архивировано 23 октября 2019 года.
- ↑ Quantum Supremacy Using a Programmable Superconducting Processor Архивная копия от 23 октября 2019 на Wayback Machine Wednesday, October 23, 2019 Posted by John Martinis, Chief Scientist Quantum Hardware and Sergio Boixo, Chief Scientist Quantum Computing Theory, Google AI Quantum
- ↑ Meduza 20:05, 24 октября 2019 Александр Ершов Ура, физики из Google достигли квантового превосходства! А может, и не достигли! Мы не знаем, они не знают, никто не знает — на то оно и квантовое… Архивная копия от 26 октября 2019 на Wayback Machine
- ↑ Auletta, 2000, p. 36.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 274.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 114.
- ↑ Bongaarts P. Quantum theory : a mathematical approach (англ.). — Cham: Springer, 2015. — P. 118. — ISBN 3319095609.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 169—170.
- ↑ Auletta, 2000, p. 39.
- ↑ Auletta, 2000, p. 38.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 272.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 273.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 277.
- ↑ Greenstein G., Zajonc A. The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (англ.). — 2nd Ed. — Jones and Bartlett Publishers, Inc, 2006. — P. 215. — ISBN 978-0-7637-2470-2.
- ↑ Auletta, 2000, p. 48.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 278.
- ↑ Auletta, 2000, p. 49.
- ↑ Weinberg S. Dreams Of A Final Theory: The Search for The Fundamental Laws of Nature (англ.). — Random House, 2010. — P. 82. — ISBN 978-1-4070-6396-6.
- ↑ Griffiths and Schroeter, 2018, p. 183—200.
- ↑ Griffiths and Schroeter, 2018, p. 195.
- ↑ Cooper F., Khare A., Sukhatme U. Supersymmetry and quantum mechanics // Phys. Rep.. — 1995. — Т. 251. — С. 267—385. — doi:10.1016/0370-1573(94)00080-M.
- ↑ 1 2 Флюгге, 1974, с. 81.
- ↑ Флюгге, 1974, с. 66.
- ↑ Scott T. C., Aubert-Frécon M., Grotendorst J. New Approach for the Electronic Energies of the Hydrogen Molecular Ion (англ.) // Chem. Phys.. — 2006. — Vol. 324, iss. 2–3. — P. 323–338. — doi:10.1016/j.chemphys.2005.10.031. — . — arXiv:physics/0607081.
- ↑ 1 2 Флюгге, 1974, с. 180.
- ↑ 1 2 Griffiths and Schroeter, 2018, p. 183.
- ↑ Griffiths D., Schroeter D. F. Introduction to quantum mechanics (англ.). — Cambridge, United Kingdom: Cambridge University Press, 2018. — ISBN 1107189632.
- ↑ Sulejmanpasic T., Ünsal M. Aspects of perturbation theory in quantum mechanics: The BenderWuMathematica® package (англ.) // Computer Physics Communications. — 2018. — Vol. 228. — P. 273–289. — doi:10.1016/j.cpc.2017.11.018. — .
- ↑ Маслов В. П., Федорюк М. В. Квазиклассическое приближение для уравнений квантовой механики . — М.: Наука, 1976. — 296 с.
- ↑ Haake F. Quantum signatures of chaos (англ.). — Berlin, New York: Springer, 2001. — ISBN 9783540677239.
- ↑ 1 2 3 Коэн-Таннуджи, Диу и Лалоэ, 2000.
- ↑ Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 5-е. — М.: Физматлит, 2001. — 808 с. — («Теоретическая физика», том III). — ISBN 5-9221-0057-2.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 235.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 288—289,358.
- ↑ Section 3.2 in: Ballentine L. E. The Statistical Interpretation of Quantum Mechanics (англ.) // Reviews of Modern Physics. — 1970. — Vol. 42, iss. 4. — P. 358–381. — doi:10.1103/RevModPhys.42.358.
