Теорема Стокса: различия между версиями
[непроверенная версия] | [отпатрулированная версия] |
W%gur$ (обсуждение | вклад) исправление Метки: отменено через визуальный редактор |
|||
(не показано 6 промежуточных версий 3 участников) | |||
Строка 1: | Строка 1: | ||
'''Теорема Стокса''' — одна из основных теорем [[дифференциальная геометрия|дифференциальной геометрии]] и [[математический анализ|математического анализа]] об [[интеграл|интегрировании]] [[дифференциальная форма|дифференциальных форм]], которая обобщает несколько теорем [[векторный анализ|анализа]]. Названа в честь [[Стокс, Джордж Габриэль|Дж. Г. Стокса]]. |
'''Теорема Стокса''' — одна из основных теорем [[дифференциальная геометрия|дифференциальной геометрии]] и [[математический анализ|математического анализа]] об [[интеграл|интегрировании]] [[дифференциальная форма|дифференциальных форм]], которая обобщает несколько теорем [[векторный анализ|анализа]]. Названа в честь [[Стокс, Джордж Габриэль|Дж. Г. Стокса]]. |
||
== Формулировка == |
|||
== Общая формулировка теоремы Стокса == |
|||
Пусть на [[Ориентация#Многообразия|ориентируемом многообразии]] <math>M</math> [[размерность пространства|размерности]] <math>n</math> заданы положительно ориентированное [[Ограниченность|ограниченное]] <math>p</math>-мерное [[подмногообразие]] <math>\sigma</math> (<math>1\leqslant p\leqslant n</math>) и [[дифференциальная форма]] <math>\omega</math> степени <math>p-1</math> класса <math>C^1</math>. Тогда если [[Граница (топология)|граница]] подмногообразия <math>\partial\sigma</math> положительно ориентирована, то |
|||
<math>\oint\limits_L\mathbf{a}\cdot d\mathbf{l}= |
|||
\int\ |
: <math>\int\limits_\sigma d\omega=\int\limits_{\partial\sigma}\omega,</math> |
||
где <math>d\omega</math> обозначает внешний дифференциал [[Дифференциальная форма|формы]] <math>\omega</math>. |
|||
Теорема распространяется на [[линейная комбинация|линейные комбинации]] подмногообразий одной размерности — так называемые ''[[цепь (алгебраическая топология)|цепи]]''. В этом случае формула Стокса реализует двойственность между [[Когомологии де Рама|когомологиями де Рама]] и [[Теория гомологий|гомологиями]] циклов многообразия <math>M</math>. |
|||
Циркуляция вектора <math>\mathbf{a}</math> по замкнутому контуру <math>L</math> равна потоку ротора вектора <math>\mathbf{a}</math> через произвольную поверхность <math>S</math>, ограниченную замкнутым контуром <math>L</math><ref>"Математический словарь высшей школы" В.Г.Воднев, А.Ф.Наумович, Н.Ф.Наумович. Издательство МПИ. статья "теорема Стокса" страница 439.</ref>. |
|||
== Следствия из теоремы Стокса == |
|||
Поток ротора вектора через замкнутую поверхность всегда равен нулю, то есть поле ротора является соленоидальным. |
|||
Если в какой-то области векторного поля <math>\operatorname{rot}\mathbf{a} = 0</math>, то циркуляция вектора <math>\mathbf{a}</math> по замкнутому контуру в этой области тоже равна нулю. |
|||
Если циркуляция вектора <math>\mathbf{a}</math> по любому замкнутому контуру равна нулю, то <math>\operatorname{rot}\mathbf{a} = 0</math> и поле безвихревое. |
|||
== Частные случаи == |
== Частные случаи == |
||
Строка 21: | Строка 15: | ||
=== [[Теорема Грина]] === |
=== [[Теорема Грина]] === |
||
Иногда называют теоремой Грина — Римана. Пусть <math>M</math> — [[Плоскость (математика)|плоскость]], а <math>D</math> — некоторая её положительно ориентированная [[Ограниченность|ограниченная]] [[Словарь терминов общей топологии#О|область]] с кусочно-гладкой [[Кривая#Кривая Жордана|жордановой]] границей. Пусть форма первой степени, записанная в координатах <math>x</math> и <math>y,</math> — это выражение <math>L\,dx+M\,dy.</math> Тогда для интеграла от этой формы по положительно [[Ориентация кривой|ориентированной]] (против часовой стрелки) границе области <math>D</math> верно |
Иногда называют теоремой Грина — Римана. Пусть <math>M</math> — [[Плоскость (математика)|плоскость]], а <math>D</math> — некоторая её положительно ориентированная [[Ограниченность|ограниченная]] [[Словарь терминов общей топологии#О|область]] с кусочно-гладкой [[Кривая#Кривая Жордана|жордановой]] границей. Пусть форма первой степени, записанная в координатах <math>x</math> и <math>y,</math> — это выражение <math>L\,dx+M\,dy.</math> Тогда для интеграла от этой формы по положительно [[Ориентация кривой на плоскости|ориентированной]] (против часовой стрелки) границе области <math>D</math> верно |
