Дезоксирибонуклеиновая кислота: различия между версиями
[непроверенная версия] | [отпатрулированная версия] |
Пушёк (обсуждение | вклад) Метка: редактор вики-текста 2017 |
м откат правок 212.233.85.141 по запросу MBH Метка: откат |
||
(не показано 45 промежуточных версий 31 участника) | |||
Строка 1: | Строка 1: | ||
{{redirect-multi|2|DNA|ДНК}} |
{{redirect-multi|2|DNA|ДНК}} |
||
[[Файл:DNA Structure+Key+Labelled.pn NoBB.png|thumb|right|340px|Структура ДНК (двойная спираль). Различные атомы в структуре показаны в разных цветах; детальная структура двух пар оснований показана снизу справа]] |
[[Файл:DNA Structure+Key+Labelled.pn NoBB.png|thumb|right|340px|Структура ДНК (двойная спираль), В-форма. Различные атомы в структуре показаны в разных цветах; детальная структура двух пар оснований показана снизу справа]] |
||
[[Файл:DNA animation.gif|thumb|right|Двойная [[спираль]] (двойной [[Винтовая линия|винт]]) ДНК (правый)]] |
[[Файл:DNA animation.gif|thumb|right|Двойная [[спираль]] (двойной [[Винтовая линия|винт]]) ДНК (правый, А-форма)]] |
||
'''Дезоксирибонуклеи́новая кислота́''' ('''ДНК''') — [[макромолекула]] (одна из трёх основных, две другие — [[РНК]] и [[белки]]), обеспечивающая хранение, передачу из поколения в поколение и реализацию [[генетика|генетической]] [[Алгоритм|программы]] развития и функционирования [[ |
'''Дезоксирибонуклеи́новая кислота́''' ('''ДНК''') — [[макромолекула]] (одна из трёх основных, две другие — [[РНК]] и [[белки]]), обеспечивающая хранение, передачу из поколения в поколение и реализацию [[генетика|генетической]] [[Алгоритм|программы]] развития и функционирования [[организм]]ов. |
||
Молекула ДНК хранит биологическую информацию в виде [[Генетический код|генетического кода]], состоящего из последовательности нуклеотидов<ref name="сумма">{{Книга|автор=[[Александр Панчин]]|ссылка часть=|заглавие=Сумма биотехнологии [http://www.premiaprosvetitel.ru/booksauthors/view/?172] |ответственный=|издание=|место=|издательство=АСТ|год=2015|страницы=13|страниц=432|isbn=978-5-17-093602-1}}</ref>. ДНК содержит [[информация|информацию]] о структуре различных видов [[РНК]] и [[белки|белков]]. |
Молекула ДНК хранит биологическую информацию в виде [[Генетический код|генетического кода]], состоящего из последовательности нуклеотидов<ref name="сумма">{{Книга|автор=[[Александр Панчин]]|ссылка часть=|заглавие=Сумма биотехнологии [http://www.premiaprosvetitel.ru/booksauthors/view/?172] |ссылка=https://archive.org/details/isbn_9785170936021/page/13|ответственный=|издание=|место=|издательство=АСТ|год=2015|страницы=13|страниц=432|isbn=978-5-17-093602-1}}</ref>. ДНК содержит [[информация|информацию]] о структуре различных видов [[РНК]] и [[белки|белков]]. |
||
В клетках [[эукариоты|эукариот]] ([[животные|животных]], [[растения|растений]] и [[грибы|грибов]]) ДНК находится в [[клеточное ядро|ядре клетки]] в составе [[хромосома|хромосом]], а также в некоторых клеточных органеллах ([[митохондрия]]х и [[пластида]]х). В клетках [[прокариоты|прокариотических организмов]] ([[бактерии|бактерий]] и [[археи|архей]]) кольцевая или линейная молекула ДНК, так называемый [[нуклеоид]], прикреплена изнутри к клеточной [[Клеточная мембрана|мембране]]. У |
В клетках [[эукариоты|эукариот]] ([[животные|животных]], [[растения|растений]] и [[грибы|грибов]]) ДНК находится в [[клеточное ядро|ядре клетки]] в составе [[хромосома|хромосом]], а также в некоторых клеточных органеллах ([[митохондрия]]х и [[пластида]]х). В клетках [[прокариоты|прокариотических организмов]] ([[бактерии|бактерий]] и [[археи|архей]]) кольцевая или линейная молекула ДНК, так называемый [[нуклеоид]], прикреплена изнутри к клеточной [[Клеточная мембрана|мембране]]. У [[Прокариоты|прокариот]] и у низших [[Эукариоты|эукариот]] (например [[дрожжи|дрожжей]]) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые [[плазмиды|плазмидами]]. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать [[геном]] ДНК-содержащих [[вирус]]ов. |
||
С химической точки зрения ДНК — длинная [[полимер]]ная молекула, состоящая из повторяющихся блоков — [[нуклеотид]]ов. Каждый нуклеотид состоит из [[азотистые основания|азотистого основания]], сахара ([[дезоксирибоза|дезоксирибозы]]) и [[ортофосфорная кислота|фосфатной группы]]. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи) |
С химической точки зрения ДНК — длинная [[полимер]]ная молекула, состоящая из повторяющихся блоков — [[нуклеотид]]ов. Каждый нуклеотид состоит из [[азотистые основания|азотистого основания]], сахара ([[дезоксирибоза|дезоксирибозы]]) и [[ортофосфорная кислота|фосфатной группы]]. Связи между нуклеотидами в полимерной цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи). |
||
В ДНК |
В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) [[макромолекула]] ДНК состоит из двух нуклеотидных цепей. В нуклеотидах, входящих в состав ДНК, встречаются четыре азотистых основания: [[аденин]] (A), [[гуанин]] (G), [[тимин]] (T) и [[цитозин]] (C). Азотистые основания одной цепи соединены с азотистыми основаниями другой цепи [[водородная связь|водородными связями]], обеспечивая таким образом связь двух цепей макромолекулы ДНК друг с другом. Азотистые основания образуют связи попарно согласно [[Комплементарность (биология)|принципу комплементарности]]: аденин (A) соединяется только с тимином (T), гуанин (G) — только с цитозином (C) {{переход|Образование связей между основаниями}}. |
||
Двухцепочечная молекула ДНК закручена по [[Винтовая линия|винтовой линии]]. Структура молекулы ДНК в целом получила традиционное, но ошибочное название «двойной [[Спираль|спирали]]»: на самом деле, она является «двойным [[винтовая линия|винтом]]». Винтовая линия может быть правой ([[A-ДНК|A-]] и B-формы ДНК) или левой ([[Z-ДНК|Z-форма ДНК]])<ref>{{статья|ссылка=http://www.nature.com/nature/journal/v421/n6921/full/nature01405.html|автор=Bustamante C., Bryant Z., Smith S. B.|заглавие=Ten years of tension: single-molecule DNA mechanics|год=2003|язык=en|издание=Nature|тип=|месяц=|число=|том=421|номер=6921|страницы=423—427|issn=|doi=|archivedate=2011-06-06|archiveurl=https://web.archive.org/web/20110606084726/http://www.nature.com/nature/journal/v421/n6921/full/nature01405.html}}</ref>. Формы ДНК также различаются по диаметру, количеству оснований на виток спирали и шагу спирали<ref>{{Cite web |
|||
|lang=en |
|||
|url=https://people.bu.edu/mfk/restricted566/dnastructure.pdf |
|||
|title=DNA Structure: A-, B- and Z-DNA Helix Families |
|||
|author=David W Ussery |
|||
|website=ENCYCLOPEDIA OF LIFE SCIENCES |
|||
|publisher=Macmillan Publishers Ltd, Nature Publishing Group |
|||
|access-date=2023-05-30 |
|||
|archive-date=2022-12-09 |
|||
|archive-url=https://web.archive.org/web/20221209182233/https://people.bu.edu/mfk/restricted566/dnastructure.pdf |
|||
|deadlink=no |
|||
}}</ref><ref>{{Cite web|lang=en|url=https://www.researchgate.net/profile/Wiktoria-Seroczynska/publication/346263426_Forms_of_DNA_-_A_B_and_Z_form/links/6361326e431b1f53005fc707/Forms-of-DNA-A-B-and-Z-form.pdf?origin=publicationDetail&_sg%5B0%5D=8wicqJYaiuLjFOe0STlXGiJ3qAyI4meeLTiqihSDMu7wZU_cC-TMmrN7opyiEnO8kD1LAtjoAQ4HpIeacVOGFw.obxsPSaZuQYkqqG5AswVkzwodVlauFK8THcif1_aLafk3ZWE4y6_fT5NiFMOTdfN9u2lazuwWZp8uluXKilA4g&_sg%5B1%5D=VrnLPREGq_wZqj7_R2YmI9zvydB2_067vUTohhjVhD7Df2_gchA_aW2-rwB54lqlVQoFVPifi5oLz-W8Zu2jZpvRQGWvL-FI7DY4ZT0oqeKG.obxsPSaZuQYkqqG5AswVkzwodVlauFK8THcif1_aLafk3ZWE4y6_fT5NiFMOTdfN9u2lazuwWZp8uluXKilA4g&_sg%5B2%5D=553qUaP529qzjz1LKUWPpNKO3VdPYI8b8M2yQOjIcSt9oJa8yNJCyPRy-hHluD_PMVYPN0-ePVsenQ0.vgPXyxjPMGKWMe0kQAh3p1gMUfXzTw7ncfXu8v5J--vDf5bdeXEY0ZDtoYhcVDwfFEatp5ms7-Tqw1C-5kEIJA&_iepl=&_rtd=eyJjb250ZW50SW50ZW50IjoibWFpbkl0ZW0ifQ%3D%3D|title=Forms of DNA - A, B and Z form|author=Wiktoria Seroczynska|access-date=2023-05-30|archive-date=2023-05-30|archive-url=https://web.archive.org/web/20230530210030/https://www.researchgate.net/profile/Wiktoria-Seroczynska/publication/346263426_Forms_of_DNA_-_A_B_and_Z_form/links/6361326e431b1f53005fc707/Forms-of-DNA-A-B-and-Z-form.pdf?origin=publicationDetail&_sg%5B0%5D=8wicqJYaiuLjFOe0STlXGiJ3qAyI4meeLTiqihSDMu7wZU_cC-TMmrN7opyiEnO8kD1LAtjoAQ4HpIeacVOGFw.obxsPSaZuQYkqqG5AswVkzwodVlauFK8THcif1_aLafk3ZWE4y6_fT5NiFMOTdfN9u2lazuwWZp8uluXKilA4g&_sg%5B1%5D=VrnLPREGq_wZqj7_R2YmI9zvydB2_067vUTohhjVhD7Df2_gchA_aW2-rwB54lqlVQoFVPifi5oLz-W8Zu2jZpvRQGWvL-FI7DY4ZT0oqeKG.obxsPSaZuQYkqqG5AswVkzwodVlauFK8THcif1_aLafk3ZWE4y6_fT5NiFMOTdfN9u2lazuwWZp8uluXKilA4g&_sg%5B2%5D=553qUaP529qzjz1LKUWPpNKO3VdPYI8b8M2yQOjIcSt9oJa8yNJCyPRy-hHluD_PMVYPN0-ePVsenQ0.vgPXyxjPMGKWMe0kQAh3p1gMUfXzTw7ncfXu8v5J--vDf5bdeXEY0ZDtoYhcVDwfFEatp5ms7-Tqw1C-5kEIJA&_iepl=&_rtd=eyJjb250ZW50SW50ZW50IjoibWFpbkl0ZW0ifQ%3D%3D|deadlink=no}}</ref> {{переход|Двойная спираль}}. |
|||
Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные ([[мРНК]]), рибосомальные ([[рРНК]]) и транспортные ([[тРНК]]). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе [[транскрипция (биология)|транскрипции]], и далее принимают участие в биосинтезе белков (процессе [[трансляция (биология)|трансляции]]). Помимо кодирующих последовательностей, ДНК содержит последовательности, выполняющие в клетках регуляторные и структурные функции. Кроме того, в геноме эукариот часто встречаются участки, принадлежащие «генетическим паразитам», например [[транспозон]]ам. |
|||
[[Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid|Расшифровка структуры ДНК]] ([[1953 год]]) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие [[Фрэнсис Крик|Фрэнсису Крику]], [[Джеймс Уотсон|Джеймсу Уотсону]] и [[Морис Уилкинс|Морису Уилкинсу]] была присуждена [[Нобелевская премия по физиологии или медицине]] 1962 года. [[Розалинд Франклин]], получившая [[Фотография 51|рентгенограммы]], без которых Уотсон и Крик не имели бы возможность сделать выводы о структуре ДНК, умерла в 1958 году от рака ([[Нобелевская премия|Нобелевскую премию]] не дают посмертно)<ref>{{cite web|url=http://www.scientificamerican.com/slideshow.cfm?id=10-nobel-snubs#5|title=No Nobel for You: Top 10 Nobel Snubs. Rosalind Franklin--her work on the structure of DNA never received a Nobel|author=Erica Westly|date=2008-10-06|work=|publisher=Scientific American|accessdate=2013-11-18|lang=en|archiveurl=https://www.webcitation.org/6MTw9Qugx?url=http://www.scientificamerican.com/slideshow.cfm?id=10-nobel-snubs#5|archivedate=2014-01-08}}</ref>. |
[[Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid|Расшифровка структуры ДНК]] ([[1953 год]]) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие [[Фрэнсис Крик|Фрэнсису Крику]], [[Джеймс Уотсон|Джеймсу Уотсону]] и [[Морис Уилкинс|Морису Уилкинсу]] была присуждена [[Нобелевская премия по физиологии или медицине]] 1962 года. [[Розалинд Франклин]], получившая [[Фотография 51|рентгенограммы]], без которых Уотсон и Крик не имели бы возможность сделать выводы о структуре ДНК, умерла в 1958 году от рака ([[Нобелевская премия|Нобелевскую премию]] не дают посмертно)<ref>{{cite web|url=http://www.scientificamerican.com/slideshow.cfm?id=10-nobel-snubs#5|title=No Nobel for You: Top 10 Nobel Snubs. Rosalind Franklin--her work on the structure of DNA never received a Nobel|author=Erica Westly|date=2008-10-06|work=|publisher=Scientific American|accessdate=2013-11-18|lang=en|archiveurl=https://www.webcitation.org/6MTw9Qugx?url=http://www.scientificamerican.com/slideshow.cfm?id=10-nobel-snubs#5|archivedate=2014-01-08}}</ref>. |
||
Строка 17: | Строка 32: | ||
[[Файл:James_Dewey_Watson.jpg|thumb|100px|[[Уотсон, Джеймс|Джеймс Уотсон]]]] |
[[Файл:James_Dewey_Watson.jpg|thumb|100px|[[Уотсон, Джеймс|Джеймс Уотсон]]]] |
||
[[Файл:Maurice Wilkins nobel.jpg|thumb|100px|[[Уилкинс, Морис|Морис Уилкинс]]]] |
[[Файл:Maurice Wilkins nobel.jpg|thumb|100px|[[Уилкинс, Морис|Морис Уилкинс]]]] |
||
⚫ | ДНК как химическое вещество была выделена [[Мишер, Иоганн Фридрих|Иоганном Фридрихом Мишером]] в 1869 году из остатков клеток, содержащихся в гное. Он выделил вещество, в состав которого входят азот и фосфор. Вначале новое вещество получило название '''нуклеин''', а позже, когда Мишер определил, что это [[вещество]] обладает кислотными свойствами, вещество получило название '''нуклеиновая [[кислота]]'''<ref>{{статья |заглавие=Friedrich Miescher and the discovery of DNA |издание={{Нп3|Developmental Biology (journal)|Dev Biol||Developmental Biology (journal)}} |том=278 |номер=2 |страницы=274—288 |pmid=15680349 |язык=en |автор=Dahm R. |год=2005 |тип=journal}}</ref>. Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником [[фосфор]]а в [[организм]]е. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию. |
||
[[Файл:Rosalind_Franklin.jpg|thumb|100px|[[Франклин, Розалинд|Розалинд Франклин]]]] |
|||
⚫ | ДНК как химическое вещество была выделена [[Мишер, Иоганн Фридрих|Иоганном Фридрихом Мишером]] в |
||
До 1930-х годов считалось, что ДНК содержится только в животных клетках, а в растительных — [[Рибонуклеиновая кислота|РНК]]. В |
До 1930-х годов считалось, что ДНК содержится только в животных клетках, а в растительных — [[Рибонуклеиновая кислота|РНК]]. В 1934 году в журнале «Hoppe-Seyler’s Zeitschrift für physiologishe Chemie»<ref>Kiesel A., Beloserskii A. Hoppe-Seyler’s Zeitschrift fur physiologishe Chemie, 229, 160—166. 1934.</ref>, затем в 1935 году в «[[Учёные записки МГУ|Учёных записках МГУ]]»<ref>Белозерский А. Н. Ученые записки МГУ, вып.4, 209—215, 1935.</ref> вышли статьи советских биохимиков [[Белозерский, Андрей Николаевич|А. Н. Белозерского]] и [[Кизель, Александр Робертович|А. Р. Кизеля]], в которых доказывалось присутствие ДНК в растительных клетках. В 1936 году группой Белозерского ДНК была выделена из семян и тканей бобовых, злаковых и других растений<ref>Белозерский А. Н., Чигирев С. Д. Биохимия, 1, 136—146, 1936.</ref>. Результатом исследований этой же группы советских учёных в 1939—1947 годах стала первая в мировой научной литературе информация о содержании нуклеиновых кислот у различных видов бактерий. |
||
Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем [[Генетическая информация|генетической информации]]. Одно из первых решающих доказательств принесли [[Эксперимент Эвери, Маклеода и Маккарти|эксперименты Освальда Эвери, Колина Маклауда и Маклина Маккарти]] (1944 г.) по [[трансформация бактерий|трансформации бактерий]]. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечает выделенная из [[пневмококк]]ов ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз ([[эксперимент Херши — Чейз]], |
Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем [[Генетическая информация|генетической информации]]. Одно из первых решающих доказательств принесли [[Эксперимент Эвери, Маклеода и Маккарти|эксперименты Освальда Эвери, Колина Маклауда и Маклина Маккарти]] (1944 г.) по [[трансформация бактерий|трансформации бактерий]]. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечает выделенная из [[пневмококк]]ов ДНК. Эксперимент американских учёных [[Херши, Алфред|Алфреда Херши]] и {{iw|Чейз, Марта|Марты Чейз|en|Martha Chase}} ([[эксперимент Херши — Чейз]], 1952 г.) с помеченными [[радиоактивные изотопы|радиоактивными изотопами]] белками и ДНК [[бактериофаг]]ов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг<ref>{{статья |заглавие=Independent functions of viral protein and nucleic acid in growth of bacteriophage |ссылка=http://www.jgp.org/cgi/reprint/36/1/39.pdf |издание={{Нп3|The Journal of General Physiology}} |том=36 |номер=1 |страницы=39—56 |pmid=12981234 |язык=en |тип=journal |автор=Hershey A., Chase M. |год=1952 |издательство={{Нп3|Rockefeller University Press}} |archivedate=2008-10-01 |archiveurl=https://web.archive.org/web/20081001223217/http://www.jgp.org/cgi/reprint/36/1/39.pdf }}</ref>. |
||
Вплоть до |
Вплоть до 1950-х годов точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены. |
||
В результате работы группы биохимика [[Чаргафф, Эрвин|Эрвина Чаргаффа]] в 1949—1951 гг. были сформулированы так называемые [[правила Чаргаффа]]. Чаргаффу и сотрудникам удалось разделить нуклеотиды ДНК при помощи бумажной [[хроматография|хроматографии]] и определить точные количественные соотношения нуклеотидов разных типов. Соотношение, выявленное для аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц), оказалось следующим: количество аденина равно количеству тимина, а гуанина — цитозину: А=Т, Г=Ц<ref name="Elson1952">{{статья |doi=10.1007/BF02170221 |заглавие=On the deoxyribonucleic acid content of sea urchin gametes |издание=[[Cellular and Molecular Life Sciences|Experientia]] |том=8 |номер=4 |страницы=143—145 |pmid=14945441 |язык=en |тип=journal |автор=Elson D., Chargaff E. |год=1952}}</ref><ref name="Chargaff1952">{{статья |заглавие=Composition of the deoxypentose nucleic acids of four genera of sea-urchin |издание=[[Journal of Biological Chemistry|J Biol Chem]] |том=195 |номер=1 |страницы=155—160 |ссылка=https://pdfs.semanticscholar.org/8c82/1a0b369c6fbe22cc3adeb1dae4f0ef7c88c2.pdf |pmid=14938364 |язык=en |тип=journal |автор=Chargaff E., Lipshitz R., Green C. |год=1952}}</ref>. Эти правила, наряду с данными рентгеноструктурного анализа, сыграли решающую роль в расшифровке структуры ДНК. |
В результате работы группы биохимика [[Чаргафф, Эрвин|Эрвина Чаргаффа]] в 1949—1951 гг. были сформулированы так называемые [[правила Чаргаффа]]. Чаргаффу и сотрудникам удалось разделить нуклеотиды ДНК при помощи бумажной [[хроматография|хроматографии]] и определить точные количественные соотношения нуклеотидов разных типов. Соотношение, выявленное для аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц), оказалось следующим: количество аденина равно количеству тимина, а гуанина — цитозину: А=Т, Г=Ц<ref name="Elson1952">{{статья |doi=10.1007/BF02170221 |заглавие=On the deoxyribonucleic acid content of sea urchin gametes |издание=[[Cellular and Molecular Life Sciences|Experientia]] |том=8 |номер=4 |страницы=143—145 |pmid=14945441 |язык=en |тип=journal |автор=Elson D., Chargaff E. |год=1952 |issn = 0014-4754 }}</ref><ref name="Chargaff1952">{{статья |заглавие=Composition of the deoxypentose nucleic acids of four genera of sea-urchin |издание=[[Journal of Biological Chemistry|J Biol Chem]] |том=195 |номер=1 |страницы=155—160 |ссылка=https://pdfs.semanticscholar.org/8c82/1a0b369c6fbe22cc3adeb1dae4f0ef7c88c2.pdf |pmid=14938364 |язык=en |тип=journal |автор=Chargaff E., Lipshitz R., Green C. |год=1952 |archivedate=2018-02-03 |archiveurl=https://web.archive.org/web/20180203005803/https://pdfs.semanticscholar.org/8c82/1a0b369c6fbe22cc3adeb1dae4f0ef7c88c2.pdf }}</ref>. Эти правила, наряду с данными рентгеноструктурного анализа, сыграли решающую роль в расшифровке структуры ДНК. |
||
Структура двойной спирали ДНК была предложена [[Крик, Фрэнсис|Френсисом Криком]] и [[Уотсон, Джеймс|Джеймсом Уотсоном]] в |
Структура двойной спирали ДНК была предложена [[Крик, Фрэнсис|Френсисом Криком]] и [[Уотсон, Джеймс|Джеймсом Уотсоном]] в 1953 году на основании рентгеноструктурных данных, полученных [[Уилкинс, Морис|Морисом Уилкинсом]] и [[Франклин, Розалинд|Розалинд Франклин]], и правил Чаргаффа<ref name=Watson/>. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена [[Нобелевская премия по физиологии и медицине#1960-е|Нобелевской премией по физиологии или медицине]] 1962 г. Среди лауреатов не было скончавшейся к тому времени от рака Розалинд Франклин, так как премия не присуждается посмертно<ref>[http://nobelprize.org/nobel_prizes/medicine/laureates/1962/ The Nobel Prize in Physiology or Medicine 1962] {{Wayback|url=http://nobelprize.org/nobel_prizes/medicine/laureates/1962/ |date=20070104183337 }} Nobelprize .org Accessed 22 Dec 06</ref>. |