- ↑ Этот факт экспериментально хорошо известен, например, в квантовой оптике; см. гл. 2 и рис. 2.1 в: Leonhardt U. Measuring the Quantum State of Light (англ.). — Cambridge University Press, 1997. — (Cambridge Studies in Modern Optics, Vol. 22). — ISBN 9780521497305. Архивировано 7 ноября 2023 года.
- ↑ 1 2 3 Nielsen M. A., Chuang I. L. Quantum Computation and Quantum Information (англ.). — =2nd Ed. — Cambridge: Cambridge University Press, 2010. — ISBN 978-1-107-00217-3.
- ↑ 1 2 Rieffel E. G., Polak W. H. Quantum Computing: A Gentle Introduction (англ.). — MIT Press, 2011. — ISBN 978-0-262-01506-6.
- ↑ Wilde M. M. Quantum Information Theory (англ.). — 2nd Ed.. — Cambridge University Press, 2017. — ISBN 9781107176164. — doi:10.1017/9781316809976.001. Архивировано 5 января 2024 года.
- ↑ Schlosshauer M. Quantum decoherence (англ.) // Physics Reports. — 2019. — Vol. 831. — P. 1–57. — doi:10.1016/j.physrep.2019.10.001. — . — arXiv:1911.06282.
- ↑ Rechenberg H. Erwin Schrödinger and the creation of wave mechanics (англ.) // Acta Physica Polonica B. — 1987. — Vol. 19, iss. 8. — P. 683–695. Архивировано 18 января 2022 года.
- ↑ Фейнман Р., Хибс А. Квантовая механика и интегралы по траекториям. — М.: Мир, 1968. — 384 с.
- ↑ Griffiths and Schroeter, 2018, p. 336.
- ↑ 1 2 Griffiths and Schroeter, 2018, p. 307.
- ↑ Ченг и Ли, 1987, с. 154.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 75—79.
- ↑ Флюгге, 1974, с. 40.
- ↑ Флюгге, 1974, с. 43.
- ↑ Флюгге, 1974, с. 44.
- ↑ Флюгге, 1974, с. 45.
- ↑ Флюгге, 1974, с. 46.
- ↑ Флюгге, 1974, с. 47.
- ↑ Флюгге, 1974, с. 62—63.
- ↑ Коэн-Таннуджи, Диу и Лалоэ, 2000, с. 87—88.
- ↑ Bez R., Camerlenghi E., Modelli A., Visconti A. Introduction to flash memory (англ.) // Proceedings of the IEEE. — 2003. — Vol. 91(4). — P. 489—502. — doi:10.1109/jproc.2003.811702.
- ↑ Binnig G., Rohrer H. Scanning tunneling microscopy — from birth to adolescence (англ.) // Reviews of Modern Physics. — 1987. — Vol. 59, iss. 3. — P. 615–625. — doi:10.1103/RevModPhys.59.615. — .
- ↑ 1 2 Флюгге, 1974, с. 81—84.
- ↑ Флюгге, 1974, с. 87—89.
- ↑ Флюгге, 1974, с. 83.
- ↑ Флюгге, 1974, с. 88.
- ↑ Флюгге, 1974, с. 86.
- ↑ Paris M. G. A. Entanglement and visibility at the output of a Mach–Zehnder interferometer (англ.) // Physical Review A. — 1999. — Vol. 59, iss. 2. — P. 1615–1621. — doi:10.1103/PhysRevA.59.1615. — . — arXiv:quant-ph/9811078.
- ↑ Haack G. R. Parity detection and entanglement with a Mach-Zehnder interferometer (англ.) // Physical Review B. — 2010. — Vol. 82, iss. 15. — P. 155303. — doi:10.1103/PhysRevB.82.155303. — . — arXiv:1005.3976.
- ↑ Vedral, 2006, p. 25.
- ↑ Marshman E., Singh C. Interactive tutorial to improve student understanding of single photon experiments involving a Mach–Zehnder interferometer (англ.) // Eur. J. Phys.. — 2016. — Vol. 37. — P. 024001. — doi:10.1088/0143-0807/37/2/024001. — arXiv:1602.06162.
- ↑ Vedral, 2006, p. 102.
- ↑ 1 2 Marshman and Singh, 2016.
- ↑ Vedral V. Introduction to Quantum Information Science (англ.). — Oxford University Press, 2006. — ISBN 9780199215706.
- ↑ См., например, «Фейнмановские лекции по физике», где приведён ряд примеров технических приложений квантовой механики, таких как транзисторы, интегральные микросхемы и лазеры.
- ↑ Cohen M. L. Essay: Fifty Years of Condensed Matter Physics (англ.) // Physical Review Letters. — 2008. — Vol. 101, iss. 25. — doi:10.1103/PhysRevLett.101.250001. — . — PMID 19113681. Архивировано 19 августа 2022 года.
- ↑ Matson, John. "What Is Quantum Mechanics Good for?". Scientific American. Архивировано 25 января 2022. Дата обращения: 18 мая 2016.
- ↑ Pauling L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals (англ.). — Cornell University Press, 1939.
- ↑ Orzel, Chad. What Has Quantum Mechanics Ever Done For Us? (англ.). https://www.forbes.com. Forbes (13 августа 2015). Дата обращения: 20 апреля 2022. Архивировано 20 апреля 2022 года.
- ↑ Tipler P., Llewellyn R. Modern Physics (англ.). — 5th Ed.. — W.H. Freeman and Company, 2008. — P. 160–161. — ISBN 978-0-7167-7550-8.
- ↑ Блохинцев, 1976, с. 237—241.
- ↑ Садовский, 2003, с. 45.
- ↑ Haake, 2001.
- ↑ Schlosshauer M. Decoherence, the measurement problem, and interpretations of quantum mechanics (англ.) // Reviews of Modern Physics. — 2005. — Vol. 76, iss. 4. — P. 1267–1305. — doi:10.1103/RevModPhys.76.1267. — . — arXiv:quant-ph/0312059.
- ↑ Atomic Properties . Academic.brooklyn.cuny.edu. Дата обращения: 18 августа 2012. Архивировано 6 апреля 2012 года.
- ↑ Petrov O. F., Boltnev R. E., Vasiliev M. M. Experimental evolution of active Brownian grains driven by quantum effects in superfluid helium (англ.) // Scientific Reports. — 2022. — Vol. 12. — P. 6085. — doi:10.1038/s41598-022-09523-z.
- ↑ Hawking, Stephen. The Nature of Space and Time / Stephen Hawking, Roger Penrose. — 2010. — ISBN 978-1400834747. Источник . Дата обращения: 26 января 2022. Архивировано 28 июля 2020 года.
- ↑ Tatsumi Aoyama (2012). "Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant". Physical Review Letters. 109 (11). arXiv:1205.5368. Bibcode:2012PhRvL.109k1807A. doi:10.1103/PhysRevLett.109.111807. PMID 23005618.
- ↑ Simmen, Benjamin. Relativistic Quantum Theory of Many-Electron Systems // Many-electron approaches in physics, chemistry and mathematics : a multidisciplinary view / Benjamin Simmen, Markus Reiher. — Cham : Springer, 2014. — P. 4. — ISBN 3319063782.
- ↑ Wistisen, Tobias N. Quantum synchrotron radiation in the case of a field with finite extension // Phys. Rev. D. — 2015. — Т. 92. — С. 045045. — doi:10.1103/PhysRevD.92.045045.
- ↑ The Nobel Prize in Physics 1979 . Nobel Foundation. Дата обращения: 16 декабря 2020. Архивировано 26 февраля 2009 года.
- ↑ «There is as yet no logically consistent and complete relativistic quantum field theory.», p. 4. — V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii (1971). J.B. Sykes, J.S. Bell (translators). Relativistic Quantum Theory 4, part I. Course of Theoretical Physics (Landau and Lifshitz) ISBN 0-08-016025-5
- ↑ Stephen Hawking; Gödel and the end of physics . cam.ac.uk. Дата обращения: 11 сентября 2015. Архивировано из оригинала 21 мая 2011 года.