||
Интересно, что в |
Интересно, что в 1957 году американцы Александер Рич, Гэри Фелзенфелд и Дэйвид Дэйвис описали нуклеиновую кислоту, составленную тремя спиралями<ref>{{Cite web |url=http://www.nkj.ru/archive/articles/3882/ |title=''Н. Домрина'' В России есть кому делать науку — если будет на что // Журнал «Наука и жизнь», № 2, 2002 |access-date=2013-04-21 |archive-date=2013-10-03 |archive-url=https://web.archive.org/web/20131003035220/http://www.nkj.ru/archive/articles/3882/ |deadlink=no }}</ref>. А в 1985—1986 годах [[Франк-Каменецкий, Максим Давидович|Максим Давидович Франк-Каменецкий]] в Москве показал, как двухспиральная ДНК складывается в так называемую H-форму, составленную уже не двумя, а тремя нитями ДНК<ref name="N86">{{Cite web |url=http://www.nature.com/nature/journal/v324/n6095/pdf/324305a0.pdf |title=''Maxim Frank-Kamenetskii'' DNA structure: A simple solution to the stability of the double helix? // Журнал Nature № 324, 305 (27 November 1986) |access-date=2013-04-21 |archive-date=2005-11-16 |archive-url=https://web.archive.org/web/20051116212933/http://www.nature.com/nature/journal/v324/n6095/pdf/324305a0.pdf |deadlink=no }}</ref><ref name="N87">[http://www.nature.com/nature/journal/v333/n6170/pdf/333214b0.pdf ''Maxim Frank-Kamenetskii'' H-form DNA and the hairpin-triplex model // Журнал Nature № 333, 214 (19 May 1988)]</ref>. |
||
== Структура молекулы == |
== Структура молекулы == |
||
Строка 53: | Строка 67: | ||
<div class="thumbcaption">Структуры оснований в составе ДНК<!--, и пример нуклеотида, из которых состоит ДНК — аденозинмонофосфат (AMP)--></div></div></div> |
<div class="thumbcaption">Структуры оснований в составе ДНК<!--, и пример нуклеотида, из которых состоит ДНК — аденозинмонофосфат (AMP)--></div></div></div> |
||
Дезоксирибонуклеиновая кислота (ДНК) представляет собой [[биополимер]] ([[Полиэлектролит|полианион]]), мономером которого является [[нуклеотид]]<ref name=Alberts>{{книга |заглавие=Molecular Biology of the Cell; Fourth Edition |издательство={{Нп3|Garland Science}} |место=New York and London |ссылка=https://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=mboc4.TOC&depth=2 |id=ISBN 0-8153-3218-1 |ref=Alberts |язык=en |автор=Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters |год=2002}}</ref><ref name="Butler">Butler, John M. (2001) ''Forensic DNA Typing'' «Elsevier». pp. 14 — 15. ISBN 978-0-12-147951-0</ref>. |
Дезоксирибонуклеиновая кислота (ДНК) представляет собой [[биополимер]] ([[Полиэлектролит|полианион]]), мономером которого является [[нуклеотид]]<ref name=Alberts>{{книга |заглавие=Molecular Biology of the Cell; Fourth Edition |издательство={{Нп3|Garland Science}} |место=New York and London |ссылка=https://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=mboc4.TOC&depth=2 |id=ISBN 0-8153-3218-1 |ref=Alberts |язык=en |автор=Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters |год=2002 |archivedate=2009-09-18 |archiveurl=https://web.archive.org/web/20090918042008/http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=mboc4.TOC&depth=2 }}</ref><ref name="Butler">Butler, John M. (2001) ''Forensic DNA Typing'' «Elsevier». pp. 14 — 15. ISBN 978-0-12-147951-0</ref>. |
||
Каждый нуклеотид состоит из остатка [[ортофосфорная кислота|фосфорной кислоты]], присоединённого по 5'-положению к [[моносахариды|сахару]] [[дезоксирибоза|дезоксирибозе]], к которому также через гликозидную связь (C—N) по 1'-положению присоединено одно из четырёх [[азотистые основания|азотистых оснований]]. |
Каждый нуклеотид состоит из остатка [[ортофосфорная кислота|фосфорной кислоты]], присоединённого по 5'-положению к [[моносахариды|сахару]] [[дезоксирибоза|дезоксирибозе]], к которому также через гликозидную связь (C—N) по 1'-положению присоединено одно из четырёх [[азотистые основания|азотистых оснований]]. |
||
Строка 62: | Строка 76: | ||
В виде исключения, например, у [[бактериофаг]]а PBS1, в ДНК встречается пятый тип оснований — [[урацил]] (<nowiki>[U]</nowiki>), [[Пиримидиновые основания|пиримидиновое основание]], отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК<ref name="nature1963-takahashi">{{статья |заглавие=Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis |издание=Nature |страницы=794—5 |том=197 |id=PMID 13980287 |язык=en |тип=journal |автор=Takahashi I., Marmur J. |год=1963}}</ref>. |
В виде исключения, например, у [[бактериофаг]]а PBS1, в ДНК встречается пятый тип оснований — [[урацил]] (<nowiki>[U]</nowiki>), [[Пиримидиновые основания|пиримидиновое основание]], отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК<ref name="nature1963-takahashi">{{статья |заглавие=Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis |издание=Nature |страницы=794—5 |том=197 |id=PMID 13980287 |язык=en |тип=journal |автор=Takahashi I., Marmur J. |год=1963}}</ref>. |
||
[[Тимин]] (T) и [[урацил]] (U) не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в [[тРНК|транспортных]] и [[рРНК|рибосомальных РНК]]<ref>{{статья |заглавие=Decoding the genome: a modified view |ссылка=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=14715921 |издание= |
[[Тимин]] (T) и [[урацил]] (U) не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в [[тРНК|транспортных]] и [[рРНК|рибосомальных РНК]]<ref>{{статья |заглавие=Decoding the genome: a modified view |ссылка=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=14715921 |издание=[[Nucleic Acids Research|Nucleic Acids Res]] |том=32 |номер=1 |страницы=223—38 |pmid=14715921 |язык=en |автор=Agris P. |год=2004 |тип=journal}}</ref>. |
||
=== Двойная спираль === |
=== Двойная спираль === |
||
{{также|Двойная спираль нуклеиновых кислот}} |
|||
[[Файл:A-DNA, B-DNA and Z-DNA.png|thumb|right|290px|В зависимости от концентрации ионов и нуклеотидного состава молекулы двойная спираль ДНК в живых организмах существует в разных формах. На рисунке представлены формы [[A-ДНК|A]], [[B-ДНК|B]] и [[Z-ДНК|Z]] (слева направо)]] |
[[Файл:A-DNA, B-DNA and Z-DNA.png|thumb|right|290px|В зависимости от концентрации ионов и нуклеотидного состава молекулы двойная спираль ДНК в живых организмах существует в разных формах. На рисунке представлены формы [[A-ДНК|A]], [[B-ДНК|B]] и [[Z-ДНК|Z]] (слева направо)]] |
||
Полимер ДНК обладает довольно сложной структурой. [[Нуклеотиды]] соединены между собой ковалентно в длинные ''полинуклеотидные'' цепи. Эти цепи в подавляющем большинстве случаев (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами) попарно объединяются при помощи водородных связей во вторичную структуру, получившую название ''двойной [[спираль|спирали]]''<ref name=Watson>{{статья |заглавие=Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid |ссылка=http://profiles.nlm.nih.gov/SC/B/B/Y/ruwiki/w/_/scbbyw.pdf |издание=Nature |том=171 |номер=4356 |страницы=737—8 |id=PMID 13054692 |язык=ro |автор=Watson J., Crick F. |год=1953}}</ref><ref name="berg">Berg J., Tymoczko J. and Stryer L. (2002) ''Biochemistry.'' W. H. Freeman and Company ISBN 0-7167-4955-6</ref>. |
Полимер ДНК обладает довольно сложной структурой. [[Нуклеотиды]] соединены между собой ковалентно в длинные ''полинуклеотидные'' цепи. Эти цепи в подавляющем большинстве случаев (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами) попарно объединяются при помощи водородных связей во вторичную структуру, получившую название ''двойной [[спираль|спирали]]''<ref name=Watson>{{статья |заглавие=Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid |ссылка=http://profiles.nlm.nih.gov/SC/B/B/Y/ruwiki/w/_/scbbyw.pdf |издание=Nature |том=171 |номер=4356 |страницы=737—8 |id=PMID 13054692 |язык=ro |автор=Watson J., Crick F. |год=1953 |archivedate=2014-08-23 |archiveurl=https://web.archive.org/web/20140823063212/http://profiles.nlm.nih.gov/SC/B/B/Y/ruwiki/w/_/scbbyw.pdf }}</ref><ref name="berg">Berg J., Tymoczko J. and Stryer L. (2002) ''Biochemistry.'' W. H. Freeman and Company ISBN 0-7167-4955-6</ref>. |
||
Остов каждой из цепей состоит из чередующихся [[фосфат]]ов и [[углеводы|сахаров]]<ref name=Ghosh>{{статья |заглавие=A glossary of DNA structures from A to Z |издание={{Нп3|Acta Crystallographica|Acta Crystallogr D Biol Crystallogr||Acta Crystallographica}} |том=59 |номер=Pt 4 |страницы=620—6 |id=PMID 12657780 |язык=en |автор=Ghosh A., Bansal M. |год=2003 |тип=journal |издательство=[[Международный союз кристаллографов|International Union of Crystallography]] }}</ref>. Внутри одной цепи ДНК соседние нуклеотиды соединены [[фосфодиэфирная связь|фосфодиэфирными связями]], которые формируются в результате взаимодействия между 3'-гидроксильной (3'—ОН) группой молекулы дезоксирибозы одного нуклеотида и 5'-фосфатной группой (5'—РО<sub>3</sub>) другого. Асимметричные концы цепи ДНК называются 3' (три прайм) и 5' (пять прайм). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3'-концу). |
Остов каждой из цепей состоит из чередующихся [[фосфат]]ов и [[углеводы|сахаров]]<ref name=Ghosh>{{статья |заглавие=A glossary of DNA structures from A to Z |издание={{Нп3|Acta Crystallographica|Acta Crystallogr D Biol Crystallogr||Acta Crystallographica}} |том=59 |номер=Pt 4 |страницы=620—6 |id=PMID 12657780 |язык=en |автор=Ghosh A., Bansal M. |год=2003 |тип=journal |издательство=[[Международный союз кристаллографов|International Union of Crystallography]] }}</ref>. Внутри одной цепи ДНК соседние нуклеотиды соединены [[фосфодиэфирная связь|фосфодиэфирными связями]], которые формируются в результате взаимодействия между 3'-гидроксильной (3'—ОН) группой молекулы дезоксирибозы одного нуклеотида и 5'-фосфатной группой (5'—РО<sub>3</sub>) другого. Асимметричные концы цепи ДНК называются 3' (три прайм) и 5' (пять прайм). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3'-концу). |
||
Как уже было сказано выше, у подавляющего большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей. Эти две длинные цепи закручены одна вокруг другой в виде двойной спирали, стабилизированной [[водородная связь|водородными связями]], образующимися между обращёнными друг к другу азотистыми основаниями входящих в неё цепей. В природе эта спираль, чаще всего, правозакрученная. Направления от 3'-конца к 5'-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу). |
Как уже было сказано выше, у подавляющего большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей. Эти две длинные цепи закручены одна вокруг другой в виде двойной спирали, стабилизированной [[водородная связь|водородными связями]], образующимися между обращёнными друг к другу азотистыми основаниями входящих в неё цепей. В природе эта спираль, чаще всего, правозакрученная. Направления от 3'-конца к 5'-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу). |
||
Диаметр двойной спирали составляет от 22 до 24 [[ангстрем|Å]], или 2,2—2,4 [[нанометр|нм]], длина каждого нуклеотида — 3,3 Å (0,33 нм)<ref>{{статья |заглавие=The dimensions of DNA in solution |издание={{Нп3|Journal of Molecular Biology|J Mol Biol||Journal of Molecular Biology}} |том=152 |номер=1 |страницы=153—61 |id=PMID 7338906 |язык=en |автор=Mandelkern M., Elias J., Eden D., Crothers D. |год=1981 |тип=journal}}</ref>. Подобно тому, как в винтовой лестнице сбоку можно увидеть ступеньки, на двойной спирали ДНК в промежутках между фосфатным остовом молекулы можно видеть рёбра оснований, кольца которых расположены в плоскости, перпендикулярной по отношению к продольной оси макромолекулы. |
|||
В двойной спирали различают малую (12 Å) и большую (22 Å) бороздки<ref>{{статья |заглавие=Crystal structure analysis of a complete turn of B-DNA |издание=Nature |том=287 |номер=5784 |страницы=755—8 |id=PMID 7432492 |язык=en |тип=journal |автор=Wing R., Drew H., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. |год=1980}}</ref>. Белки, например, [[факторы транскрипции]], которые присоединяются к определённым последовательностям в двухцепочечной ДНК, обычно взаимодействуют с краями оснований в большой бороздке, где те более доступны<ref name="recognition1">{{статья |заглавие=Protein-DNA recognition |издание={{Нп3|Annual Review of Biochemistry|Annu Rev Biochem||Annual Review of Biochemistry}} |том=53 |страницы=293—321 |id=PMID 6236744 |язык=en |автор=Pabo C., Sauer R. |тип=journal}}</ref>. |
В двойной спирали различают малую (12 Å) и большую (22 Å) бороздки<ref>{{статья |заглавие=Crystal structure analysis of a complete turn of B-DNA |издание=Nature |том=287 |номер=5784 |страницы=755—8 |id=PMID 7432492 |язык=en |тип=journal |автор=Wing R., Drew H., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. |год=1980}}</ref>. Белки, например, [[факторы транскрипции]], которые присоединяются к определённым последовательностям в двухцепочечной ДНК, обычно взаимодействуют с краями оснований в большой бороздке, где те более доступны<ref name="recognition1">{{статья |заглавие=Protein-DNA recognition |издание={{Нп3|Annual Review of Biochemistry|Annu Rev Biochem||Annual Review of Biochemistry}} |том=53 |страницы=293—321 |id=PMID 6236744 |язык=en |автор=Pabo C., Sauer R. |тип=journal}}</ref>. |
||
Строка 81: | Строка 96: | ||
Комплементарность двойной спирали означает, что информация, содержащаяся в одной цепи, содержится и в другой цепи. Обратимость и специфичность взаимодействий между комплементарными парами оснований важна для репликации ДНК и всех остальных функций ДНК в живых организмах. |
Комплементарность двойной спирали означает, что информация, содержащаяся в одной цепи, содержится и в другой цепи. Обратимость и специфичность взаимодействий между комплементарными парами оснований важна для репликации ДНК и всех остальных функций ДНК в живых организмах. |
||
Так как водородные связи [[ковалентная связь|нековалентны]], они легко разрываются и восстанавливаются. Цепочки двойной спирали могут расходиться как замок-молния под действием ферментов ([[хеликазы]]) или при высокой температуре<ref>{{статья |заглавие=Mechanical stability of single DNA molecules |ссылка=http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1300792&blobtype=pdf |издание={{Нп3|Biophysical Journal|Biophys J||Biophysical Journal}} |том=78 |номер=4 |страницы=1997—2007 |pmid=10733978 |язык=en |автор=Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. |год=2000 |тип=journal}}</ref>. Разные пары оснований образуют разное количество водородных связей. АТ связаны двумя, ГЦ — тремя водородными связями, поэтому на разрыв ГЦ требуется больше энергии. Процент ГЦ-пар и длина молекулы ДНК определяют количество энергии, необходимой для диссоциации цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки<ref>{{статья |заглавие=A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques |ссылка=http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=22151&blobtype=pdf |издание=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] |том=96 |номер=14 |страницы=7853—7858 |pmid=10393911 |язык=en |тип=journal |автор=Chalikian T., Völker J., Plum G., Breslauer K. |год=1999}}</ref>. Температура плавления нуклеиновых кислот зависит от ионного окружения, рост ионной силы стабилизирует ДНК по отношению к денатурированию. При добавлении к ДНК [[Хлорид натрия|хлорида натрия]] существует линейная зависимость между температурой плавления и логарифмом ионной силы раствора. Предполагается, что добавление электролита |
Так как водородные связи [[ковалентная связь|нековалентны]], они легко разрываются и восстанавливаются. Цепочки двойной спирали могут расходиться как замок-молния под действием ферментов ([[хеликазы]]) или при высокой температуре<ref>{{статья |заглавие=Mechanical stability of single DNA molecules |ссылка=http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1300792&blobtype=pdf |издание={{Нп3|Biophysical Journal|Biophys J||Biophysical Journal}} |том=78 |номер=4 |страницы=1997—2007 |pmid=10733978 |язык=en |автор=Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. |год=2000 |тип=journal |archivedate=2019-09-24 |archiveurl=https://web.archive.org/web/20190924224955/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300792/pdf/10733978.pdf }}</ref>. Разные пары оснований образуют разное количество водородных связей. АТ связаны двумя, ГЦ — тремя водородными связями, поэтому на разрыв ГЦ требуется больше энергии. Процент ГЦ-пар и длина молекулы ДНК определяют количество энергии, необходимой для диссоциации цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки<ref>{{статья |заглавие=A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques |ссылка=http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=22151&blobtype=pdf |издание=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] |том=96 |номер=14 |страницы=7853—7858 |pmid=10393911 |язык=en |тип=journal |автор=Chalikian T., Völker J., Plum G., Breslauer K. |год=1999 |archivedate=2019-09-24 |archiveurl=https://web.archive.org/web/20190924224955/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC22151/pdf/pq007853.pdf }}</ref>. Температура плавления нуклеиновых кислот зависит от ионного окружения, рост ионной силы стабилизирует ДНК по отношению к денатурированию. При добавлении к ДНК [[Хлорид натрия|хлорида натрия]] существует линейная зависимость между температурой плавления и логарифмом ионной силы раствора. Предполагается, что добавление электролита ведёт к экранированию зарядов в цепях ДНК и этим уменьшает силы электростатического отталкивания между заряженными фосфатными группами, способствуя жёсткости структуры. Аналогично температуру плавления ДНК повышают ионы марганца, кобальта, цинка и никеля, но ионы меди, кадмия и свинца, напротив, понижают её<ref>{{Книга|автор=Е.Е.Крисс, К.Б.Яцимирский|заглавие=Взаимодействие нуклеиновых кислот с металлами.|ответственный=|год=|издание=|место=|издательство=|страницы=|страниц=|isbn=}}</ref>. |
||
Части молекул ДНК, которые из-за их функций должны быть легко разделяемы, например, ТАТА последовательность в бактериальных [[промотор]]ах, обычно содержат большое количество А и Т. |
Части молекул ДНК, которые из-за их функций должны быть легко разделяемы, например, ТАТА последовательность в бактериальных [[промотор]]ах, обычно содержат большое количество А и Т. |
||
Строка 101: | Строка 116: | ||
Азотистые основания в составе ДНК могут быть ковалентно модифицированы, что используется при регуляции экспрессии генов. Например, в клетках позвоночных метилирование цитозина с образованием 5-метилцитозина используется соматическими клетками для передачи профиля генной экспрессии дочерним клеткам. Метилирование цитозина не влияет на спаривание оснований в двойной спирали ДНК. У позвоночных метилирование ДНК в соматических клетках ограничивается метилированием цитозина в последовательности ЦГ<ref name="MolBiol">{{книга |автор= |часть= |ссылка часть= |заглавие=Молекулярная биология клетки: в 3-х томах |оригинал= |ссылка= |викитека= |ответственный= Б. Альбертс, А. Джонсон, Д. Льюис и др|издание= |место= М.-Ижевск|издательство= НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований|год= 2013|том= I|страницы= 719—733|столбцы= |страниц=808 |серия= |isbn= 978-5-4344-0112-8|тираж= |ref= }}</ref>. Средний уровень метилирования отличается у разных организмов, так, у [[нематоды]] ''Caenorhabditis elegans'' метилирование цитозина не наблюдается, а у [[позвоночные|позвоночных]] обнаружен высокий уровень метилирования — до 1 %<ref>{{статья |заглавие=DNA methylation patterns and epigenetic memory |издание=[[Genes & Development|Genes Dev]] |том=16 |номер=1 |страницы=6—21 |id=PMID 11782440 |язык=en |автор=Bird A. |год=2002 |тип=journal}}</ref>. Другие модификации оснований включают метилирование [[аденин]]а у [[бактерии|бактерий]] и [[гликозилирование]] урацила с образованием «J-основания» в [[кинетопласт]]ах<ref>{{статья |заглавие=beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei |издание=[[Cell (журнал)|Cell]] |том=75 |номер=6 |страницы=1129—36 |id=PMID 8261512 |язык=en |тип=journal |автор=Gommers-Ampt J., Van Leeuwen F., de Beer A., Vliegenthart J., Dizdaroglu M., Kowalak J., Crain P., Borst P. |год=1993 |издательство=[[Cell Press]] }}</ref>. |
Азотистые основания в составе ДНК могут быть ковалентно модифицированы, что используется при регуляции экспрессии генов. Например, в клетках позвоночных метилирование цитозина с образованием 5-метилцитозина используется соматическими клетками для передачи профиля генной экспрессии дочерним клеткам. Метилирование цитозина не влияет на спаривание оснований в двойной спирали ДНК. У позвоночных метилирование ДНК в соматических клетках ограничивается метилированием цитозина в последовательности ЦГ<ref name="MolBiol">{{книга |автор= |часть= |ссылка часть= |заглавие=Молекулярная биология клетки: в 3-х томах |оригинал= |ссылка= |викитека= |ответственный= Б. Альбертс, А. Джонсон, Д. Льюис и др|издание= |место= М.-Ижевск|издательство= НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований|год= 2013|том= I|страницы= 719—733|столбцы= |страниц=808 |серия= |isbn= 978-5-4344-0112-8|тираж= |ref= }}</ref>. Средний уровень метилирования отличается у разных организмов, так, у [[нематоды]] ''Caenorhabditis elegans'' метилирование цитозина не наблюдается, а у [[позвоночные|позвоночных]] обнаружен высокий уровень метилирования — до 1 %<ref>{{статья |заглавие=DNA methylation patterns and epigenetic memory |издание=[[Genes & Development|Genes Dev]] |том=16 |номер=1 |страницы=6—21 |id=PMID 11782440 |язык=en |автор=Bird A. |год=2002 |тип=journal}}</ref>. Другие модификации оснований включают метилирование [[аденин]]а у [[бактерии|бактерий]] и [[гликозилирование]] урацила с образованием «J-основания» в [[кинетопласт]]ах<ref>{{статья |заглавие=beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei |издание=[[Cell (журнал)|Cell]] |том=75 |номер=6 |страницы=1129—36 |id=PMID 8261512 |язык=en |тип=journal |автор=Gommers-Ampt J., Van Leeuwen F., de Beer A., Vliegenthart J., Dizdaroglu M., Kowalak J., Crain P., Borst P. |год=1993 |издательство=[[Cell Press]] }}</ref>. |
||
Метилирование цитозина с образованием 5-метилцитозина в [[промотор]]ной части гена коррелирует с его неактивным состоянием<ref>{{статья |автор=Jones P. A. |заглавие= |
Метилирование цитозина с образованием 5-метилцитозина в [[промотор]]ной части гена коррелирует с его неактивным состоянием<ref>{{статья |автор=Jones P. A. |заглавие=Functions of DNA methylation: islands, start sites, gene bodies and beyond |ссылка=http://download.bioon.com.cn/view/upload/201207/26095720_4487.pdf |язык= |издание=Nature Reviews Genetics |тип= |год=2012 |том=13 |номер=7 |страницы=484—492 |doi= |issn= |archivedate=2014-04-16 |archiveurl=https://web.archive.org/web/20140416181504/http://download.bioon.com.cn/view/upload/201207/26095720_4487.pdf }}</ref>. Метилирование цитозина важно также для [[Инактивация Х-хромосомы|инактивации Х-хромосомы]] у [[Млекопитающие|млекопитающих]]<ref>{{статья |заглавие=Genomic DNA methylation: the mark and its mediators |издание={{Нп3|Trends (journals)|Trends Biochem Sci||Trends (journals)}} |том=31 |номер=2 |страницы=89—97 |id=PMID 16403636 |язык=en |тип=journal |автор=Klose R., Bird A. |год=2006}}</ref>. Метилирование ДНК используется в геномном импринтинге<ref>Li E., Beard C., [[Йениш, Рудольф|Jaenisch R.]] Role for DNA methylation in genomic imprinting //Nature. — 1993. — Т. 366. — №. 6453. — С. 362—365</ref>. Значительные нарушения профиля метилирования ДНК происходят при канцерогенезе<ref>Ehrlich M. DNA methylation in cancer: too much, but also too little //Oncogene. — 2002. — Т. 21. — №. 35. — С. 5400-5413</ref>. |
||
Несмотря на биологическую роль, 5-метилцитозин может спонтанно утрачивать [[Амины|аминную]] группу (деаминироваться), превращаясь в [[тимин]], поэтому метилированные цитозины являются источником повышенного числа мутаций<ref>{{статья |заглавие=Cytosine methylation and DNA repair |издание=Curr Top Microbiol Immunol |том=301 |страницы=283—315 |id=PMID 16570853 |язык=und |автор=Walsh C., Xu G.}}</ref>. |
Несмотря на биологическую роль, 5-метилцитозин может спонтанно утрачивать [[Амины|аминную]] группу (деаминироваться), превращаясь в [[тимин]], поэтому метилированные цитозины являются источником повышенного числа мутаций<ref>{{статья |заглавие=Cytosine methylation and DNA repair |издание=Curr Top Microbiol Immunol |том=301 |страницы=283—315 |id=PMID 16570853 |язык=und |автор=Walsh C., Xu G.}}</ref>. |
||
Строка 110: | Строка 125: | ||
ДНК может повреждаться разнообразными [[мутагены|мутагенами]], к которым относятся [[Окисление|окисляющие]] и [[Алкилирование|алкилирующие]] вещества, а также высокоэнергетическая электромагнитная [[ионизирующее излучение|радиация]] — [[ультрафиолет]]овое и [[рентгеновское излучение]]. Тип повреждения ДНК зависит от типа мутагена. Например, ультрафиолет повреждает ДНК путём образования в ней димеров тимина, которые возникают при образовании ковалентных связей между соседними основаниями<ref>{{статья |заглавие=Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation |издание=Biochemistry |том=42 |номер=30 |страницы=9221—6 |id=PMID 12885257 |язык=en |тип=journal |автор=Douki T., Reynaud-Angelin A., Cadet J., Sage E. |год=2003}}</ref>. |
ДНК может повреждаться разнообразными [[мутагены|мутагенами]], к которым относятся [[Окисление|окисляющие]] и [[Алкилирование|алкилирующие]] вещества, а также высокоэнергетическая электромагнитная [[ионизирующее излучение|радиация]] — [[ультрафиолет]]овое и [[рентгеновское излучение]]. Тип повреждения ДНК зависит от типа мутагена. Например, ультрафиолет повреждает ДНК путём образования в ней димеров тимина, которые возникают при образовании ковалентных связей между соседними основаниями<ref>{{статья |заглавие=Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation |издание=Biochemistry |том=42 |номер=30 |страницы=9221—6 |id=PMID 12885257 |язык=en |тип=journal |автор=Douki T., Reynaud-Angelin A., Cadet J., Sage E. |год=2003}}</ref>. |
||
Оксиданты, такие как [[свободные радикалы]] или [[пероксид водорода]], приводят к нескольким типам повреждения ДНК, включая модификации оснований, в особенности гуанозина, а также двухцепочечные разрывы в ДНК<ref>{{статья |заглавие=Hydroxyl radicals and DNA base damage |издание={{Нп3|Mutation Research (журнал)|Mutation Research||Mutation Research (journal)}} |том=424 |номер=1—2 |страницы=9—21 |id=PMID 10064846 |язык=und |автор=Cadet J., Delatour T., Douki T., Gasparutto D., Pouget J., Ravanat J., Sauvaigo S. |год=1999 |издательство=[[Elsevier]] }}</ref>. По некоторым оценкам, в каждой клетке человека окисляющими соединениями ежедневно повреждается порядка 500 оснований<ref>{{статья |заглавие=Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of ''in vivo'' oxidative DNA damage |ссылка=http://www.pnas.org/cgi/reprint/86/24/9697 |издание=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] |том=86 |номер=24 |страницы=9697—701 |id=PMID 2602371 |язык=en |тип=journal |автор=Shigenaga M., Gimeno C., Ames B. |год=1989}}</ref><ref>{{статья |заглавие=Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage |ссылка=http://www.pnas.org/cgi/reprint/81/18/5633.pdf |издание=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] |том=81 |номер=18 |страницы=5633—7 |id=PMID 6592579 |язык=en |тип=journal |автор=Cathcart R., Schwiers E., Saul R., Ames B. |год=1984}}</ref>. Среди разных типов повреждений наиболее опасные — это двухцепочечные разрывы, потому что они трудно [[Репарация ДНК|репарируются]] и могут привести к потерям участков хромосом ([[делеции|делециям]]) и [[транслокация]]м. |
Оксиданты, такие как [[свободные радикалы]] или [[пероксид водорода]], приводят к нескольким типам повреждения ДНК, включая модификации оснований, в особенности гуанозина, а также двухцепочечные разрывы в ДНК<ref>{{статья |заглавие=Hydroxyl radicals and DNA base damage |издание={{Нп3|Mutation Research (журнал)|Mutation Research||Mutation Research (journal)}} |том=424 |номер=1—2 |страницы=9—21 |id=PMID 10064846 |язык=und |автор=Cadet J., Delatour T., Douki T., Gasparutto D., Pouget J., Ravanat J., Sauvaigo S. |год=1999 |издательство=[[Elsevier]] }}</ref>. По некоторым оценкам, в каждой клетке человека окисляющими соединениями ежедневно повреждается порядка 500 оснований<ref>{{статья |заглавие=Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of ''in vivo'' oxidative DNA damage |ссылка=http://www.pnas.org/cgi/reprint/86/24/9697 |издание=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] |том=86 |номер=24 |страницы=9697—701 |id=PMID 2602371 |язык=en |тип=journal |автор=Shigenaga M., Gimeno C., Ames B. |год=1989 |archivedate=2008-03-07 |archiveurl=https://web.archive.org/web/20080307061954/http://www.pnas.org/cgi/reprint/86/24/9697 }}</ref><ref>{{статья |заглавие=Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage |ссылка=http://www.pnas.org/cgi/reprint/81/18/5633.pdf |издание=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] |том=81 |номер=18 |страницы=5633—7 |id=PMID 6592579 |язык=en |тип=journal |автор=Cathcart R., Schwiers E., Saul R., Ames B. |год=1984 |archivedate=2008-06-25 |archiveurl=https://web.archive.org/web/20080625185225/http://www.pnas.org/cgi/reprint/81/18/5633.pdf }}</ref>. Среди разных типов повреждений наиболее опасные — это двухцепочечные разрывы, потому что они трудно [[Репарация ДНК|репарируются]] и могут привести к потерям участков хромосом ([[делеции|делециям]]) и [[транслокация]]м. |
||
Многие молекулы мутагенов вставляются ([[Интеркаляция (химия)|интеркалируют]]) между двумя соседними парами оснований. Большинство этих соединений, например: [[бромистый этидий]], [[даунорубицин]], доксорубицин и [[талидомид]], имеет [[Ароматическое кольцо|ароматическую]] структуру. Для того чтобы интеркалирующее соединение могло поместиться между основаниями, они должны разойтись, расплетая и нарушая структуру двойной спирали. Эти изменения в структуре ДНК мешают [[Репликация (биология)|репликации]], вызывая мутации, и [[Транскрипция (биология)|транскрипции]]. Поэтому интеркалирующие соединения часто являются [[канцерогены|канцерогенами]], наиболее известные из которых — [[бензопирен]], [[акридин]]ы, [[афлатоксин]] и [[бромистый этидий]]<ref>{{статья |заглавие=The genetic toxicology of acridines |издание={{Нп3|Mutation Research (журнал)|Mutation Research||Mutation Research (journal)}} |том=258 |номер=2 |страницы=123—60 |id=PMID 1881402 |язык=und |автор=Ferguson L., Denny W. |год=1991 |издательство=[[Elsevier]] }}</ref><ref>{{статья |заглавие=DNA modification by chemical carcinogens |ссылка=https://archive.org/details/sim_pharmacology-therapeutics_1985_28_2/page/237 |издание=[[Pharmacology & Therapeutics|Pharmacol Ther]] |том=28 |номер=2 |страницы=237—72 |id=PMID 3936066 |язык=en |автор=Jeffrey A. |год=1985 |тип=journal}}</ref><ref>{{статья |заглавие=Mechanism of action in thalidomide teratogenesis |издание={{Нп3|Biochemical Pharmacology (journal)|Biochem Pharmacol||Biochemical Pharmacology (journal)}} |том=59 |номер=12 |страницы=1489—99 |id=PMID 10799645 |язык=en |автор=Stephens T., Bunde C., Fillmore B. |год=2000 |тип=journal}}</ref>. Несмотря на эти негативные свойства, в силу их способности подавлять транскрипцию и репликацию ДНК, интеркалирующие соединения используются в [[химиотерапия|химиотерапии]] для подавления быстро растущих клеток [[Карцинома|рака]]<ref>{{статья |заглавие=Intercalators as anticancer drugs |издание={{Нп3|Current Pharmaceutical Design|Curr Pharm Des||Current Pharmaceutical Design}} |том=7 |номер=17 |страницы=1745—80 |id=PMID 11562309 |язык=en |автор=Braña M., Cacho M., Gradillas A., de Pascual-Teresa B., Ramos A. |год=2001 |тип=journal}}</ref>. |
Многие молекулы мутагенов вставляются ([[Интеркаляция (химия)|интеркалируют]]) между двумя соседними парами оснований. Большинство этих соединений, например: [[бромистый этидий]], [[даунорубицин]], доксорубицин и [[талидомид]], имеет [[Ароматическое кольцо|ароматическую]] структуру. Для того чтобы интеркалирующее соединение могло поместиться между основаниями, они должны разойтись, расплетая и нарушая структуру двойной спирали. Эти изменения в структуре ДНК мешают [[Репликация (биология)|репликации]], вызывая мутации, и [[Транскрипция (биология)|транскрипции]]. Поэтому интеркалирующие соединения часто являются [[канцерогены|канцерогенами]], наиболее известные из которых — [[бензопирен]], [[акридин]]ы, [[афлатоксин]] и [[бромистый этидий]]<ref>{{статья |заглавие=The genetic toxicology of acridines |издание={{Нп3|Mutation Research (журнал)|Mutation Research||Mutation Research (journal)}} |том=258 |номер=2 |страницы=123—60 |id=PMID 1881402 |язык=und |автор=Ferguson L., Denny W. |год=1991 |издательство=[[Elsevier]] }}</ref><ref>{{статья |заглавие=DNA modification by chemical carcinogens |ссылка=https://archive.org/details/sim_pharmacology-therapeutics_1985_28_2/page/237 |издание=[[Pharmacology & Therapeutics|Pharmacol Ther]] |том=28 |номер=2 |страницы=237—72 |id=PMID 3936066 |язык=en |автор=Jeffrey A. |год=1985 |тип=journal}}</ref><ref>{{статья |заглавие=Mechanism of action in thalidomide teratogenesis |издание={{Нп3|Biochemical Pharmacology (journal)|Biochem Pharmacol||Biochemical Pharmacology (journal)}} |том=59 |номер=12 |страницы=1489—99 |id=PMID 10799645 |язык=en |автор=Stephens T., Bunde C., Fillmore B. |год=2000 |тип=journal}}</ref>. Несмотря на эти негативные свойства, в силу их способности подавлять транскрипцию и репликацию ДНК, интеркалирующие соединения используются в [[химиотерапия|химиотерапии]] для подавления быстро растущих клеток [[Карцинома|рака]]<ref>{{статья |заглавие=Intercalators as anticancer drugs |издание={{Нп3|Current Pharmaceutical Design|Curr Pharm Des||Current Pharmaceutical Design}} |том=7 |номер=17 |страницы=1745—80 |id=PMID 11562309 |язык=en |автор=Braña M., Cacho M., Gradillas A., de Pascual-Teresa B., Ramos A. |год=2001 |тип=journal}}</ref>. |
||
Некоторые вещества ([[цисплатин]]<ref name = trzaska>{{статья |ссылка=http://pubs.acs.org/cen/coverstory/83/8325/8325cisplatin.html |заглавие=Cisplatin |издание={{Нп3|Chemical & Engineering News}} |том=83 |номер=25 |язык=en |автор=Trzaska, Stephen |число=20 |месяц=6 |год=2005 |тип=journal}}</ref>, [[митомицин C]]<ref name=Tomasz>{{статья |заглавие=Mitomycin C: small, fast and deadly (but very selective) |издание={{Нп3|Cell Chemical Biology|Chemistry and Biology||Cell Chemical Biology}} |том=2 |номер=9 |страницы=575—579 |doi=10.1016/1074-5521(95)90120-5 |pmid=9383461 |язык=en |тип=journal |автор=Tomasz, Maria |месяц=9 |год=1995}}</ref>, [[псорален]]<ref>{{статья |заглавие=Mismatch repair participates in error-free processing of DNA interstrand crosslinks in human cells |издание={{Нп3|EMBO Reports|EMBO Rep.||EMBO Reports}} |том=6 |номер=6 |страницы=551—557 |pmid=15891767 |pmc=1369090 |doi=10.1038/sj.embor.7400418 |язык=en |тип=journal |автор=Wu Q., Christensen L. A., Legerski R. J., Vasquez K. M. |месяц=6 |год=2005}}</ref>) образуют поперечные сшивки между нитями ДНК и подавляют синтез ДНК, благодаря чему используются в [[Химиотерапия|химиотерапии]] некоторых видов рака (см. [[Химиотерапия злокачественных новообразований]]). |
Некоторые вещества ([[цисплатин]]<ref name = trzaska>{{статья |ссылка=http://pubs.acs.org/cen/coverstory/83/8325/8325cisplatin.html |заглавие=Cisplatin |издание={{Нп3|Chemical & Engineering News}} |том=83 |номер=25 |язык=en |автор=Trzaska, Stephen |число=20 |месяц=6 |год=2005 |тип=journal |archivedate=2017-04-20 |archiveurl=https://web.archive.org/web/20170420113600/https://pubs.acs.org/cen/coverstory/83/8325/8325cisplatin.html }}</ref>, [[митомицин C]]<ref name=Tomasz>{{статья |заглавие=Mitomycin C: small, fast and deadly (but very selective) |издание={{Нп3|Cell Chemical Biology|Chemistry and Biology||Cell Chemical Biology}} |том=2 |номер=9 |страницы=575—579 |doi=10.1016/1074-5521(95)90120-5 |pmid=9383461 |язык=en |тип=journal |автор=Tomasz, Maria |месяц=9 |год=1995}}</ref>, [[псорален]]<ref>{{статья |заглавие=Mismatch repair participates in error-free processing of DNA interstrand crosslinks in human cells |издание={{Нп3|EMBO Reports|EMBO Rep.||EMBO Reports}} |том=6 |номер=6 |страницы=551—557 |pmid=15891767 |pmc=1369090 |doi=10.1038/sj.embor.7400418 |язык=en |тип=journal |автор=Wu Q., Christensen L. A., Legerski R. J., Vasquez K. M. |месяц=6 |год=2005}}</ref>) образуют поперечные сшивки между нитями ДНК и подавляют синтез ДНК, благодаря чему используются в [[Химиотерапия|химиотерапии]] некоторых видов рака (см. [[Химиотерапия злокачественных новообразований]]). |
||
=== Суперскрученность === |
=== Суперскрученность === |
||
Строка 122: | Строка 137: | ||
=== Структуры на концах хромосом === |
=== Структуры на концах хромосом === |
||
На концах линейных [[хромосома|хромосом]] находятся специализированные структуры ДНК, называемые [[теломера]]ми. Основная функция этих участков — поддержание целостности концов хромосом<ref name=Greider>{{статья |заглавие=Identification of a specific telomere terminal transferase activity in Tetrahymena extracts |издание=[[Cell (журнал)|Cell]] |том=43 |номер=2 Pt 1 |страницы=405—413 |pmid=3907856 |язык=en |тип=journal |автор=Greider C., Blackburn E. |год=1985 |издательство=[[Cell Press]] }}</ref>. Теломеры также защищают концы ДНК от деградации [[экзонуклеазы|экзонуклеазами]] и предотвращают активацию системы репарации<ref name=Nugent>{{статья |заглавие=The telomerase reverse transcriptase: components and regulation |ссылка=http://www.genesdev.org/cgi/content/full/12/8/1073 |издание=[[Genes & Development|Genes Dev]] |том=12 |номер=8 |страницы=1073—1085 |pmid=9553037 |язык=en |тип=journal |автор=Nugent C., Lundblad V. |год=1998}}</ref>. Поскольку обычные ДНК-полимеразы не могут [[Репликация (биология)|реплицировать]] 3' концы хромосом, это делает специальный фермент — [[теломераза]]. |
На концах линейных [[хромосома|хромосом]] находятся специализированные структуры ДНК, называемые [[теломера]]ми. Основная функция этих участков — поддержание целостности концов хромосом<ref name=Greider>{{статья |заглавие=Identification of a specific telomere terminal transferase activity in Tetrahymena extracts |издание=[[Cell (журнал)|Cell]] |том=43 |номер=2 Pt 1 |страницы=405—413 |pmid=3907856 |язык=en |тип=journal |автор=Greider C., Blackburn E. |год=1985 |издательство=[[Cell Press]] }}</ref>. Теломеры также защищают концы ДНК от деградации [[экзонуклеазы|экзонуклеазами]] и предотвращают активацию системы репарации<ref name=Nugent>{{статья |заглавие=The telomerase reverse transcriptase: components and regulation |ссылка=http://www.genesdev.org/cgi/content/full/12/8/1073 |издание=[[Genes & Development|Genes Dev]] |том=12 |номер=8 |страницы=1073—1085 |pmid=9553037 |язык=en |тип=journal |автор=Nugent C., Lundblad V. |год=1998 |archivedate=2007-09-27 |archiveurl=https://web.archive.org/web/20070927012934/http://www.genesdev.org/cgi/content/full/12/8/1073 }}</ref>. Поскольку обычные ДНК-полимеразы не могут [[Репликация (биология)|реплицировать]] 3' концы хромосом, это делает специальный фермент — [[теломераза]]. |
||