- ↑ Becker, Katrin. String theory and M-theory: A modern introduction / Katrin Becker, Melanie Becker, John Schwarz. — Cambridge University Press, 2007. — ISBN 978-0-521-86069-7.
- ↑ Zwiebach, Barton. A First Course in String Theory. — Cambridge University Press, 2009. — ISBN 978-0-521-88032-9.
- ↑ Rovelli, Carlo. Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory : [англ.] / Carlo Rovelli, Francesca Vidotto. — Cambridge University Press, 13 November 2014. — ISBN 978-1-316-14811-2. Источник . Дата обращения: 26 января 2022. Архивировано 18 января 2022 года.
- ↑ Feynman, Richard. The Character of Physical Law : [англ.]. — MIT Press, 1967. — P. 129. — ISBN 0-262-56003-8.
- ↑ Weinberg, Steven (2012). "Collapse of the state vector". Physical Review A. 85 (6): 062116. arXiv:1109.6462. Bibcode:2012PhRvA..85f2116W. doi:10.1103/PhysRevA.85.062116.
- ↑ Howard, Don (December 2004). "Who Invented the 'Copenhagen Interpretation'? A Study in Mythology". Philosophy of Science (англ.). 71 (5): 669—682. doi:10.1086/425941. ISSN 0031-8248. Архивировано 18 января 2022. Дата обращения: 26 января 2022.
- ↑ Camilleri, Kristian (May 2009). "Constructing the Myth of the Copenhagen Interpretation". Perspectives on Science (англ.). 17 (1): 26—57. doi:10.1162/posc.2009.17.1.26. ISSN 1063-6145. Архивировано 15 сентября 2020. Дата обращения: 26 января 2022.
- ↑ Schlosshauer, Maximilian (1 August 2013). "A snapshot of foundational attitudes toward quantum mechanics". Studies in History and Philosophy of Science Part B. 44 (3): 222—230. arXiv:1301.1069. Bibcode:2013SHPMP..44..222S. doi:10.1016/j.shpsb.2013.04.004.
- ↑ Harrigan, Nicholas; Spekkens, Robert W. (2010). "Einstein, incompleteness, and the epistemic view of quantum states". Foundations of Physics. 40 (2): 125. arXiv:0706.2661. Bibcode:2010FoPh...40..125H. doi:10.1007/s10701-009-9347-0.
- ↑ Howard, D. (1985). "Einstein on locality and separability". Studies in History and Philosophy of Science Part A. 16 (3): 171—201. doi:10.1016/0039-3681(85)90001-9.
- ↑ Sauer, Tilman (1 December 2007). "An Einstein manuscript on the EPR paradox for spin observables". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics (англ.). 38 (4): 879—887. Bibcode:2007SHPMP..38..879S. CiteSeerX 10.1.1.571.6089. doi:10.1016/j.shpsb.2007.03.002. ISSN 1355-2198. Архивировано 18 января 2022. Дата обращения: 26 января 2022.
- ↑ Einstein, Albert (1949). "Autobiographical Notes". In Schilpp, Paul Arthur (ed.). Albert Einstein: Philosopher-Scientist. Open Court Publishing Company.
- ↑ The published form of the EPR argument was due to Podolsky, and Einstein himself was not satisfied with it. In his own publications and correspondence, Einstein used a different argument to insist that quantum mechanics is an incomplete theory[164][165][166][167]
- ↑ Bell, J. S. (1 November 1964). "On the Einstein Podolsky Rosen paradox". Physics Physique Fizika (англ.). 1 (3): 195—200. doi:10.1103/PhysicsPhysiqueFizika.1.195.
- ↑ Goldstein, Sheldon. Bohmian Mechanics // Stanford Encyclopedia of Philosophy. — Metaphysics Research Lab, Stanford University, 2017.