В клетках человека теломеры часто представлены одноцепочечной ДНК и состоят из нескольких тысяч повторяющихся единиц последовательности ТТАГГГ<ref>{{статья |заглавие=Normal human chromosomes have long G-rich telomeric overhangs at one end |ссылка=http://www.genesdev.org/cgi/content/full/11/21/2801 |издание=[[Genes & Development|Genes Dev]] |том=11 |номер=21 |страницы=2801—2809 |pmid=9353250 |язык=en |тип=journal |автор=Wright W., Tesmer V., Huffman K., Levene S., Shay J. |год=1997}}</ref>. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые [[G-quadruplex|G-квадруплексами]] и состоящие из четырёх, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и [[хелаты|хелатированием]] в центре неё иона металла (чаще всего [[калий|калия]]). Эти пластинки располагаются стопкой друг над другом<ref name="Burge">{{статья |заглавие=Quadruplex DNA: sequence, topology and structure |ссылка=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=17012276 |издание= |
В клетках человека теломеры часто представлены одноцепочечной ДНК и состоят из нескольких тысяч повторяющихся единиц последовательности ТТАГГГ<ref>{{статья |заглавие=Normal human chromosomes have long G-rich telomeric overhangs at one end |ссылка=http://www.genesdev.org/cgi/content/full/11/21/2801 |издание=[[Genes & Development|Genes Dev]] |том=11 |номер=21 |страницы=2801—2809 |pmid=9353250 |язык=en |тип=journal |автор=Wright W., Tesmer V., Huffman K., Levene S., Shay J. |год=1997 |archivedate=2007-09-27 |archiveurl=https://web.archive.org/web/20070927012433/http://www.genesdev.org/cgi/content/full/11/21/2801 }}</ref>. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые [[G-quadruplex|G-квадруплексами]] и состоящие из четырёх, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и [[хелаты|хелатированием]] в центре неё иона металла (чаще всего [[калий|калия]]). Эти пластинки располагаются стопкой друг над другом<ref name="Burge">{{статья |заглавие=Quadruplex DNA: sequence, topology and structure |ссылка=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=17012276 |издание=[[Nucleic Acids Research|Nucleic Acids Res]] |том=34 |номер=19 |страницы=5402—5415 |pmid=17012276 |язык=en |автор=Burge S., Parkinson G., Hazel P., Todd A., Neidle S. |год=2006 |тип=journal |archivedate=2019-09-24 |archiveurl=https://web.archive.org/web/20190924224956/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636468/?tool=pubmed }}</ref>. |
||
На концах хромосом могут образовываться и другие структуры: основания могут быть расположены в одной цепочке или в разных параллельных цепочках. Кроме этих «стопочных» структур теломеры формируют большие петлеобразные структуры, называемые Т-петли или теломерные петли. В них одноцепочечная ДНК располагается в виде широкого кольца, стабилизированного теломерными белками<ref>{{статья |заглавие=Mammalian telomeres end in a large duplex loop |издание=[[Cell (журнал)|Cell]] |том=97 |номер=4 |страницы=503—514 |pmid=10338214 |язык=en |автор=Griffith J., Comeau L., Rosenfield S., Stansel R., Bianchi A., Moss H., de Lange T. |год=1999 |издательство=[[Cell Press]] }}</ref>. В конце Т-петли одноцепочечная теломерная ДНК присоединяется к двухцепочечной ДНК, нарушая спаривание цепочек в этой молекуле и образуя связи с одной из цепей. Это трёхцепочечное образование называется Д-петля (от {{lang-en|displacement loop}})<ref name=Burge/>. |
На концах хромосом могут образовываться и другие структуры: основания могут быть расположены в одной цепочке или в разных параллельных цепочках. Кроме этих «стопочных» структур теломеры формируют большие петлеобразные структуры, называемые Т-петли или теломерные петли. В них одноцепочечная ДНК располагается в виде широкого кольца, стабилизированного теломерными белками<ref>{{статья |заглавие=Mammalian telomeres end in a large duplex loop |издание=[[Cell (журнал)|Cell]] |том=97 |номер=4 |страницы=503—514 |pmid=10338214 |язык=en |автор=Griffith J., Comeau L., Rosenfield S., Stansel R., Bianchi A., Moss H., de Lange T. |год=1999 |издательство=[[Cell Press]] }}</ref>. В конце Т-петли одноцепочечная теломерная ДНК присоединяется к двухцепочечной ДНК, нарушая спаривание цепочек в этой молекуле и образуя связи с одной из цепей. Это трёхцепочечное образование называется Д-петля (от {{lang-en|displacement loop}})<ref name=Burge/>. |
||
Строка 141: | Строка 156: | ||
Молекулы ДНК находятся ''[[in vivo]]'' в плотно упакованном, [[Конденсация ДНК|конденсированном]] состоянии<ref>{{статья |заглавие=Condensed DNA: condensing the concepts |издание=Progress in Biophysics and Molecular Biology |doi=10.1016/j.pbiomolbio.2010.07.002 |язык=und |автор=Teif V.B. and Bohinc K. |год=2010}}</ref>. В клетках эукариот ДНК располагается главным образом в [[Клеточное ядро|ядре]] и на стадии профазы, метафазы или анафазы [[митоз]]а доступны для наблюдения с помощью светового микроскопа в виде набора [[хромосома|хромосом]]. Бактериальная (прокариоты) ДНК обычно представлена одной кольцевой молекулой ДНК, расположенной в неправильной формы образовании в цитоплазме, называемым [[нуклеоид]]ом<ref>{{статья |заглавие=The bacterial nucleoid: a highly organized and dynamic structure |издание={{Нп3|Journal of Cellular Biochemistry|J Cell Biochem||Journal of Cellular Biochemistry}} |том=96 |номер=3 |страницы=506—21 |id=PMID 15988757 |язык=en |тип=journal |автор=Thanbichler M., Wang S., Shapiro L. |год=2005}}</ref>. Генетическая информация генома состоит из генов. Ген — единица передачи наследственной информации и участок ДНК, который влияет на определённую характеристику организма. Ген содержит [[открытая рамка считывания|открытую рамку считывания]], которая транскрибируется, а также {{не переведено 3|регуляторные последовательности|регуляторные последовательности|en|Regulatory sequence}}, например [[промотор]] и [[энхансер]], которые контролируют экспрессию открытых рамок считывания. |
Молекулы ДНК находятся ''[[in vivo]]'' в плотно упакованном, [[Конденсация ДНК|конденсированном]] состоянии<ref>{{статья |заглавие=Condensed DNA: condensing the concepts |издание=Progress in Biophysics and Molecular Biology |doi=10.1016/j.pbiomolbio.2010.07.002 |язык=und |автор=Teif V.B. and Bohinc K. |год=2010}}</ref>. В клетках эукариот ДНК располагается главным образом в [[Клеточное ядро|ядре]] и на стадии профазы, метафазы или анафазы [[митоз]]а доступны для наблюдения с помощью светового микроскопа в виде набора [[хромосома|хромосом]]. Бактериальная (прокариоты) ДНК обычно представлена одной кольцевой молекулой ДНК, расположенной в неправильной формы образовании в цитоплазме, называемым [[нуклеоид]]ом<ref>{{статья |заглавие=The bacterial nucleoid: a highly organized and dynamic structure |издание={{Нп3|Journal of Cellular Biochemistry|J Cell Biochem||Journal of Cellular Biochemistry}} |том=96 |номер=3 |страницы=506—21 |id=PMID 15988757 |язык=en |тип=journal |автор=Thanbichler M., Wang S., Shapiro L. |год=2005}}</ref>. Генетическая информация генома состоит из генов. Ген — единица передачи наследственной информации и участок ДНК, который влияет на определённую характеристику организма. Ген содержит [[открытая рамка считывания|открытую рамку считывания]], которая транскрибируется, а также {{не переведено 3|регуляторные последовательности|регуляторные последовательности|en|Regulatory sequence}}, например [[промотор]] и [[энхансер]], которые контролируют экспрессию открытых рамок считывания. |
||
У многих [[Вид (биология)|видов]] только малая часть общей последовательности [[геном]]а кодирует белки. Так, только около 1,5 % генома человека состоит из кодирующих белок [[экзон]]ов, а больше 50 % ДНК человека состоит из некодирующих [[повторяющиеся последовательности ДНК|повторяющихся последовательностей ДНК]]<ref>{{статья |заглавие=Guide to the draft human genome |издание=Nature |том=409 |номер=6822 |страницы=824—6 |id=PMID 11236998 |язык=en |автор=Wolfsberg T., McEntyre J., Schuler G. |год=2001 }}</ref>. Причины наличия такого большого количества некодирующей ДНК в эукариотических геномах и огромная разница в размерах геномов (С-значение) — одна из неразрешённых научных загадок<ref>{{статья |заглавие=The C-value enigma in plants and animals: a review of parallels and an appeal for partnership |ссылка=http://aob.oxfordjournals.org/cgi/content/full/95/1/133 |издание=Ann Bot (Lond) |том=95 |номер=1 |страницы=133—46 |id=PMID 15596463 |язык=en |тип=journal |автор=Gregory T. |год=2005}}</ref>; исследования в этой области также указывают на большое количество фрагментов реликтовых вирусов в этой части ДНК. |
У многих [[Вид (биология)|видов]] только малая часть общей последовательности [[геном]]а кодирует белки. Так, только около 1,5 % генома человека состоит из кодирующих белок [[экзон]]ов, а больше 50 % ДНК человека состоит из некодирующих [[повторяющиеся последовательности ДНК|повторяющихся последовательностей ДНК]]<ref>{{статья |заглавие=Guide to the draft human genome |издание=Nature |том=409 |номер=6822 |страницы=824—6 |id=PMID 11236998 |язык=en |автор=Wolfsberg T., McEntyre J., Schuler G. |год=2001 }}</ref>. Причины наличия такого большого количества некодирующей ДНК в эукариотических геномах и огромная разница в размерах геномов (С-значение) — одна из неразрешённых научных загадок<ref>{{статья |заглавие=The C-value enigma in plants and animals: a review of parallels and an appeal for partnership |ссылка=http://aob.oxfordjournals.org/cgi/content/full/95/1/133 |издание=Ann Bot (Lond) |том=95 |номер=1 |страницы=133—46 |id=PMID 15596463 |язык=en |тип=journal |автор=Gregory T. |год=2005 |archivedate=2007-05-16 |archiveurl=https://web.archive.org/web/20070516055624/http://aob.oxfordjournals.org/cgi/content/full/95/1/133 }}</ref>; исследования в этой области также указывают на большое количество фрагментов реликтовых вирусов в этой части ДНК. |
||
=== Последовательности генома, не кодирующие белок === |
=== Последовательности генома, не кодирующие белок === |
||
{{main|Некодирующая ДНК}} |
{{main|Некодирующая ДНК}} |
||
В настоящее время накапливается всё больше данных, противоречащих идее о некодирующих последовательностях как «мусорной ДНК» ({{lang-en|junk DNA}}). |
В настоящее время накапливается всё больше данных, противоречащих идее о некодирующих последовательностях как «мусорной ДНК» ({{lang-en|junk DNA}}). |
||
[[Теломера|Теломеры]] и [[центромера|центромеры]] содержат малое число генов, но они важны для функционирования и стабильности хромосом<ref name=Nugent/><ref>{{статья |заглавие=The role of heterochromatin in centromere function |ссылка=http://journals.royalsociety.org/content/px7ahm740dq5ueuk/fulltext.pdf |издание=[[Philosophical Transactions of the Royal Society B|Philos Trans R Soc Lond B Biol Sci]] |том=360 |номер=1455 |страницы=569—79 |id=PMID 15905142 |язык=en |автор=Pidoux A., Allshire R. |год=2005 |тип=journal }}{{Недоступная ссылка|date= |
[[Теломера|Теломеры]] и [[центромера|центромеры]] содержат малое число генов, но они важны для функционирования и стабильности хромосом<ref name=Nugent/><ref>{{статья |заглавие=The role of heterochromatin in centromere function |ссылка=http://journals.royalsociety.org/content/px7ahm740dq5ueuk/fulltext.pdf |издание=[[Philosophical Transactions of the Royal Society B|Philos Trans R Soc Lond B Biol Sci]] |том=360 |номер=1455 |страницы=569—79 |id=PMID 15905142 |язык=en |автор=Pidoux A., Allshire R. |год=2005 |тип=journal }}{{Недоступная ссылка|date=2019-07|bot=InternetArchiveBot }}</ref>. Часто встречающаяся форма некодирующих последовательностей человека — [[псевдогены]], копии генов, инактивированные в результате [[мутации|мутаций]]<ref>{{статья |заглавие=Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22 |ссылка=http://www.genome.org/cgi/content/full/12/2/272 |издание=[[Genome Research|Genome Res]] |том=12 |номер=2 |страницы=272—80 |id=PMID 11827946 |язык=en |тип=journal |автор=Harrison P., Hegyi H., Balasubramanian S., Luscombe N., Bertone P., Echols N., Johnson T., Gerstein M. |год=2002 |archivedate=2007-10-28 |archiveurl=https://web.archive.org/web/20071028173402/http://www.genome.org/cgi/content/full/12/2/272 }}</ref>. Эти последовательности нечто вроде молекулярных [[фоссилии|ископаемых]], хотя иногда они могут служить исходным материалом для [[дупликация|дупликации]] и последующей [[Дивергенция (биология)|дивергенции]] генов<ref>{{статья |заглавие=Studying genomes through the aeons: protein families, pseudogenes and proteome evolution |издание={{Нп3|Journal of Molecular Biology|J Mol Biol||Journal of Molecular Biology}} |том=318 |номер=5 |страницы=1155—74 |id=PMID 12083509 |язык=en |тип=journal |автор=Harrison P., Gerstein M. |год=2002}}</ref>. |
||
Другой источник разнообразия белков в организме — это использование интронов в качестве «линий разреза и склеивания» в [[Альтернативный сплайсинг|альтернативном сплайсинге]]<ref>{{статья |заглавие=Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22 |ссылка=http://springerlink.com/content/y12529875j170122 |издание=[[Cellular and Molecular Life Sciences|Cell Mol Life Sci]] |том=63 |номер=7—9 |страницы=796—819 |id=PMID 16465448 |язык=en |тип=journal |автор=Soller M. |год=2006}}{{Недоступная ссылка|date= |
Другой источник разнообразия белков в организме — это использование интронов в качестве «линий разреза и склеивания» в [[Альтернативный сплайсинг|альтернативном сплайсинге]]<ref>{{статья |заглавие=Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22 |ссылка=http://springerlink.com/content/y12529875j170122 |издание=[[Cellular and Molecular Life Sciences|Cell Mol Life Sci]] |том=63 |номер=7—9 |страницы=796—819 |id=PMID 16465448 |язык=en |тип=journal |автор=Soller M. |год=2006}}{{Недоступная ссылка|date=2018-06|bot=InternetArchiveBot }}</ref>. |
||
Наконец, не кодирующие белок последовательности могут кодировать вспомогательные клеточные [[РНК]], например [[Малые ядерные РНК|мяРНК]]<ref>{{статья |заглавие=RNA world - the dark matter of evolutionary genomics |ссылка= |том=19 |номер=6 |страницы=1768—74 |id=PMID 17040373 |язык=en |тип=journal |автор=Michalak P. |год=2006 |издание= |archiveurl= |archivedate=2019-01-28 }}</ref>. Недавнее исследование транскрипции генома человека показало, что 10 % генома даёт начало [[МРНК#3 |
Наконец, не кодирующие белок последовательности могут кодировать вспомогательные клеточные [[РНК]], например [[Малые ядерные РНК|мяРНК]]<ref>{{статья |заглавие=RNA world - the dark matter of evolutionary genomics |ссылка= |том=19 |номер=6 |страницы=1768—74 |id=PMID 17040373 |язык=en |тип=journal |автор=Michalak P. |год=2006 |издание= |archiveurl= |archivedate=2019-01-28 }}</ref>. Недавнее исследование транскрипции генома человека показало, что 10 % генома даёт начало [[МРНК#3' полиадениновый хвост|полиаденилированным]] РНК<ref>{{статья |заглавие=RNA world - the dark matter of evolutionary genomics |ссылка=http://sciencemag.org/cgi/content/full/308/5725/1149 |том=308 |страницы=1149—54 |id=PMID 15790807 |язык=en |тип=journal |автор=Cheng J., Kapranov P., Drenkow J., Dike S., Brubaker S et al. |год=2005 |archivedate=2010-10-01 |archiveurl=https://web.archive.org/web/20101001232947/http://www.sciencemag.org/cgi/content/full/308/5725/1149 }}</ref>, а исследование генома мыши показало, что 62 % его транскрибируется<ref>{{статья |заглавие=RNA regulation: a new genetics? |ссылка=http://www.nature.com//nrg/journal/v5/n4/abs/nrg1321_fs.html;jsessionid=38CA337C2CE6EC04821E4D35AD67995C |издание=[[Nature Reviews Genetics|Nat Rev Genet]] |том=5 |страницы=316—323 |id=PMID 15131654 |язык=en |автор=Mattick J. S. |год=2004 |тип=journal |archivedate=2008-04-23 |archiveurl=https://web.archive.org/web/20080423070605/http://www.nature.com/nrg/journal/v5/n4/abs/nrg1321_fs.html;jsessionid=38CA337C2CE6EC04821E4D35AD67995C }}</ref>. |
||
=== Транскрипция и трансляция === |
=== Транскрипция и трансляция === |
||
Строка 170: | Строка 185: | ||
В то же время другие белки узнают и присоединяются к специфическим последовательностям. Наиболее изученная группа таких белков — различные классы [[Факторы транскрипции|факторов транскрипции]], то есть белки, регулирующие [[Транскрипция (биология)|транскрипцию]]. Каждый из этих белков узнаёт свою последовательность, часто в [[Промотор (молекулярная генетика)|промоторе]], и активирует или подавляет транскрипцию гена. Это происходит при ассоциации факторов транскрипции с [[РНК-полимераза|РНК-полимеразой]] либо напрямую, либо через белки-посредники. Полимераза ассоциирует сначала с белками, а потом начинает транскрипцию<ref>{{статья |заглавие=Mediator of transcriptional regulation |издание={{Нп3|Annual Review of Biochemistry|Annu Rev Biochem||Annual Review of Biochemistry}} |том=69 |страницы=729—49 |id=PMID 10966474 |язык=en |автор=Myers L., Kornberg R. |тип=journal}}</ref>. В других случаях факторы транскрипции могут присоединяться к [[фермент]]ам, которые модифицируют находящиеся на промоторах [[гистон]]ы, что изменяет доступность ДНК для полимераз<ref>{{статья |заглавие=Biological control through regulated transcriptional coactivators |издание=[[Cell (журнал)|Cell]] |том=119 |номер=2 |страницы=157—167 |id=PMID 15479634 |язык=en |тип=journal |автор=Spiegelman B., Heinrich R. |год=2004 |издательство=[[Cell Press]] }}</ref>. |
В то же время другие белки узнают и присоединяются к специфическим последовательностям. Наиболее изученная группа таких белков — различные классы [[Факторы транскрипции|факторов транскрипции]], то есть белки, регулирующие [[Транскрипция (биология)|транскрипцию]]. Каждый из этих белков узнаёт свою последовательность, часто в [[Промотор (молекулярная генетика)|промоторе]], и активирует или подавляет транскрипцию гена. Это происходит при ассоциации факторов транскрипции с [[РНК-полимераза|РНК-полимеразой]] либо напрямую, либо через белки-посредники. Полимераза ассоциирует сначала с белками, а потом начинает транскрипцию<ref>{{статья |заглавие=Mediator of transcriptional regulation |издание={{Нп3|Annual Review of Biochemistry|Annu Rev Biochem||Annual Review of Biochemistry}} |том=69 |страницы=729—49 |id=PMID 10966474 |язык=en |автор=Myers L., Kornberg R. |тип=journal}}</ref>. В других случаях факторы транскрипции могут присоединяться к [[фермент]]ам, которые модифицируют находящиеся на промоторах [[гистон]]ы, что изменяет доступность ДНК для полимераз<ref>{{статья |заглавие=Biological control through regulated transcriptional coactivators |издание=[[Cell (журнал)|Cell]] |том=119 |номер=2 |страницы=157—167 |id=PMID 15479634 |язык=en |тип=journal |автор=Spiegelman B., Heinrich R. |год=2004 |издательство=[[Cell Press]] }}</ref>. |
||
Так как специфические последовательности встречаются во многих местах [[геном]]а, изменения в активности одного типа фактора транскрипции могут изменить активность тысяч генов<ref>{{статья |заглавие=A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells |ссылка=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=12808131 |издание=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] |том=100 |номер=14 |страницы=8164—9 |id=PMID 12808131 |язык=en |тип=journal |автор=Li Z., Van Calcar S., Qu C., Cavenee W., Zhang M., Ren B. |год=2003}}</ref>. Соответственно, эти белки часто регулируются в процессах ответа на изменения в окружающей среде, развития организма и [[дифференцировка клеток|дифференцировки клеток]]. Специфичность взаимодействия факторов транскрипции с ДНК обеспечивается многочисленными контактами между аминокислотами и основаниями ДНК, что позволяет им «читать» последовательность ДНК. Большинство контактов с основаниями происходит в главной бороздке, где основания более доступны<ref name="recognition1"/>. |