- ↑ Everett, Hugh. The Many-Worlds Interpretation of Quantum Mechanics / Hugh Everett, J. A. Wheeler, B. S. DeWitt … [и др.]. — Princeton, NJ : Princeton University Press, 1973. — P. v. — ISBN 0-691-08131-X.
- ↑ Wallace, David (2003). "Everettian Rationality: defending Deutsch's approach to probability in the Everett interpretation". Stud. Hist. Phil. Mod. Phys. 34 (3): 415—438. arXiv:quant-ph/0303050. Bibcode:2003SHPMP..34..415W. doi:10.1016/S1355-2198(03)00036-4.
- ↑ Ballentine, L. E. (1973). "Can the statistical postulate of quantum theory be derived? – A critique of the many-universes interpretation". Foundations of Physics. 3 (2): 229—240. Bibcode:1973FoPh....3..229B. doi:10.1007/BF00708440.
- ↑ Landsman, N. P. The Born rule and its interpretation // Compendium of Quantum Physics. — Springer, 2008. — «The conclusion seems to be that no generally accepted derivation of the Born rule has been given to date, but this does not imply that such a derivation is impossible in principle.». — ISBN 978-3-540-70622-9.
- ↑ Kent, Adrian. One world versus many: The inadequacy of Everettian accounts of evolution, probability, and scientific confirmation // Many Worlds? Everett, Quantum Theory and Reality / S. Saunders ; J. Barrett ; A. Kent ; D. Wallace. — Oxford University Press, 2010.
- ↑ Van Fraassen, Bas C. (April 2010). "Rovelli's World". Foundations of Physics (англ.). 40 (4): 390—417. Bibcode:2010FoPh...40..390V. doi:10.1007/s10701-009-9326-5. ISSN 0015-9018. Архивировано 7 октября 2022. Дата обращения: 26 января 2022.
- ↑ Healey, Richard. Quantum-Bayesian and Pragmatist Views of Quantum Theory // Stanford Encyclopedia of Philosophy. — Metaphysics Research Lab, Stanford University, 2016.
Литература
[править | править код]- На русском языке
- Альбеверио С., Гестези Ф., Хёэг-Крон Р., Хольден Х. Решаемые модели квантовой механики. М.: Мир, 1991. — 568 с.
- Блохинцев Д. И. Принципиальные вопросы квантовой механики. Архивная копия от 11 ноября 2007 на Wayback Machine М.: Наука, 1966.
- Блохинцев Д. И. Основы квантовой механики. — 5-е изд. — М.: Наука, 1976. — 664 с.
- Боум А. Квантовая механика: основы и приложения. — М.: Мир, 1990. — 720 с. — ISBN 5-03-001311-3.
- Герштейн С. С., Берестецкий В. Б. Квантовая механика // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- Давыдов А. С. Квантовая механика. — 3-е изд. — СПб.: БХВ-Петербург, 2011. — 704 с. — ISBN 978-5-9775-0548-2.
- Джеммер, Макс. Эволюция понятий квантовой механики / Пер. с англ. / Под ред. Л. И. Пономарёва. — М.: Наука, 1985. — 384 с.
- Дирак П. А. М. Принципы квантовой механики Архивная копия от 11 ноября 2007 на Wayback Machine (2-е издание), — М.: Наука, 1979.
- Дирак П. Принципы квантовой механики. 2-е изд. М.: Наука, 1979. — 480 с. Архивная копия от 11 ноября 2007 на Wayback Machine
- Байков Ю. А., Кузнецов В. М. Квантовая механика : учеб. пос. - М.: БИНОМ. Лаб. знаний, 2012. - 291 с.; ISBN 978-5-9963-1159-0.
- Иванов М. Г. Как понимать квантовую механику. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2012. — 516 с. — ISBN 978-5-93972-944-4.
- Начальные главы квантовой механики / Н. В. Карлов, Н. А. Кириченко — М. : Физматлит, 2004 (ОАО Моск. тип. ј 6). — 359 с. : ил., табл.; 22 см; ISBN 5-9221-0538-8
- Коэн-Таннуджи К., Диу Б., Лалоэ Ф. Квантовая механика / Пер. с франц.. — Екатеринбург: Изд-во Уральского ун-та, 2000. — Т. Т.1. — 944 с. — ISBN 5-7525-1131-3.