Так как специфические последовательности встречаются во многих местах [[геном]]а, изменения в активности одного типа фактора транскрипции могут изменить активность тысяч генов<ref>{{статья |заглавие=A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells |ссылка=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=12808131 |издание=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] |том=100 |номер=14 |страницы=8164—9 |id=PMID 12808131 |язык=en |тип=journal |автор=Li Z., Van Calcar S., Qu C., Cavenee W., Zhang M., Ren B. |год=2003 |archivedate=2019-09-24 |archiveurl=https://web.archive.org/web/20190924224956/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166200/?tool=pubmed }}</ref>. Соответственно, эти белки часто регулируются в процессах ответа на изменения в окружающей среде, развития организма и [[дифференцировка клеток|дифференцировки клеток]]. Специфичность взаимодействия факторов транскрипции с ДНК обеспечивается многочисленными контактами между аминокислотами и основаниями ДНК, что позволяет им «читать» последовательность ДНК. Большинство контактов с основаниями происходит в главной бороздке, где основания более доступны<ref name="recognition1"/>. |
||
=== Ферменты, модифицирующие ДНК === |
=== Ферменты, модифицирующие ДНК === |
||
Строка 190: | Строка 205: | ||
==== Полимеразы ==== |
==== Полимеразы ==== |
||
{{main|ДНК-полимераза}} |
{{main|ДНК-полимераза}} |
||
Существует также важная для метаболизма ДНК группа ферментов, которые синтезируют цепи полинуклеотидов из [[нуклеозидтрифосфат]]ов — ДНК-полимеразы. Они добавляют нуклеотиды к 3'-[[гидроксильная группа|гидроксильной группе]] предыдущего нуклеотида в цепи ДНК, поэтому все полимеразы работают в направлении 5'--> 3'<ref name=Joyce>{{статья |заглавие=Polymerase structures and function: variations on a theme? |ссылка=http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=177480&blobtype=pdf |издание={{Нп3|American Society for Microbiology}} |том=177 |номер=22 |страницы=6321—9 |id=PMID 7592405 |язык=en |тип=journal |автор=Joyce C., Steitz T. |год=1995 }}</ref>. В активном центре этих ферментов субстрат — нуклеозидтрифосфат — спаривается с [[комплементарность (биология)|комплементарным]] основанием в составе одноцепочечной полинуклеотидной цепочки — матрицы. |
Существует также важная для метаболизма ДНК группа ферментов, которые синтезируют цепи полинуклеотидов из [[нуклеозидтрифосфат]]ов — ДНК-полимеразы. Они добавляют нуклеотиды к 3'-[[гидроксильная группа|гидроксильной группе]] предыдущего нуклеотида в цепи ДНК, поэтому все полимеразы работают в направлении 5'--> 3'<ref name=Joyce>{{статья |заглавие=Polymerase structures and function: variations on a theme? |ссылка=http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=177480&blobtype=pdf |издание={{Нп3|American Society for Microbiology}} |том=177 |номер=22 |страницы=6321—9 |id=PMID 7592405 |язык=en |тип=journal |автор=Joyce C., Steitz T. |год=1995 |archivedate=2019-09-24 |archiveurl=https://web.archive.org/web/20190924224957/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC177480/pdf/1776321.pdf }}</ref>. В активном центре этих ферментов субстрат — нуклеозидтрифосфат — спаривается с [[комплементарность (биология)|комплементарным]] основанием в составе одноцепочечной полинуклеотидной цепочки — матрицы. |
||
В процессе [[Репликация (биология)|репликации ДНК]] [[ДНК-полимераза|ДНК-зависимая ДНК-полимераза]] синтезирует копию исходной последовательности ДНК. Точность очень важна в этом процессе, так как ошибки в полимеризации приведут к [[мутация]]м, поэтому многие полимеразы обладают способностью к «редактированию» — исправлению ошибок. Полимераза узнаёт ошибки в синтезе по отсутствию спаривания между неправильными нуклеотидами. После определения отсутствия спаривания активируется 3'--> 5' [[экзонуклеаза|экзонуклеазная активность]] полимеразы, и неправильное основание удаляется<ref>{{статья |заглавие=Eukaryotic DNA polymerases |издание={{Нп3|Annual Review of Biochemistry|Annu Rev Biochem||Annual Review of Biochemistry}} |том=71 |страницы=133—63 |id=PMID 12045093 |язык=en |автор=Hubscher U., Maga G., Spadari S. |тип=journal}}</ref>. В большинстве организмов ДНК-полимеразы работают в виде большого комплекса, называемого [[реплисома|реплисомой]], которая содержит многочисленные дополнительные субъединицы, например хеликазы<ref>{{статья |заглавие=Cellular DNA replicases: components and dynamics at the replication fork |издание={{Нп3|Annual Review of Biochemistry|Annu Rev Biochem||Annual Review of Biochemistry}} |том=74 |страницы=283—315 |id=PMID 15952889 |язык=en |тип=journal |автор=Johnson A., O'Donnell M.}}</ref>. |
В процессе [[Репликация (биология)|репликации ДНК]] [[ДНК-полимераза|ДНК-зависимая ДНК-полимераза]] синтезирует копию исходной последовательности ДНК. Точность очень важна в этом процессе, так как ошибки в полимеризации приведут к [[мутация]]м, поэтому многие полимеразы обладают способностью к «редактированию» — исправлению ошибок. Полимераза узнаёт ошибки в синтезе по отсутствию спаривания между неправильными нуклеотидами. После определения отсутствия спаривания активируется 3'--> 5' [[экзонуклеаза|экзонуклеазная активность]] полимеразы, и неправильное основание удаляется<ref>{{статья |заглавие=Eukaryotic DNA polymerases |издание={{Нп3|Annual Review of Biochemistry|Annu Rev Biochem||Annual Review of Biochemistry}} |том=71 |страницы=133—63 |id=PMID 12045093 |язык=en |автор=Hubscher U., Maga G., Spadari S. |тип=journal}}</ref>. В большинстве организмов ДНК-полимеразы работают в виде большого комплекса, называемого [[реплисома|реплисомой]], которая содержит многочисленные дополнительные субъединицы, например хеликазы<ref>{{статья |заглавие=Cellular DNA replicases: components and dynamics at the replication fork |издание={{Нп3|Annual Review of Biochemistry|Annu Rev Biochem||Annual Review of Biochemistry}} |том=74 |страницы=283—315 |id=PMID 15952889 |язык=en |тип=journal |автор=Johnson A., O'Donnell M.}}</ref>. |
||
[[РНК-зависимая ДНК-полимераза|РНК-зависимые ДНК-полимеразы]] — специализированный тип полимераз, которые копируют последовательность РНК на ДНК. К этому типу относятся [[обратная транскриптаза]], которая содержится в [[ретровирус]]ах и используется при инфекции клеток, а также [[теломераза]], необходимая для репликации [[теломера|теломер]]<ref>{{статья |заглавие=The reverse transcriptase of HIV-1: from enzymology to therapeutic intervention |ссылка=http://www.fasebj.org/cgi/reprint/8/8/497 |издание={{Нп3|The FASEB Journal}} |том=8 |номер=8 |страницы=497—503 |id=PMID 7514143 |язык=en |тип=journal |автор=Tarrago-Litvak L., Andréola M., Nevinsky G., Sarih-Cottin L., Litvak S. |год=1994 |издательство={{Нп3|Federation of American Societies for Experimental Biology}} }}</ref>. Теломераза — необычный фермент, потому что она содержит собственную матричную РНК<ref name=Nugent/>. |
[[РНК-зависимая ДНК-полимераза|РНК-зависимые ДНК-полимеразы]] — специализированный тип полимераз, которые копируют последовательность РНК на ДНК. К этому типу относятся [[обратная транскриптаза]], которая содержится в [[ретровирус]]ах и используется при инфекции клеток, а также [[теломераза]], необходимая для репликации [[теломера|теломер]]<ref>{{статья |заглавие=The reverse transcriptase of HIV-1: from enzymology to therapeutic intervention |ссылка=http://www.fasebj.org/cgi/reprint/8/8/497 |издание={{Нп3|The FASEB Journal}} |том=8 |номер=8 |страницы=497—503 |id=PMID 7514143 |язык=en |тип=journal |автор=Tarrago-Litvak L., Andréola M., Nevinsky G., Sarih-Cottin L., Litvak S. |год=1994 |издательство={{Нп3|Federation of American Societies for Experimental Biology}} |archivedate=2008-09-05 |archiveurl=https://web.archive.org/web/20080905011452/http://www.fasebj.org/cgi/reprint/8/8/497 }}</ref>. Теломераза — необычный фермент, потому что она содержит собственную матричную РНК<ref name=Nugent/>. |
||
Транскрипция осуществляется [[РНК-полимераза|ДНК-зависимой РНК-полимеразой]], которая копирует последовательность ДНК одной цепочки на [[мРНК]]. В начале транскрипции гена РНК-полимераза присоединяется к последовательности в начале гена, называемой [[промотор]]ом, и расплетает спираль ДНК. Потом она копирует последовательность гена на матричную РНК до тех пор, пока не дойдёт до участка ДНК в конце гена — [[Терминатор (ДНК)|терминатора]], где она останавливается и отсоединяется от ДНК. Также как ДНК-зависимая ДНК-полимераза человека, РНК-полимераза II, которая транскрибирует большую часть генов в [[Проект «Геном человека»|геноме человека]], работает в составе большого белкового комплекса, содержащего регуляторные и дополнительные единицы<ref>{{статья |заглавие=Multi-protein complexes in eukaryotic gene transcription |ссылка=https://archive.org/details/sim_plant-molecular-biology_2002-12_50_6/page/925 |издание=Plant Mol Biol |том=50 |номер=6 |страницы=925—47 |id=PMID 12516863 |язык=und |автор=Martinez E. |год=2002}}</ref>. |
Транскрипция осуществляется [[РНК-полимераза|ДНК-зависимой РНК-полимеразой]], которая копирует последовательность ДНК одной цепочки на [[мРНК]]. В начале транскрипции гена РНК-полимераза присоединяется к последовательности в начале гена, называемой [[промотор]]ом, и расплетает спираль ДНК. Потом она копирует последовательность гена на матричную РНК до тех пор, пока не дойдёт до участка ДНК в конце гена — [[Терминатор (ДНК)|терминатора]], где она останавливается и отсоединяется от ДНК. Также как ДНК-зависимая ДНК-полимераза человека, РНК-полимераза II, которая транскрибирует большую часть генов в [[Проект «Геном человека»|геноме человека]], работает в составе большого белкового комплекса, содержащего регуляторные и дополнительные единицы<ref>{{статья |заглавие=Multi-protein complexes in eukaryotic gene transcription |ссылка=https://archive.org/details/sim_plant-molecular-biology_2002-12_50_6/page/925 |издание=Plant Mol Biol |том=50 |номер=6 |страницы=925—47 |id=PMID 12516863 |язык=und |автор=Martinez E. |год=2002}}</ref>. |
||
Строка 208: | Строка 223: | ||
== Эволюция метаболизма, основанного на ДНК == |
== Эволюция метаболизма, основанного на ДНК == |
||
ДНК содержит генетическую информацию, которая делает возможной жизнедеятельность, рост, развитие и размножение всех современных организмов. Однако как долго в течение четырёх миллиардов лет истории жизни на Земле ДНК была главным носителем генетической информации, неизвестно. Существуют гипотезы, что [[РНК]] [[Гипотеза РНК-мира|играла центральную роль]] [[обмен веществ|в обмене веществ]], поскольку она может и переносить генетическую информацию, и осуществлять [[катализ]] с помощью рибозимов<ref name=autogenerated1>{{статья |заглавие=The antiquity of RNA-based evolution |издание=Nature |том=418 |номер=6894 |страницы=214—21 |id=PMID 12110897 |язык=en |автор=Joyce G. |год=2002 }}</ref><ref>{{статья |заглавие=Prebiotic chemistry and the origin of the RNA world |ссылка=http://www.crbmb.com/cgi/reprint/39/2/99.pdf |издание={{Нп3|Critical Reviews in Biochemistry and Molecular Biology|Crit Rev Biochem Mol Biol||Critical Reviews in Biochemistry and Molecular Biology}} |том=39 |номер=2 |страницы=99—123 |id=PMID 15217990 |archiveurl=https://web.archive.org/web/20070628064747/http://www.crbmb.com/cgi/reprint/39/2/99.pdf |archivedate=2007-06-28 |язык=en |тип=journal |автор=Orgel L.}}</ref><ref>{{статья |заглавие=Ribozymes. Making copies in the RNA world |издание=Science |том=292 |номер=5520 |страницы=1278 |pmid=11360970 |язык=en |автор=Davenport R. |год=2001 }}</ref>. Кроме того, РНК — один из основных компонентов «фабрик белка» — [[рибосома|рибосом]]. Древний РНК-мир, где нуклеиновая кислота была использована и для катализа, и для переноса информации, мог послужить источником современного генетического кода, состоящего из четырёх оснований. Это могло произойти в результате того, что число оснований в организме было компромиссом между небольшим числом оснований, увеличивавшим точность [[Репликация (биология)|репликации]], и большим числом оснований, увеличивающим каталитическую активность рибозимов<ref>{{статья |заглавие=What is the optimum size for the genetic alphabet? |ссылка=http://www.pnas.org/cgi/reprint/89/7/2614.pdf |издание=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] |том=89 |номер=7 |страницы=2614—8 |pmid=1372984 |язык=en |автор=Szathmáry E. |год=1992 |тип=journal}}</ref>. |
ДНК содержит генетическую информацию, которая делает возможной жизнедеятельность, рост, развитие и размножение всех современных организмов. Однако как долго в течение четырёх миллиардов лет истории жизни на Земле ДНК была главным носителем генетической информации, неизвестно. Существуют гипотезы, что [[РНК]] [[Гипотеза РНК-мира|играла центральную роль]] [[обмен веществ|в обмене веществ]], поскольку она может и переносить генетическую информацию, и осуществлять [[катализ]] с помощью рибозимов<ref name=autogenerated1>{{статья |заглавие=The antiquity of RNA-based evolution |издание=Nature |том=418 |номер=6894 |страницы=214—21 |id=PMID 12110897 |язык=en |автор=Joyce G. |год=2002 }}</ref><ref>{{статья |заглавие=Prebiotic chemistry and the origin of the RNA world |ссылка=http://www.crbmb.com/cgi/reprint/39/2/99.pdf |издание={{Нп3|Critical Reviews in Biochemistry and Molecular Biology|Crit Rev Biochem Mol Biol||Critical Reviews in Biochemistry and Molecular Biology}} |том=39 |номер=2 |страницы=99—123 |id=PMID 15217990 |archiveurl=https://web.archive.org/web/20070628064747/http://www.crbmb.com/cgi/reprint/39/2/99.pdf |archivedate=2007-06-28 |язык=en |тип=journal |автор=Orgel L.}}</ref><ref>{{статья |заглавие=Ribozymes. Making copies in the RNA world |издание=Science |том=292 |номер=5520 |страницы=1278 |pmid=11360970 |язык=en |автор=Davenport R. |год=2001 }}</ref>. Кроме того, РНК — один из основных компонентов «фабрик белка» — [[рибосома|рибосом]]. Древний РНК-мир, где нуклеиновая кислота была использована и для катализа, и для переноса информации, мог послужить источником современного генетического кода, состоящего из четырёх оснований. Это могло произойти в результате того, что число оснований в организме было компромиссом между небольшим числом оснований, увеличивавшим точность [[Репликация (биология)|репликации]], и большим числом оснований, увеличивающим каталитическую активность рибозимов<ref>{{статья |заглавие=What is the optimum size for the genetic alphabet? |ссылка=http://www.pnas.org/cgi/reprint/89/7/2614.pdf |издание=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] |том=89 |номер=7 |страницы=2614—8 |pmid=1372984 |язык=en |автор=Szathmáry E. |год=1992 |тип=journal |archivedate=2008-06-25 |archiveurl=https://web.archive.org/web/20080625185222/http://www.pnas.org/cgi/reprint/89/7/2614.pdf }}</ref>. |
||
Древние генетические системы не дошли до наших дней. ДНК в окружающей среде в среднем сохраняется в течение 1 миллиона лет, постепенно деградируя до коротких фрагментов. Извлечение ДНК из бактериальных спор, заключённых в кристаллах соли 250 млн лет назад, и определение последовательности генов [[16S рРНК]]<ref>{{статья |заглавие=Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal |издание=Nature |том=407 |номер=6806 |страницы=897—900 |id=PMID 11057666 |язык=en |тип=journal |автор=Vreeland R., Rosenzweig W., Powers D. |год=2000}}</ref> служит темой оживлённой дискуссии в научной среде<ref>{{статья |заглавие=Geologically ancient DNA: fact or artefact? |издание={{Нп3|Trends (journals)|Trends Microbiol||Trends (journals)}} |том=13 |номер=5 |страницы=212—20 |id=PMID 15866038 |язык=en |автор=Hebsgaard M., Phillips M., Willerslev E. |год=2005 |тип=journal}}</ref><ref>{{статья |заглавие=Curiously modern DNA for a "250 million-year-old" bacterium |издание={{Нп3|Journal of Molecular Evolution|J Mol Evol||Journal of Molecular Evolution}} |том=54 |номер=1 |страницы=134—7 |id=PMID 11734907 |язык=en |тип=journal |автор=Nickle D., Learn G., Rain M., Mullins J., Mittler J. |год=2002}}</ref>. Самой древней ДНК на момент 2023 г. считается ДНК возрастом более 2 млн лет<ref>{{Статья|ссылка=https://www.nature.com/articles/s41586-022-05453-y|автор=Kurt H. Kjær, Mikkel Winther Pedersen, Bianca De Sanctis, Binia De Cahsan, Thorfinn S. Korneliussen, Christian S. Michelsen, Karina K. Sand, Stanislav Jelavić, Anthony H. Ruter, Astrid M. A. Schmidt, Kristian K. Kjeldsen, Alexey S. Tesakov, Ian Snowball, John C. Gosse, Inger G. Alsos, Yucheng Wang, Christoph Dockter, Magnus Rasmussen, Morten E. Jørgensen, Birgitte Skadhauge, Ana Prohaska, Jeppe Å Kristensen, Morten Bjerager, Morten E. Allentoft, Eric Coissac, Alexandra Rouillard, Alexandra Simakova, Antonio Fernandez-Guerra, Chris Bowler, Marc Macias-Fauria, Lasse Vinner, John J. Welch, Alan J. Hidy, Martin Sikora, Matthew J. Collins, Richard Durbin, Nicolaj K. Larsen, Eske Willerslev|заглавие=A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA|год=2022-12|язык=en|издание=Nature|том=612|выпуск=7939|страницы=283–291|issn=1476-4687|doi=10.1038/s41586-022-05453-y|archivedate=2022-12-17|archiveurl=https://web.archive.org/web/20221217130759/https://www.nature.com/articles/s41586-022-05453-y}}</ref><ref>{{Статья|ссылка=https://www.sciencedirect.com/science/article/pii/S0262407922022503|автор=Michael Marshall|заглавие=Oldest DNA ever recovered reveals ecosystem from 2 million years ago|год=2022-12-17|язык=en|издание=New Scientist|том=256|выпуск=3417|страницы=12|issn=0262-4079|doi=10.1016/S0262-4079(22)02250-3}}</ref><ref>{{Cite web|lang=ru|url=https://nplus1.ru/news/2022/12/09/world-oldest-DNA|title=Ученые обнаружили древнейшую ДНК. Ее возраст более двух миллионов лет|author=Анна Муравьёва|website=N + 1 — главное издание о науке, технике и технологиях|access-date=2023-05-31|archive-date=2022-12-11|archive-url=https://web.archive.org/web/20221211130256/https://nplus1.ru/news/2022/12/09/world-oldest-DNA|deadlink=no}}</ref>. |
|||
== См. также == |
== См. также == |
||
Строка 234: | Строка 249: | ||
* ''Альбертс Б., Брей Д., Льюис Дж. и др.'' Молекулярная биология клетки в 3-х томах. — М.: Мир, 1994. — 1558 с. — ISBN 5-03-001986-3. |
* ''Альбертс Б., Брей Д., Льюис Дж. и др.'' Молекулярная биология клетки в 3-х томах. — М.: Мир, 1994. — 1558 с. — ISBN 5-03-001986-3. |
||
* ''Докинз Р.'' Эгоистичный ген. — М.: Мир, 1993. — 318 с. — ISBN 5-03-002531-6. |
* ''Докинз Р.'' Эгоистичный ген. — М.: Мир, 1993. — 318 с. — ISBN 5-03-002531-6. |
||
* История биологии с начала XX |
* История биологии с начала XX века до наших дней. — М.: Наука, 1975. — 660 с. |
||
* ''Льюин Б.'' Гены. — М.: Мир, 1987. — 544 с. |
* ''Льюин Б.'' Гены. — М.: Мир, 1987. — 544 с. |
||
* ''Пташне М.'' Переключение генов. Регуляция генной активности и фаг лямбда. — М.: Мир, 1989. — 160 с. [http://molbiol.ru/forums/lofiversion/index.php/t7803.html Все форумы > Книга «переключение генов» М. Пташне] {{Wayback|url=http://molbiol.ru/forums/lofiversion/index.php/t7803.html |date=20071030224920 }}. |
* ''Пташне М.'' Переключение генов. Регуляция генной активности и фаг лямбда. — М.: Мир, 1989. — 160 с. [http://molbiol.ru/forums/lofiversion/index.php/t7803.html Все форумы > Книга «переключение генов» М. Пташне] {{Wayback|url=http://molbiol.ru/forums/lofiversion/index.php/t7803.html |date=20071030224920 }}. |
Текущая версия от 14:21, 12 октября 2024
Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов[1]. ДНК содержит информацию о структуре различных видов РНК и белков.
В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органеллах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У прокариот и у низших эукариот (например дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.
С химической точки зрения ДНК — длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в полимерной цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи).
В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух нуклеотидных цепей. В нуклеотидах, входящих в состав ДНК, встречаются четыре азотистых основания: аденин (A), гуанин (G), тимин (T) и цитозин (C). Азотистые основания одной цепи соединены с азотистыми основаниями другой цепи водородными связями, обеспечивая таким образом связь двух цепей макромолекулы ДНК друг с другом. Азотистые основания образуют связи попарно согласно принципу комплементарности: аденин (A) соединяется только с тимином (T), гуанин (G) — только с цитозином (C) .
Двухцепочечная молекула ДНК закручена по винтовой линии. Структура молекулы ДНК в целом получила традиционное, но ошибочное название «двойной спирали»: на самом деле, она является «двойным винтом». Винтовая линия может быть правой (A- и B-формы ДНК) или левой (Z-форма ДНК)[2]. Формы ДНК также различаются по диаметру, количеству оснований на виток спирали и шагу спирали[3][4] .
Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и далее принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК содержит последовательности, выполняющие в клетках регуляторные и структурные функции. Кроме того, в геноме эукариот часто встречаются участки, принадлежащие «генетическим паразитам», например транспозонам.
Расшифровка структуры ДНК (1953 год) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону и Морису Уилкинсу была присуждена Нобелевская премия по физиологии или медицине 1962 года. Розалинд Франклин, получившая рентгенограммы, без которых Уотсон и Крик не имели бы возможность сделать выводы о структуре ДНК, умерла в 1958 году от рака (Нобелевскую премию не дают посмертно)[5].
История изучения
[править | править код]ДНК как химическое вещество была выделена Иоганном Фридрихом Мишером в 1869 году из остатков клеток, содержащихся в гное. Он выделил вещество, в состав которого входят азот и фосфор. Вначале новое вещество получило название нуклеин, а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота[6]. Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.
До 1930-х годов считалось, что ДНК содержится только в животных клетках, а в растительных — РНК. В 1934 году в журнале «Hoppe-Seyler’s Zeitschrift für physiologishe Chemie»[7], затем в 1935 году в «Учёных записках МГУ»[8] вышли статьи советских биохимиков А. Н. Белозерского и А. Р. Кизеля, в которых доказывалось присутствие ДНК в растительных клетках. В 1936 году группой Белозерского ДНК была выделена из семян и тканей бобовых, злаковых и других растений[9]. Результатом исследований этой же группы советских учёных в 1939—1947 годах стала первая в мировой научной литературе информация о содержании нуклеиновых кислот у различных видов бактерий.
Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты Освальда Эвери, Колина Маклауда и Маклина Маккарти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечает выделенная из пневмококков ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз[англ.] (эксперимент Херши — Чейз, 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг[10].
Вплоть до 1950-х годов точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.
В результате работы группы биохимика Эрвина Чаргаффа в 1949—1951 гг. были сформулированы так называемые правила Чаргаффа. Чаргаффу и сотрудникам удалось разделить нуклеотиды ДНК при помощи бумажной хроматографии и определить точные количественные соотношения нуклеотидов разных типов. Соотношение, выявленное для аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц), оказалось следующим: количество аденина равно количеству тимина, а гуанина — цитозину: А=Т, Г=Ц[11][12]. Эти правила, наряду с данными рентгеноструктурного анализа, сыграли решающую роль в расшифровке структуры ДНК.
Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и правил Чаргаффа[13]. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии или медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени от рака Розалинд Франклин, так как премия не присуждается посмертно[14].
Интересно, что в 1957 году американцы Александер Рич, Гэри Фелзенфелд и Дэйвид Дэйвис описали нуклеиновую кислоту, составленную тремя спиралями[15]. А в 1985—1986 годах Максим Давидович Франк-Каменецкий в Москве показал, как двухспиральная ДНК складывается в так называемую H-форму, составленную уже не двумя, а тремя нитями ДНК[16][17].
Структура молекулы
[править | править код]Нуклеотиды
[править | править код]Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер (полианион), мономером которого является нуклеотид[18][19].
Каждый нуклеотид состоит из остатка фосфорной кислоты, присоединённого по 5'-положению к сахару дезоксирибозе, к которому также через гликозидную связь (C—N) по 1'-положению присоединено одно из четырёх азотистых оснований. Именно наличие характерного сахара и составляет одно из главных различий между ДНК и РНК, зафиксированное в названиях этих нуклеиновых кислот (в состав РНК входит сахар рибоза)[20]. Пример нуклеотида — аденозинмонофосфат, у которого основанием, присоединённым к фосфату и рибозе, является аденин (A) (показан на рисунке).
Исходя из структуры молекул, основания, входящие в состав нуклеотидов, разделяют на две группы: пурины (аденин [A] и гуанин [G]) образованы соединёнными пяти- и шестичленным гетероциклами; пиримидины (цитозин [C] и тимин [T]) — шестичленным гетероциклом[21].
В виде исключения, например, у бактериофага PBS1, в ДНК встречается пятый тип оснований — урацил ([U]), пиримидиновое основание, отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК[22].
Тимин (T) и урацил (U) не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в транспортных и рибосомальных РНК[23].
Двойная спираль
[править | править код]Полимер ДНК обладает довольно сложной структурой. Нуклеотиды соединены между собой ковалентно в длинные полинуклеотидные цепи. Эти цепи в подавляющем большинстве случаев (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами) попарно объединяются при помощи водородных связей во вторичную структуру, получившую название двойной спирали[13][20]. Остов каждой из цепей состоит из чередующихся фосфатов и сахаров[24]. Внутри одной цепи ДНК соседние нуклеотиды соединены фосфодиэфирными связями, которые формируются в результате взаимодействия между 3'-гидроксильной (3'—ОН) группой молекулы дезоксирибозы одного нуклеотида и 5'-фосфатной группой (5'—РО3) другого. Асимметричные концы цепи ДНК называются 3' (три прайм) и 5' (пять прайм). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3'-концу).
Как уже было сказано выше, у подавляющего большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей. Эти две длинные цепи закручены одна вокруг другой в виде двойной спирали, стабилизированной водородными связями, образующимися между обращёнными друг к другу азотистыми основаниями входящих в неё цепей. В природе эта спираль, чаще всего, правозакрученная. Направления от 3'-конца к 5'-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу).
Диаметр двойной спирали составляет от 22 до 24 Å, или 2,2—2,4 нм, длина каждого нуклеотида — 3,3 Å (0,33 нм)[25]. Подобно тому, как в винтовой лестнице сбоку можно увидеть ступеньки, на двойной спирали ДНК в промежутках между фосфатным остовом молекулы можно видеть рёбра оснований, кольца которых расположены в плоскости, перпендикулярной по отношению к продольной оси макромолекулы.
В двойной спирали различают малую (12 Å) и большую (22 Å) бороздки[26]. Белки, например, факторы транскрипции, которые присоединяются к определённым последовательностям в двухцепочечной ДНК, обычно взаимодействуют с краями оснований в большой бороздке, где те более доступны[27].
Образование связей между основаниями
[править | править код]Каждое основание на одной из цепей связывается с одним определённым основанием на второй цепи. Такое специфическое связывание называется комплементарным. Пурины комплементарны пиримидинам (то есть способны к образованию водородных связей с ними): аденин образует связи только с тимином, а цитозин — с гуанином. В двойной спирали цепочки также связаны с помощью гидрофобных взаимодействий и стэкинга, которые не зависят от последовательности оснований ДНК[28].
Комплементарность двойной спирали означает, что информация, содержащаяся в одной цепи, содержится и в другой цепи. Обратимость и специфичность взаимодействий между комплементарными парами оснований важна для репликации ДНК и всех остальных функций ДНК в живых организмах.
Так как водородные связи нековалентны, они легко разрываются и восстанавливаются. Цепочки двойной спирали могут расходиться как замок-молния под действием ферментов (хеликазы) или при высокой температуре[29]. Разные пары оснований образуют разное количество водородных связей. АТ связаны двумя, ГЦ — тремя водородными связями, поэтому на разрыв ГЦ требуется больше энергии. Процент ГЦ-пар и длина молекулы ДНК определяют количество энергии, необходимой для диссоциации цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки[30]. Температура плавления нуклеиновых кислот зависит от ионного окружения, рост ионной силы стабилизирует ДНК по отношению к денатурированию. При добавлении к ДНК хлорида натрия существует линейная зависимость между температурой плавления и логарифмом ионной силы раствора. Предполагается, что добавление электролита ведёт к экранированию зарядов в цепях ДНК и этим уменьшает силы электростатического отталкивания между заряженными фосфатными группами, способствуя жёсткости структуры. Аналогично температуру плавления ДНК повышают ионы марганца, кобальта, цинка и никеля, но ионы меди, кадмия и свинца, напротив, понижают её[31].
Части молекул ДНК, которые из-за их функций должны быть легко разделяемы, например, ТАТА последовательность в бактериальных промоторах, обычно содержат большое количество А и Т.
Химические модификации азотистых оснований
[править | править код]Азотистые основания в составе ДНК могут быть ковалентно модифицированы, что используется при регуляции экспрессии генов. Например, в клетках позвоночных метилирование цитозина с образованием 5-метилцитозина используется соматическими клетками для передачи профиля генной экспрессии дочерним клеткам. Метилирование цитозина не влияет на спаривание оснований в двойной спирали ДНК. У позвоночных метилирование ДНК в соматических клетках ограничивается метилированием цитозина в последовательности ЦГ[32]. Средний уровень метилирования отличается у разных организмов, так, у нематоды Caenorhabditis elegans метилирование цитозина не наблюдается, а у позвоночных обнаружен высокий уровень метилирования — до 1 %[33]. Другие модификации оснований включают метилирование аденина у бактерий и гликозилирование урацила с образованием «J-основания» в кинетопластах[34].
Метилирование цитозина с образованием 5-метилцитозина в промоторной части гена коррелирует с его неактивным состоянием[35]. Метилирование цитозина важно также для инактивации Х-хромосомы у млекопитающих[36]. Метилирование ДНК используется в геномном импринтинге[37]. Значительные нарушения профиля метилирования ДНК происходят при канцерогенезе[38].
Несмотря на биологическую роль, 5-метилцитозин может спонтанно утрачивать аминную группу (деаминироваться), превращаясь в тимин, поэтому метилированные цитозины являются источником повышенного числа мутаций[39].
Повреждения ДНК
[править | править код]ДНК может повреждаться разнообразными мутагенами, к которым относятся окисляющие и алкилирующие вещества, а также высокоэнергетическая электромагнитная радиация — ультрафиолетовое и рентгеновское излучение. Тип повреждения ДНК зависит от типа мутагена. Например, ультрафиолет повреждает ДНК путём образования в ней димеров тимина, которые возникают при образовании ковалентных связей между соседними основаниями[41].
Оксиданты, такие как свободные радикалы или пероксид водорода, приводят к нескольким типам повреждения ДНК, включая модификации оснований, в особенности гуанозина, а также двухцепочечные разрывы в ДНК[42]. По некоторым оценкам, в каждой клетке человека окисляющими соединениями ежедневно повреждается порядка 500 оснований[43][44]. Среди разных типов повреждений наиболее опасные — это двухцепочечные разрывы, потому что они трудно репарируются и могут привести к потерям участков хромосом (делециям) и транслокациям.
Многие молекулы мутагенов вставляются (интеркалируют) между двумя соседними парами оснований. Большинство этих соединений, например: бромистый этидий, даунорубицин, доксорубицин и талидомид, имеет ароматическую структуру. Для того чтобы интеркалирующее соединение могло поместиться между основаниями, они должны разойтись, расплетая и нарушая структуру двойной спирали. Эти изменения в структуре ДНК мешают репликации, вызывая мутации, и транскрипции. Поэтому интеркалирующие соединения часто являются канцерогенами, наиболее известные из которых — бензопирен, акридины, афлатоксин и бромистый этидий[45][46][47]. Несмотря на эти негативные свойства, в силу их способности подавлять транскрипцию и репликацию ДНК, интеркалирующие соединения используются в химиотерапии для подавления быстро растущих клеток рака[48].
Некоторые вещества (цисплатин[49], митомицин C[50], псорален[51]) образуют поперечные сшивки между нитями ДНК и подавляют синтез ДНК, благодаря чему используются в химиотерапии некоторых видов рака (см. Химиотерапия злокачественных новообразований).
Суперскрученность
[править | править код]Если взяться за концы верёвки и начать скручивать их в разные стороны, она становится короче и на верёвке образуются «супервитки». Так же может быть суперскручена и ДНК. В обычном состоянии цепочка ДНК делает один оборот на каждые 10,4 пар оснований, но в суперскрученном состоянии спираль может быть свёрнута туже или расплетена[52]. Выделяют два типа суперскручивания: положительное — в направлении нормальных витков, при котором основания расположены ближе друг к другу; и отрицательное — в противоположном направлении. В природе молекулы ДНК обычно находятся в отрицательном суперскручивании, которое вносится ферментами — топоизомеразами[53]. Эти ферменты удаляют дополнительное скручивание, возникающее в ДНК в результате транскрипции и репликации[54].
Структуры на концах хромосом
[править | править код]На концах линейных хромосом находятся специализированные структуры ДНК, называемые теломерами. Основная функция этих участков — поддержание целостности концов хромосом[56]. Теломеры также защищают концы ДНК от деградации экзонуклеазами и предотвращают активацию системы репарации[57]. Поскольку обычные ДНК-полимеразы не могут реплицировать 3' концы хромосом, это делает специальный фермент — теломераза.
В клетках человека теломеры часто представлены одноцепочечной ДНК и состоят из нескольких тысяч повторяющихся единиц последовательности ТТАГГГ[58]. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые G-квадруплексами и состоящие из четырёх, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и хелатированием в центре неё иона металла (чаще всего калия). Эти пластинки располагаются стопкой друг над другом[59].
На концах хромосом могут образовываться и другие структуры: основания могут быть расположены в одной цепочке или в разных параллельных цепочках. Кроме этих «стопочных» структур теломеры формируют большие петлеобразные структуры, называемые Т-петли или теломерные петли. В них одноцепочечная ДНК располагается в виде широкого кольца, стабилизированного теломерными белками[60]. В конце Т-петли одноцепочечная теломерная ДНК присоединяется к двухцепочечной ДНК, нарушая спаривание цепочек в этой молекуле и образуя связи с одной из цепей. Это трёхцепочечное образование называется Д-петля (от англ. displacement loop)[59].
Биологические функции
[править | править код]ДНК является носителем генетической информации, записанной в виде последовательности нуклеотидов с помощью генетического кода. С молекулами ДНК связаны два основополагающих свойства живых организмов — наследственность и изменчивость. В ходе процесса, называемого репликацией ДНК, образуются две копии исходной цепочки, наследуемые дочерними клетками при делении, отсюда следует, что образовавшиеся клетки оказываются генетически идентичны исходной.
Генетическая информация реализуется при экспрессии генов в процессах транскрипции (синтеза молекул РНК на матрице ДНК) и трансляции (синтеза белков на матрице РНК).