- Коэн-Таннуджи К., Диу Б., Лалоэ Ф. Квантовая механика. Т.2. Екатеринбург: Изд-во Уральского ун-та, 2000. — 800 с.
- Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 6-е, исправленное. — М.: Физматлит, 2004. — 800 с. — («Теоретическая физика», том III). — ISBN 5-9221-0530-2.
- Липкин А. И. Основания физики. Взгляд из теоретической физики. Архивная копия от 16 августа 2017 на Wayback Machine М.: URSS, 2014.— 207 с.
- Милантьев, Владимир Петрович. История возникновения квантовой механики и развитие представлений об атоме. — М.: Книжный дом «Либроком», 2009. — С. 188. — 248 с. — ISBN 978-5-397-00146-5.
- Мотт Н., Снеддон И. Волновая механика и её применения. — М., Наука, 1966. — Тираж 9400 экз. — 427 с.
- Нейман И. Математические основы квантовой механики Архивная копия от 11 ноября 2007 на Wayback Machine, — М.: Наука, 1964.
- Паули В. Общие принципы волновой механики Архивная копия от 10 ноября 2007 на Wayback Machine, — М. — Л.: ГИТТЛ, 1947.
- Леонард Сасскинд, Арт Фриман — Квантовая механика: теоретический минимум / пер. с англ. А. Сергеев. — СПб.: Питер, 2015. — 400 с.
- Садовский М. В. Лекции по квантовой теории поля. — Ижевск: Институт компьютерных исследований, 2003. — 480 с. — ISBN 5-93972-241-5.
- Степанов Н. Ф. Квантовая механика и квантовая химия.— 2013.
- Садбери А. Квантовая механика и физика элементарных частиц. М.: Мир, 1989. — 488 с. Архивная копия от 24 апреля 2014 на Wayback Machine
- Шифф Л. Квантовая механика. Рипол Классик, 2013.
- Фаддеев Л. Д., Якубовский О. А. Лекции по квантовой механике для студентов-математиков. Архивная копия от 24 апреля 2014 на Wayback Machine Л., Изд-во ЛГУ, 1980. — 200 c.
- Фейнман Р., Лейтон Р., Сэндс М. Феймановские лекции по физике. Пер. с англ., Том. 8. Архивная копия от 9 ноября 2007 на Wayback Machine Том 9. Архивная копия от 9 ноября 2007 на Wayback Machine, М., 1966—1967.
- Флюгге Зигфрид. Задачи по квантовой механике / Пер. с англ. / Под ред. А. А. Соколова. — М.: Мир, 1974. — Т. 1. — 344 с.
- Фущич В. И., Никитин А. Г. Симметрия уравнений квантовой механики Архивная копия от 13 января 2012 на Wayback Machine, — М.: Наука, 1990.
- Ченг Т.-П., Ли Л.-Ф. Калибровочные теории в физике элементарных частиц. — М.: Мир, 1987. — 624 с.
- Шрёдингер Э. Избранные труды по квантовой механике Архивная копия от 10 ноября 2007 на Wayback Machine, — М.: Наука, 1976.
- На английском языке
- Auletta, Gennaro. Foundations and interpretation of quantum mechanics : in the light of a critical-historical analysis of the problems and of a synthesis of the results. — Singapore River Edge, NJ : World Scientific, 2000. — ISBN 9810240392.
- von Neumann, John. Mathematical Foundations of Quantum Mechanics. — Princeton University Press, 1955. — ISBN 978-0-691-02893-4.
- Transnational College of Lex. What is Quantum Mechanics? A Physics Adventure. — Boston : Language Research Foundation, 1996. — ISBN 978-0-9643504-1-0.
Эта статья входит в число хороших статей русскоязычного раздела Википедии. |