Последовательность нуклеотидов «кодирует» информацию о различных типах РНК: информационных, или матричных (мРНК), рибосомальных (рРНК) и транспортных (тРНК). Все эти типы РНК синтезируются на основе ДНК в процессе транскрипции. Роль их в биосинтезе белков (процессе трансляции) различна. Информационная РНК содержит информацию о последовательности аминокислот в белке, рибосомальные РНК служат основой для рибосом (сложных нуклеопротеиновых комплексов, основная функция которых — сборка белка из отдельных аминокислот на основе иРНК), транспортные РНК доставляют аминокислоты к месту сборки белков — в активный центр рибосомы, «ползущей» по иРНК.
Структура генома
[править | править код]Большинство природных ДНК имеет двухцепочечную структуру, линейную (эукариоты, некоторые вирусы и отдельные роды бактерий) или кольцевую (прокариоты, хлоропласты и митохондрии). Линейную одноцепочечную ДНК содержат некоторые вирусы и бактериофаги. Молекулы ДНК находятся in vivo в плотно упакованном, конденсированном состоянии[61]. В клетках эукариот ДНК располагается главным образом в ядре и на стадии профазы, метафазы или анафазы митоза доступны для наблюдения с помощью светового микроскопа в виде набора хромосом. Бактериальная (прокариоты) ДНК обычно представлена одной кольцевой молекулой ДНК, расположенной в неправильной формы образовании в цитоплазме, называемым нуклеоидом[62]. Генетическая информация генома состоит из генов. Ген — единица передачи наследственной информации и участок ДНК, который влияет на определённую характеристику организма. Ген содержит открытую рамку считывания, которая транскрибируется, а также регуляторные последовательности[англ.], например промотор и энхансер, которые контролируют экспрессию открытых рамок считывания.
У многих видов только малая часть общей последовательности генома кодирует белки. Так, только около 1,5 % генома человека состоит из кодирующих белок экзонов, а больше 50 % ДНК человека состоит из некодирующих повторяющихся последовательностей ДНК[63]. Причины наличия такого большого количества некодирующей ДНК в эукариотических геномах и огромная разница в размерах геномов (С-значение) — одна из неразрешённых научных загадок[64]; исследования в этой области также указывают на большое количество фрагментов реликтовых вирусов в этой части ДНК.
Последовательности генома, не кодирующие белок
[править | править код]В настоящее время накапливается всё больше данных, противоречащих идее о некодирующих последовательностях как «мусорной ДНК» (англ. junk DNA). Теломеры и центромеры содержат малое число генов, но они важны для функционирования и стабильности хромосом[57][65]. Часто встречающаяся форма некодирующих последовательностей человека — псевдогены, копии генов, инактивированные в результате мутаций[66]. Эти последовательности нечто вроде молекулярных ископаемых, хотя иногда они могут служить исходным материалом для дупликации и последующей дивергенции генов[67]. Другой источник разнообразия белков в организме — это использование интронов в качестве «линий разреза и склеивания» в альтернативном сплайсинге[68]. Наконец, не кодирующие белок последовательности могут кодировать вспомогательные клеточные РНК, например мяРНК[69]. Недавнее исследование транскрипции генома человека показало, что 10 % генома даёт начало полиаденилированным РНК[70], а исследование генома мыши показало, что 62 % его транскрибируется[71].
Транскрипция и трансляция
[править | править код]Генетическая информация, закодированная в ДНК, должна быть прочитана и в конечном итоге выражена в синтезе различных биополимеров, из которых состоят клетки. Последовательность оснований в цепочке ДНК напрямую определяет последовательность оснований в РНК, на которую она «переписывается» в процессе, называемом транскрипцией. В случае мРНК эта последовательность определяет аминокислоты белка. Соотношение между нуклеотидной последовательностью мРНК и аминокислотной последовательностью определяется правилами трансляции, которые называются генетическим кодом. Генетический код состоит из трёхбуквенных «слов», называемых кодонами, состоящих из трёх нуклеотидов (то есть ACT, CAG, TTT и т. п.). Во время транскрипции нуклеотиды гена копируются на синтезируемую РНК РНК-полимеразой. Эта копия в случае мРНК декодируется рибосомой, которая «читает» последовательность мРНК, осуществляя спаривание матричной РНК с транспортными РНК, которые присоединены к аминокислотам. Поскольку в трёхбуквенных комбинациях используются 4 основания, всего возможны 64 кодона (4³ комбинации). Кодоны кодируют 20 стандартных аминокислот, каждой из которых соответствует в большинстве случаев более одного кодона. Один из трёх кодонов, которые располагаются в конце мРНК, не означает аминокислоту и определяет конец белка, это «стоп» или «нонсенс» кодоны — TAA, TGA, TAG.
Репликация
[править | править код]Деление клеток необходимо для размножения одноклеточного и роста многоклеточного организма, но до деления клетка должна удвоить геном, чтобы дочерние клетки содержали ту же генетическую информацию, что и исходная клетка. Из нескольких теоретически возможных механизмов удвоения (репликации) ДНК реализуется полуконсервативный. Две цепочки разделяются, а затем каждая недостающая комплементарная последовательность ДНК воспроизводится ферментом ДНК-полимеразой. Этот фермент синтезирует полинуклеотидную цепь, находя правильный нуклеотид через комплементарное спаривание оснований и присоединяя его к растущей цепочке. ДНК-полимераза не может начинать новую цепь, а может лишь наращивать уже существующую, поэтому она нуждается в короткой цепочке нуклеотидов — (праймере), синтезируемом праймазой. Так как ДНК-полимеразы могут синтезировать цепочку только в направлении 5' --> 3', антипараллельные цепи ДНК копируются по-разному: одна цепь синтезируется непрерывно, а вторая прерывчато[72].
Взаимодействие с белками
[править | править код]Все функции ДНК зависят от её взаимодействия с белками. Взаимодействия могут быть неспецифическими, когда белок присоединяется к любой молекуле ДНК, или зависеть от наличия особой последовательности. Ферменты также могут взаимодействовать с ДНК, из них наиболее важные — это РНК-полимеразы, которые копируют последовательность оснований ДНК на РНК в транскрипции или при синтезе новой цепи ДНК — репликации.
Структурные и регуляторные белки
[править | править код]Хорошо изученными примерами взаимодействия белков и ДНК, не зависящего от нуклеотидной последовательности ДНК, является взаимодействие со структурными белками. В клетке ДНК связана с этими белками, образуя компактную структуру, которая называется хроматин. У эукариот хроматин образован при присоединении к ДНК небольших щелочных белков — гистонов, менее упорядоченный хроматин прокариот содержит гистон-подобные белки[73][74]. Гистоны формируют дискообразную белковую структуру — нуклеосому, вокруг каждой из которых вмещается два оборота спирали ДНК. Неспецифические связи между гистонами и ДНК образуются за счёт ионных связей щелочных аминокислот гистонов и кислотных остатков сахарофосфатного остова ДНК[75]. Химические модификации этих аминокислот включают метилирование, фосфорилирование и ацетилирование[76]. Эти химические модификации изменяют силу взаимодействия между ДНК и гистонами, влияя на доступность специфических последовательностей для факторов транскрипции и изменяя скорость транскрипции[77]. Другие белки в составе хроматина, которые присоединяются к неспецифическим последовательностям — белки с высокой подвижностью в гелях, которые ассоциируют большей частью с согнутой ДНК[78]. Эти белки важны для образования в хроматине структур более высокого порядка[79].
Особая группа белков, присоединяющихся к ДНК — это белки, которые ассоциируют с одноцепочечной ДНК. Наиболее хорошо охарактеризованный белок этой группы у человека — репликационный белок А, без которого невозможно протекание большинства процессов, где расплетается двойная спираль, включая репликацию, рекомбинацию и репарацию. Белки этой группы стабилизируют одноцепочечную ДНК и предотвращают формирование стеблей-петель или деградации нуклеазами[80].
В то же время другие белки узнают и присоединяются к специфическим последовательностям. Наиболее изученная группа таких белков — различные классы факторов транскрипции, то есть белки, регулирующие транскрипцию. Каждый из этих белков узнаёт свою последовательность, часто в промоторе, и активирует или подавляет транскрипцию гена. Это происходит при ассоциации факторов транскрипции с РНК-полимеразой либо напрямую, либо через белки-посредники. Полимераза ассоциирует сначала с белками, а потом начинает транскрипцию[81]. В других случаях факторы транскрипции могут присоединяться к ферментам, которые модифицируют находящиеся на промоторах гистоны, что изменяет доступность ДНК для полимераз[82].
Так как специфические последовательности встречаются во многих местах генома, изменения в активности одного типа фактора транскрипции могут изменить активность тысяч генов[83]. Соответственно, эти белки часто регулируются в процессах ответа на изменения в окружающей среде, развития организма и дифференцировки клеток. Специфичность взаимодействия факторов транскрипции с ДНК обеспечивается многочисленными контактами между аминокислотами и основаниями ДНК, что позволяет им «читать» последовательность ДНК. Большинство контактов с основаниями происходит в главной бороздке, где основания более доступны[27].
Ферменты, модифицирующие ДНК
[править | править код]Топоизомеразы и хеликазы
[править | править код]В клетке ДНК находится в компактном, т. н. суперскрученном состоянии, иначе она не смогла бы в ней уместиться. Для протекания жизненно важных процессов ДНК должна быть раскручена, что производится двумя группами белков — топоизомеразами и хеликазами.
Топоизомеразы — ферменты, которые имеют и нуклеазную, и лигазную активности. Они изменяют степень суперскрученности в ДНК. Некоторые из этих ферментов разрезают спираль ДНК и позволяют вращаться одной из цепей, тем самым уменьшая уровень суперскрученности, после чего фермент заделывает разрыв[53]. Другие ферменты могут разрезать одну из цепей и проводить вторую цепь через разрыв, а потом лигировать разрыв в первой цепи[84]. Топоизомеразы необходимы во многих процессах, связанных с ДНК, таких как репликация и транскрипция[54].
Хеликазы — белки, которые являются одним из молекулярных моторов. Они используют химическую энергию нуклеозидтрифосфатов, чаще всего АТФ, для разрыва водородных связей между основаниями, раскручивая двойную спираль на отдельные цепочки[85]. Эти ферменты важны для большинства процессов, где белкам необходим доступ к основаниям ДНК.
Нуклеазы и лигазы
[править | править код]В различных процессах, происходящих в клетке, например рекомбинации и репарации, участвуют ферменты, способные разрезать и восстанавливать целостность нитей ДНК. Ферменты, разрезающие ДНК, носят название нуклеаз. Нуклеазы, которые гидролизуют нуклеотиды на концах молекулы ДНК, называются экзонуклеазами, а эндонуклеазы разрезают ДНК внутри цепи. Наиболее часто используемые в молекулярной биологии и генетической инженерии нуклеазы — это эндонуклеазы рестрикции (рестриктазы), которые разрезают ДНК около специфических последовательностей. Например, фермент EcoRV (рестрикционный фермент № 5 из 'E. coli') узнаёт шестинуклеотидную последовательность 5'-GAT|ATC-3' и разрезает ДНК в месте, указанном вертикальной линией. В природе эти ферменты защищают бактерии от заражения бактериофагами, разрезая ДНК фага, когда она вводится в бактериальную клетку. В этом случае нуклеазы — часть системы модификации-рестрикции[86]. ДНК-лигазы «сшивают» концы фрагментов ДНК между собой, катализируя формирование фосфодиэфирной связи с использованием энергии АТФ. Рестрикционные нуклеазы и лигазы используются в клонировании и фингерпринтинге.
Полимеразы
[править | править код]Существует также важная для метаболизма ДНК группа ферментов, которые синтезируют цепи полинуклеотидов из нуклеозидтрифосфатов — ДНК-полимеразы. Они добавляют нуклеотиды к 3'-гидроксильной группе предыдущего нуклеотида в цепи ДНК, поэтому все полимеразы работают в направлении 5'--> 3'[87]. В активном центре этих ферментов субстрат — нуклеозидтрифосфат — спаривается с комплементарным основанием в составе одноцепочечной полинуклеотидной цепочки — матрицы.
В процессе репликации ДНК ДНК-зависимая ДНК-полимераза синтезирует копию исходной последовательности ДНК. Точность очень важна в этом процессе, так как ошибки в полимеризации приведут к мутациям, поэтому многие полимеразы обладают способностью к «редактированию» — исправлению ошибок. Полимераза узнаёт ошибки в синтезе по отсутствию спаривания между неправильными нуклеотидами. После определения отсутствия спаривания активируется 3'--> 5' экзонуклеазная активность полимеразы, и неправильное основание удаляется[88]. В большинстве организмов ДНК-полимеразы работают в виде большого комплекса, называемого реплисомой, которая содержит многочисленные дополнительные субъединицы, например хеликазы[89].
РНК-зависимые ДНК-полимеразы — специализированный тип полимераз, которые копируют последовательность РНК на ДНК. К этому типу относятся обратная транскриптаза, которая содержится в ретровирусах и используется при инфекции клеток, а также теломераза, необходимая для репликации теломер[90]. Теломераза — необычный фермент, потому что она содержит собственную матричную РНК[57].
Транскрипция осуществляется ДНК-зависимой РНК-полимеразой, которая копирует последовательность ДНК одной цепочки на мРНК. В начале транскрипции гена РНК-полимераза присоединяется к последовательности в начале гена, называемой промотором, и расплетает спираль ДНК. Потом она копирует последовательность гена на матричную РНК до тех пор, пока не дойдёт до участка ДНК в конце гена — терминатора, где она останавливается и отсоединяется от ДНК. Также как ДНК-зависимая ДНК-полимераза человека, РНК-полимераза II, которая транскрибирует большую часть генов в геноме человека, работает в составе большого белкового комплекса, содержащего регуляторные и дополнительные единицы[91].
Генетическая рекомбинация
[править | править код]Двойная спираль ДНК обычно не взаимодействует с другими сегментами ДНК, и в человеческих клетках разные хромосомы пространственно разделены в ядре[92]. Это расстояние между разными хромосомами важно для способности ДНК действовать в качестве стабильного носителя информации. В процессе рекомбинации с помощью ферментов две спирали ДНК разрываются, обмениваются участками, после чего непрерывность спиралей восстанавливается, поэтому обмен участками негомологичных хромосом может привести к повреждению целостности генетического материала.
Рекомбинация позволяет хромосомам обмениваться генетической информацией, в результате этого образуются новые комбинации генов, что увеличивает эффективность естественного отбора и важно для быстрой эволюции новых белков[93]. Генетическая рекомбинация также играет роль в репарации, особенно в ответе клетки на разрыв обеих цепей ДНК[94].
Самая распространённая форма кроссинговера — это гомологичная рекомбинация, когда принимающие участие в рекомбинации хромосомы имеют очень похожие последовательности. Иногда в качестве участков гомологии выступают транспозоны. Негомологичная рекомбинация может привести к повреждению клетки, поскольку в результате такой рекомбинации возникают транслокации. Реакция рекомбинации катализируется ферментами, которые называются рекомбиназы, например, Cre. На первом этапе реакции рекомбиназа делает разрыв в одной из цепей ДНК, позволяя этой цепи отделиться от комплементарной цепи и присоединиться к одной из цепей второй хроматиды. Второй разрыв в цепи второй хроматиды позволяет ей также отделиться и присоединиться к оставшейся без пары цепи из первой хроматиды, формируя структуру Холлидея. Структура Холлидея может передвигаться вдоль соединённой пары хромосом, меняя цепи местами. Реакция рекомбинации завершается, когда фермент разрезает соединение, а две цепи лигируются[95].
Эволюция метаболизма, основанного на ДНК
[править | править код]ДНК содержит генетическую информацию, которая делает возможной жизнедеятельность, рост, развитие и размножение всех современных организмов. Однако как долго в течение четырёх миллиардов лет истории жизни на Земле ДНК была главным носителем генетической информации, неизвестно. Существуют гипотезы, что РНК играла центральную роль в обмене веществ, поскольку она может и переносить генетическую информацию, и осуществлять катализ с помощью рибозимов[96][97][98]. Кроме того, РНК — один из основных компонентов «фабрик белка» — рибосом. Древний РНК-мир, где нуклеиновая кислота была использована и для катализа, и для переноса информации, мог послужить источником современного генетического кода, состоящего из четырёх оснований. Это могло произойти в результате того, что число оснований в организме было компромиссом между небольшим числом оснований, увеличивавшим точность репликации, и большим числом оснований, увеличивающим каталитическую активность рибозимов[99].
Древние генетические системы не дошли до наших дней. ДНК в окружающей среде в среднем сохраняется в течение 1 миллиона лет, постепенно деградируя до коротких фрагментов. Извлечение ДНК из бактериальных спор, заключённых в кристаллах соли 250 млн лет назад, и определение последовательности генов 16S рРНК[100] служит темой оживлённой дискуссии в научной среде[101][102]. Самой древней ДНК на момент 2023 г. считается ДНК возрастом более 2 млн лет[103][104][105].
См. также
[править | править код]Примечания
[править | править код]- ↑ Александр Панчин. Сумма биотехнологии [http://www.premiaprosvetitel.ru/booksauthors/view/?172]. — АСТ, 2015. — С. 13. — 432 с. — ISBN 978-5-17-093602-1.
- ↑ Bustamante C., Bryant Z., Smith S. B. Ten years of tension: single-molecule DNA mechanics (англ.) // Nature. — 2003. — Vol. 421, no. 6921. — P. 423—427. Архивировано 6 июня 2011 года.
- ↑ David W Ussery. DNA Structure: A-, B- and Z-DNA Helix Families (англ.). ENCYCLOPEDIA OF LIFE SCIENCES. Macmillan Publishers Ltd, Nature Publishing Group. Дата обращения: 30 мая 2023. Архивировано 9 декабря 2022 года.
- ↑ Wiktoria Seroczynska. Forms of DNA - A, B and Z form (англ.). Дата обращения: 30 мая 2023. Архивировано 30 мая 2023 года.
- ↑ Erica Westly. No Nobel for You: Top 10 Nobel Snubs. Rosalind Franklin--her work on the structure of DNA never received a Nobel (англ.). Scientific American (6 октября 2008). Дата обращения: 18 ноября 2013. Архивировано 8 января 2014 года.
- ↑ Dahm R. Friedrich Miescher and the discovery of DNA (англ.) // Dev Biol[англ.] : journal. — 2005. — Vol. 278, no. 2. — P. 274—288. — PMID 15680349.
- ↑ Kiesel A., Beloserskii A. Hoppe-Seyler’s Zeitschrift fur physiologishe Chemie, 229, 160—166. 1934.
- ↑ Белозерский А. Н. Ученые записки МГУ, вып.4, 209—215, 1935.
- ↑ Белозерский А. Н., Чигирев С. Д. Биохимия, 1, 136—146, 1936.
- ↑ Hershey A., Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage (англ.) // The Journal of General Physiology[англ.] : journal. — Rockefeller University Press[англ.], 1952. — Vol. 36, no. 1. — P. 39—56. — PMID 12981234. Архивировано 1 октября 2008 года.
- ↑ Elson D., Chargaff E. On the deoxyribonucleic acid content of sea urchin gametes (англ.) // Experientia : journal. — 1952. — Vol. 8, no. 4. — P. 143—145. — ISSN 0014-4754. — doi:10.1007/BF02170221. — PMID 14945441.
- ↑ Chargaff E., Lipshitz R., Green C. Composition of the deoxypentose nucleic acids of four genera of sea-urchin (англ.) // J Biol Chem : journal. — 1952. — Vol. 195, no. 1. — P. 155—160. — PMID 14938364. Архивировано 3 февраля 2018 года.
- ↑ 1 2 Watson J., Crick F. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid (рум.) // Nature. — 1953. — Т. 171, nr. 4356. — P. 737—8. Архивировано 23 августа 2014 года.
- ↑ The Nobel Prize in Physiology or Medicine 1962 Архивная копия от 4 января 2007 на Wayback Machine Nobelprize .org Accessed 22 Dec 06
- ↑ Н. Домрина В России есть кому делать науку — если будет на что // Журнал «Наука и жизнь», № 2, 2002 . Дата обращения: 21 апреля 2013. Архивировано 3 октября 2013 года.
- ↑ Maxim Frank-Kamenetskii DNA structure: A simple solution to the stability of the double helix? // Журнал Nature № 324, 305 (27 November 1986) . Дата обращения: 21 апреля 2013. Архивировано 16 ноября 2005 года.
- ↑ Maxim Frank-Kamenetskii H-form DNA and the hairpin-triplex model // Журнал Nature № 333, 214 (19 May 1988)
- ↑ Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters. Molecular Biology of the Cell; Fourth Edition (англ.). — New York and London: Garland Science[англ.], 2002. Архивировано 18 сентября 2009 года.
- ↑ Butler, John M. (2001) Forensic DNA Typing «Elsevier». pp. 14 — 15. ISBN 978-0-12-147951-0
- ↑ 1 2 Berg J., Tymoczko J. and Stryer L. (2002) Biochemistry. W. H. Freeman and Company ISBN 0-7167-4955-6
- ↑ Abbreviations and Symbols for Nucleic Acids, Polynucleotides and their Constituents Архивная копия от 5 февраля 2007 на Wayback Machine IUPAC-IUB Commission on Biochemical Nomenclature (CBN) Accessed 03 Jan 2006
- ↑ Takahashi I., Marmur J. Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis (англ.) // Nature : journal. — 1963. — Vol. 197. — P. 794—5.
- ↑ Agris P. Decoding the genome: a modified view (англ.) // Nucleic Acids Res : journal. — 2004. — Vol. 32, no. 1. — P. 223—38. — PMID 14715921.
- ↑ Ghosh A., Bansal M. A glossary of DNA structures from A to Z (англ.) // Acta Crystallogr D Biol Crystallogr[англ.] : journal. — International Union of Crystallography, 2003. — Vol. 59, no. Pt 4. — P. 620—6.
- ↑ Mandelkern M., Elias J., Eden D., Crothers D. The dimensions of DNA in solution (англ.) // J Mol Biol[англ.] : journal. — 1981. — Vol. 152, no. 1. — P. 153—61.
- ↑ Wing R., Drew H., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. Crystal structure analysis of a complete turn of B-DNA (англ.) // Nature : journal. — 1980. — Vol. 287, no. 5784. — P. 755—8.
- ↑ 1 2 Pabo C., Sauer R. Protein-DNA recognition (англ.) // Annu Rev Biochem[англ.] : journal. — Vol. 53. — P. 293—321.
- ↑ Ponnuswamy P., Gromiha M. On the conformational stability of oligonucleotide duplexes and tRNA molecules (англ.) // J Theor Biol[англ.] : journal. — 1994. — Vol. 169, no. 4. — P. 419—432. — PMID 7526075.
- ↑ Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. Mechanical stability of single DNA molecules (англ.) // Biophys J[англ.] : journal. — 2000. — Vol. 78, no. 4. — P. 1997—2007. — PMID 10733978. Архивировано 24 сентября 2019 года.
- ↑ Chalikian T., Völker J., Plum G., Breslauer K. A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1999. — Vol. 96, no. 14. — P. 7853—7858. — PMID 10393911. Архивировано 24 сентября 2019 года.
- ↑ Е.Е.Крисс, К.Б.Яцимирский. Взаимодействие нуклеиновых кислот с металлами..
- ↑ Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. I. — С. 719—733. — 808 с. — ISBN 978-5-4344-0112-8.
- ↑ Bird A. DNA methylation patterns and epigenetic memory (англ.) // Genes Dev : journal. — 2002. — Vol. 16, no. 1. — P. 6—21.
- ↑ Gommers-Ampt J., Van Leeuwen F., de Beer A., Vliegenthart J., Dizdaroglu M., Kowalak J., Crain P., Borst P. beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei (англ.) // Cell : journal. — Cell Press, 1993. — Vol. 75, no. 6. — P. 1129—36.
- ↑ Jones P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond // Nature Reviews Genetics. — 2012. — Т. 13, № 7. — С. 484—492. Архивировано 16 апреля 2014 года.
- ↑ Klose R., Bird A. Genomic DNA methylation: the mark and its mediators (англ.) // Trends Biochem Sci[англ.] : journal. — 2006. — Vol. 31, no. 2. — P. 89—97.
- ↑ Li E., Beard C., Jaenisch R. Role for DNA methylation in genomic imprinting //Nature. — 1993. — Т. 366. — №. 6453. — С. 362—365
- ↑ Ehrlich M. DNA methylation in cancer: too much, but also too little //Oncogene. — 2002. — Т. 21. — №. 35. — С. 5400-5413
- ↑ Walsh C., Xu G. Cytosine methylation and DNA repair (неопр.) // Curr Top Microbiol Immunol. — Т. 301. — С. 283—315.
- ↑ Created from PDB 1JDG Архивная копия от 22 сентября 2008 на Wayback Machine
- ↑ Douki T., Reynaud-Angelin A., Cadet J., Sage E. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation (англ.) // Biochemistry : journal. — 2003. — Vol. 42, no. 30. — P. 9221—6.
- ↑ Cadet J., Delatour T., Douki T., Gasparutto D., Pouget J., Ravanat J., Sauvaigo S. Hydroxyl radicals and DNA base damage (неопр.) // Mutation Research[англ.]. — Elsevier, 1999. — Т. 424, № 1—2. — С. 9—21.
- ↑ Shigenaga M., Gimeno C., Ames B. Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1989. — Vol. 86, no. 24. — P. 9697—701. Архивировано 7 марта 2008 года.
- ↑ Cathcart R., Schwiers E., Saul R., Ames B. Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1984. — Vol. 81, no. 18. — P. 5633—7. Архивировано 25 июня 2008 года.
- ↑ Ferguson L., Denny W. The genetic toxicology of acridines (неопр.) // Mutation Research[англ.]. — Elsevier, 1991. — Т. 258, № 2. — С. 123—60.
- ↑ Jeffrey A. DNA modification by chemical carcinogens (англ.) // Pharmacol Ther : journal. — 1985. — Vol. 28, no. 2. — P. 237—72.
- ↑ Stephens T., Bunde C., Fillmore B. Mechanism of action in thalidomide teratogenesis (англ.) // Biochem Pharmacol[англ.] : journal. — 2000. — Vol. 59, no. 12. — P. 1489—99.
- ↑ Braña M., Cacho M., Gradillas A., de Pascual-Teresa B., Ramos A. Intercalators as anticancer drugs (англ.) // Curr Pharm Des[англ.] : journal. — 2001. — Vol. 7, no. 17. — P. 1745—80.
- ↑ Trzaska, Stephen. Cisplatin (англ.) // Chemical & Engineering News[англ.] : journal. — 2005. — 20 June (vol. 83, no. 25). Архивировано 20 апреля 2017 года.
- ↑ Tomasz, Maria. Mitomycin C: small, fast and deadly (but very selective) (англ.) // Chemistry and Biology[англ.] : journal. — 1995. — September (vol. 2, no. 9). — P. 575—579. — doi:10.1016/1074-5521(95)90120-5. — PMID 9383461.
- ↑ Wu Q., Christensen L. A., Legerski R. J., Vasquez K. M. Mismatch repair participates in error-free processing of DNA interstrand crosslinks in human cells (англ.) // EMBO Rep.[англ.] : journal. — 2005. — June (vol. 6, no. 6). — P. 551—557. — doi:10.1038/sj.embor.7400418. — PMID 15891767. — PMC 1369090.
- ↑ Benham C., Mielke S. DNA mechanics (неопр.) // Annu Rev Biomed Eng[англ.]. — 2005. — Т. 7. — С. 21—53. — PMID 16004565.
- ↑ 1 2 Champoux J. DNA topoisomerases: structure, function, and mechanism (англ.) // Annu Rev Biochem[англ.] : journal. — 2001. — Vol. 70. — P. 369—413. — PMID 11395412.
- ↑ 1 2 Wang J. Cellular roles of DNA topoisomerases: a molecular perspective (англ.) // Nat Rev Mol Cell Biol : journal. — 2002. — Vol. 3, no. 6. — P. 430—440. — PMID 12042765.
- ↑ Created from NDB UD0017 Архивировано 7 июня 2013 года.
- ↑ Greider C., Blackburn E. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts (англ.) // Cell : journal. — Cell Press, 1985. — Vol. 43, no. 2 Pt 1. — P. 405—413. — PMID 3907856.
- ↑ 1 2 3 Nugent C., Lundblad V. The telomerase reverse transcriptase: components and regulation (англ.) // Genes Dev : journal. — 1998. — Vol. 12, no. 8. — P. 1073—1085. — PMID 9553037. Архивировано 27 сентября 2007 года.
- ↑ Wright W., Tesmer V., Huffman K., Levene S., Shay J. Normal human chromosomes have long G-rich telomeric overhangs at one end (англ.) // Genes Dev : journal. — 1997. — Vol. 11, no. 21. — P. 2801—2809. — PMID 9353250. Архивировано 27 сентября 2007 года.
- ↑ 1 2 Burge S., Parkinson G., Hazel P., Todd A., Neidle S. Quadruplex DNA: sequence, topology and structure (англ.) // Nucleic Acids Res : journal. — 2006. — Vol. 34, no. 19. — P. 5402—5415. — PMID 17012276. Архивировано 24 сентября 2019 года.
- ↑ Griffith J., Comeau L., Rosenfield S., Stansel R., Bianchi A., Moss H., de Lange T. Mammalian telomeres end in a large duplex loop (англ.) // Cell. — Cell Press, 1999. — Vol. 97, no. 4. — P. 503—514. — PMID 10338214.
- ↑ Teif V.B. and Bohinc K. Condensed DNA: condensing the concepts (неопр.) // Progress in Biophysics and Molecular Biology. — 2010. — doi:10.1016/j.pbiomolbio.2010.07.002.
- ↑ Thanbichler M., Wang S., Shapiro L. The bacterial nucleoid: a highly organized and dynamic structure (англ.) // J Cell Biochem[англ.] : journal. — 2005. — Vol. 96, no. 3. — P. 506—21.
- ↑ Wolfsberg T., McEntyre J., Schuler G. Guide to the draft human genome (англ.) // Nature. — 2001. — Vol. 409, no. 6822. — P. 824—6.
- ↑ Gregory T. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership (англ.) // Ann Bot (Lond) : journal. — 2005. — Vol. 95, no. 1. — P. 133—46. Архивировано 16 мая 2007 года.
- ↑ Pidoux A., Allshire R. The role of heterochromatin in centromere function (англ.) // Philos Trans R Soc Lond B Biol Sci : journal. — 2005. — Vol. 360, no. 1455. — P. 569—79. (недоступная ссылка)
- ↑ Harrison P., Hegyi H., Balasubramanian S., Luscombe N., Bertone P., Echols N., Johnson T., Gerstein M. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22 (англ.) // Genome Res : journal. — 2002. — Vol. 12, no. 2. — P. 272—80. Архивировано 28 октября 2007 года.
- ↑ Harrison P., Gerstein M. Studying genomes through the aeons: protein families, pseudogenes and proteome evolution (англ.) // J Mol Biol[англ.] : journal. — 2002. — Vol. 318, no. 5. — P. 1155—74.
- ↑ Soller M. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22 (англ.) // Cell Mol Life Sci : journal. — 2006. — Vol. 63, no. 7—9. — P. 796—819. (недоступная ссылка)
- ↑ Michalak P. RNA world - the dark matter of evolutionary genomics (англ.) : journal. — 2006. — Vol. 19, no. 6. — P. 1768—74. [ Архивировано] 28 января 2019 года.
- ↑ Cheng J., Kapranov P., Drenkow J., Dike S., Brubaker S et al. RNA world - the dark matter of evolutionary genomics (англ.) : journal. — 2005. — Vol. 308. — P. 1149—54. Архивировано 1 октября 2010 года.
- ↑ Mattick J. S. RNA regulation: a new genetics? (англ.) // Nat Rev Genet : journal. — 2004. — Vol. 5. — P. 316—323. Архивировано 23 апреля 2008 года.
- ↑ Albà M. Replicative DNA polymerases (англ.) // Genome Biol[англ.] : journal. — 2001. — Vol. 2, no. 1. — P. REVIEWS3002.
- ↑ Sandman K., Pereira S., Reeve J. Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome (англ.) // Cell Mol Life Sci : journal. — 1998. — Vol. 54, no. 12. — P. 1350—64.
- ↑ Dame R. T. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin (англ.) // Microbiology[англ.] : journal. — Microbiology Society[англ.], 2005. — Vol. 56, no. 4. — P. 858—870. — PMID 15853876.
- ↑ Luger K., Mäder A., Richmond R., Sargent D., Richmond T. Crystal structure of the nucleosome core particle at 2.8 A resolution (англ.) // Nature : journal. — 1997. — Vol. 389, no. 6648. — P. 251—60.
- ↑ Jenuwein T., Allis C. Translating the histone code (англ.) // Science. — 2001. — Vol. 293, no. 5532. — P. 1074—80.
- ↑ Ito T. Nucleosome assembly and remodelling (неопр.) // Curr Top Microbiol Immunol. — Т. 274. — С. 1—22.
- ↑ Thomas J. HMG1 and 2: architectural DNA-binding proteins (англ.) // Biochem Soc Trans[англ.] : journal. — 2001. — Vol. 29, no. Pt 4. — P. 395—401.
- ↑ Grosschedl R., Giese K., Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures (англ.) // Trends Genet[англ.] : journal. — 1994. — Vol. 10, no. 3. — P. 94—100.
- ↑ Iftode C., Daniely Y., Borowiec J. Replication protein A (RPA): the eukaryotic SSB (англ.) // Crit Rev Biochem Mol Biol[англ.] : journal. — 1999. — Vol. 34, no. 3. — P. 141—80.
- ↑ Myers L., Kornberg R. Mediator of transcriptional regulation (англ.) // Annu Rev Biochem[англ.] : journal. — Vol. 69. — P. 729—49.
- ↑ Spiegelman B., Heinrich R. Biological control through regulated transcriptional coactivators (англ.) // Cell : journal. — Cell Press, 2004. — Vol. 119, no. 2. — P. 157—167.
- ↑ Li Z., Van Calcar S., Qu C., Cavenee W., Zhang M., Ren B. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2003. — Vol. 100, no. 14. — P. 8164—9. Архивировано 24 сентября 2019 года.
- ↑ Schoeffler A., Berger J. Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism (англ.) // Biochem Soc Trans[англ.] : journal. — 2005. — Vol. 33, no. Pt 6. — P. 1465—70.
- ↑ Tuteja N., Tuteja R. Unraveling DNA helicases. Motif, structure, mechanism and function (англ.) // Eur J Biochem[англ.] : journal. — 2004. — Vol. 271, no. 10. — P. 1849—1863.
- ↑ Bickle T., Krüger D. Biology of DNA restriction (англ.) // Microbiology and Molecular Biology Reviews[англ.] : journal. — American Society for Microbiology[англ.], 1993. — Vol. 57, no. 2. — P. 434—50.
- ↑ Joyce C., Steitz T. Polymerase structures and function: variations on a theme? (англ.) // American Society for Microbiology[англ.] : journal. — 1995. — Vol. 177, no. 22. — P. 6321—9. Архивировано 24 сентября 2019 года.
- ↑ Hubscher U., Maga G., Spadari S. Eukaryotic DNA polymerases (англ.) // Annu Rev Biochem[англ.] : journal. — Vol. 71. — P. 133—63.
- ↑ Johnson A., O'Donnell M. Cellular DNA replicases: components and dynamics at the replication fork (англ.) // Annu Rev Biochem[англ.] : journal. — Vol. 74. — P. 283—315.
- ↑ Tarrago-Litvak L., Andréola M., Nevinsky G., Sarih-Cottin L., Litvak S. The reverse transcriptase of HIV-1: from enzymology to therapeutic intervention (англ.) // The FASEB Journal[англ.] : journal. — Federation of American Societies for Experimental Biology[англ.], 1994. — Vol. 8, no. 8. — P. 497—503. Архивировано 5 сентября 2008 года.
- ↑ Martinez E. Multi-protein complexes in eukaryotic gene transcription (неопр.) // Plant Mol Biol. — 2002. — Т. 50, № 6. — С. 925—47.
- ↑ Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells (англ.) // Nat Rev Genet : journal. — 2001. — Vol. 2, no. 4. — P. 292—301.
- ↑ Pál C., Papp B., Lercher M. An integrated view of protein evolution (англ.) // Nat Rev Genet : journal. — 2006. — Vol. 7, no. 5. — P. 337—48.
- ↑ O'Driscoll M., Jeggo P. The role of double-strand break repair - insights from human genetics (англ.) // Nat Rev Genet : journal. — 2006. — Vol. 7, no. 1. — P. 45—54.
- ↑ Dickman M., Ingleston S., Sedelnikova S., Rafferty J., Lloyd R., Grasby J., Hornby D. The RuvABC resolvasome (англ.) // Eur J Biochem[англ.] : journal. — 2002. — Vol. 269, no. 22. — P. 5492—501.
- ↑ Joyce G. The antiquity of RNA-based evolution (англ.) // Nature. — 2002. — Vol. 418, no. 6894. — P. 214—21.
- ↑ Orgel L. Prebiotic chemistry and the origin of the RNA world (англ.) // Crit Rev Biochem Mol Biol[англ.] : journal. — Vol. 39, no. 2. — P. 99—123. Архивировано 28 июня 2007 года.
- ↑ Davenport R. Ribozymes. Making copies in the RNA world (англ.) // Science. — 2001. — Vol. 292, no. 5520. — P. 1278. — PMID 11360970.
- ↑ Szathmáry E. What is the optimum size for the genetic alphabet? (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1992. — Vol. 89, no. 7. — P. 2614—8. — PMID 1372984. Архивировано 25 июня 2008 года.
- ↑ Vreeland R., Rosenzweig W., Powers D. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal (англ.) // Nature : journal. — 2000. — Vol. 407, no. 6806. — P. 897—900.
- ↑ Hebsgaard M., Phillips M., Willerslev E. Geologically ancient DNA: fact or artefact? (англ.) // Trends Microbiol[англ.] : journal. — 2005. — Vol. 13, no. 5. — P. 212—20.
- ↑ Nickle D., Learn G., Rain M., Mullins J., Mittler J. Curiously modern DNA for a "250 million-year-old" bacterium (англ.) // J Mol Evol[англ.] : journal. — 2002. — Vol. 54, no. 1. — P. 134—7.
- ↑ Kurt H. Kjær, Mikkel Winther Pedersen, Bianca De Sanctis, Binia De Cahsan, Thorfinn S. Korneliussen, Christian S. Michelsen, Karina K. Sand, Stanislav Jelavić, Anthony H. Ruter, Astrid M. A. Schmidt, Kristian K. Kjeldsen, Alexey S. Tesakov, Ian Snowball, John C. Gosse, Inger G. Alsos, Yucheng Wang, Christoph Dockter, Magnus Rasmussen, Morten E. Jørgensen, Birgitte Skadhauge, Ana Prohaska, Jeppe Å Kristensen, Morten Bjerager, Morten E. Allentoft, Eric Coissac, Alexandra Rouillard, Alexandra Simakova, Antonio Fernandez-Guerra, Chris Bowler, Marc Macias-Fauria, Lasse Vinner, John J. Welch, Alan J. Hidy, Martin Sikora, Matthew J. Collins, Richard Durbin, Nicolaj K. Larsen, Eske Willerslev. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA (англ.) // Nature. — 2022-12. — Vol. 612, iss. 7939. — P. 283–291. — ISSN 1476-4687. — doi:10.1038/s41586-022-05453-y. Архивировано 17 декабря 2022 года.
- ↑ Michael Marshall. Oldest DNA ever recovered reveals ecosystem from 2 million years ago (англ.) // New Scientist. — 2022-12-17. — Vol. 256, iss. 3417. — P. 12. — ISSN 0262-4079. — doi:10.1016/S0262-4079(22)02250-3.
- ↑ Анна Муравьёва. Ученые обнаружили древнейшую ДНК. Ее возраст более двух миллионов лет . N + 1 — главное издание о науке, технике и технологиях. Дата обращения: 31 мая 2023. Архивировано 11 декабря 2022 года.
Литература
[править | править код]- Альбертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки в 3-х томах. — М.: Мир, 1994. — 1558 с. — ISBN 5-03-001986-3.
- Докинз Р. Эгоистичный ген. — М.: Мир, 1993. — 318 с. — ISBN 5-03-002531-6.
- История биологии с начала XX века до наших дней. — М.: Наука, 1975. — 660 с.
- Льюин Б. Гены. — М.: Мир, 1987. — 544 с.
- Пташне М. Переключение генов. Регуляция генной активности и фаг лямбда. — М.: Мир, 1989. — 160 с. Все форумы > Книга «переключение генов» М. Пташне Архивная копия от 30 октября 2007 на Wayback Machine.
- Уотсон Дж. Д. Двойная спираль: воспоминания об открытии структуры ДНК. Архивная копия от 18 января 2012 на Wayback Machine — М.: Мир, 1969. — 152 с.
- Франк-Каменецкий, М. Самая главная молекула: От структуры ДНК до биомедицины XXI века. — 2-е изд. — М.: Альпина нон-фикшн, 2018. — 336 с. — ISBN 978-5-00139-038-1.
Ссылки
[править | править код]- Методы Архивная копия от 8 июня 2007 на Wayback Machine выделения и исследования ДНК.
- Веб-адреса молекулярно-биологических журналов Архивная копия от 15 августа 2007 на Wayback Machine.
- Международная база данных Архивная копия от 21 марта 2010 на Wayback Machine — последовательности ДНК из разных организмов (англ.).
- Веб-сайт Сэнгеровского Института Архивная копия от 8 января 2021 на Wayback Machine одного из мировых лидеров в области определения последовательностей ДНК и их анализа (англ.).
Эта статья входит в число избранных статей русскоязычного раздела Википедии. |