||
:<math>\ \int\limits_{\partial D} \left(L\,dx+M\,dy\right)=\iint\limits_D\left(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}\right)\,dx\,dy.</math> |
:<math>\ \int\limits_{\partial D} \left(L\,dx+M\,dy\right)=\iint\limits_D\left(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}\right)\,dx\,dy.</math> |
||
Строка 74: | Строка 68: | ||
}} |
}} |
||
=== [[Формула Остроградского| |
=== [[Формула Остроградского|Формула Остроградского — Гаусса]] === |
||
Пусть теперь <math>\partial V</math> — кусочно-гладкая [[гиперповерхность]] (<math>p=n-1</math>), ограничивающая некоторую область <math>V</math> в <math>n</math>-мерном пространстве. Тогда интеграл [[дивергенция|дивергенции]] поля по области равен [[Поток векторного поля|потоку поля]] через границу области <math>\partial V</math>: |
|||
Поток вектора <math>\mathbf{a} |
|||
: <math>\int\limits_V\mathrm{div}\,\mathbf{F}\,dV=\int\limits_{\partial V}\mathbf{F}\cdot d\mathbf{\Sigma}.</math> |
|||
</math> через замкнутую поверхность <math>S |
|||
В трёхмерном пространстве <math>(n=3)</math> с координатами <math>\{x, y, z\}</math> это эквивалентно записи: |
|||
</math> равен интегралу от <math>\operatorname{div}\mathbf a |
|||
⚫ | |||
</math> , взятому по объему <math>V |
|||
или |
|||
</math>, ограниченному поверхностью <math>S |
|||
: <math>\iint\limits_{\partial V}P\,dy\,dz+Q\,dz\,dx+R\,dx\,dy=\iiint\limits_V\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)\,dx\,dy\,dz.</math> |
|||
</math><ref>"Математический словарь высшей школы" В.Г.Воднев, А.Ф.Наумович, Н.Ф.Наумович. Издательство МПИ. статья "теорема Остроградского" страница 437.</ref>. |
|||
: <math>\iint\limits_S\mathbf{a}\cdot d\mathbf{s}= |
|||
\iiint\limits_V\operatorname{div}\mathbf a\cdot d\mathbf{v} |
|||
</math> |
|||
В координатной записи формула Остраградского-Гаусса принимает вид: |
|||
: <math>\iint\limits_S a_x\,dy\,dz + a_y\,dz\,dx + a_z\,dx\,dy= |
|||
⚫ | |||
: <math>a_x, a_y, a_z</math> - проекции вектора <math>\mathbf{a} |
|||
</math> |
|||
: Следствия из теоремы Остроградского-Гаусса: |
|||
: 1) в соленоидальном поле (<math>\operatorname{div}\mathbf a=0 |
|||
</math>) поток вектора <math>\mathbf{a} |
|||
</math> через любую замкнутую поверхность равен нулю. |
|||
: 2) если внутри замкнутой поверхности <math>S |
|||
</math> имеется источник или сток, то поток вектора <math>\mathbf{a} |
|||
</math> через эту поверхность не зависит от ее формы. |
|||
{{Доказ1|title=Вывод из теоремы Стокса| |
{{Доказ1|title=Вывод из теоремы Стокса| |
Текущая версия от 23:30, 13 октября 2024
Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.
Формулировка
[править | править код]Пусть на ориентируемом многообразии размерности заданы положительно ориентированное ограниченное -мерное подмногообразие () и дифференциальная форма степени класса . Тогда если граница подмногообразия положительно ориентирована, то
где обозначает внешний дифференциал формы .
Теорема распространяется на линейные комбинации подмногообразий одной размерности — так называемые цепи. В этом случае формула Стокса реализует двойственность между когомологиями де Рама и гомологиями циклов многообразия .
Частные случаи
[править | править код]Пусть дана кривая (одномерная цепь), ориентированно направленная от точки к точке , в многообразии произвольной размерности. Форма нулевой степени класса — это дифференцируемая функция . Тогда формула Стокса записывается в виде
Иногда называют теоремой Грина — Римана. Пусть — плоскость, а — некоторая её положительно ориентированная ограниченная область с кусочно-гладкой жордановой границей. Пусть форма первой степени, записанная в координатах и — это выражение Тогда для интеграла от этой формы по положительно ориентированной (против часовой стрелки) границе области верно
Определяя дифференциальную форму , найдём её внешний дифференциал:
Принимая во внимание, что и :
Отсюда используя теорему Стокса:
Независимое доказательство формулы Грина приведено в её основной статье.
Формула Кельвина — Стокса
[править | править код]Часто называется просто формулой Стокса. Пусть — кусочно-гладкая поверхность () в трёхмерном евклидовом пространстве (), — дифференцируемое векторное поле. Тогда циркуляция векторного поля вдоль замкнутого контура равна потоку ротора (вихря) поля через поверхность , ограниченную контуром:
или в координатной записи:
Часто в правой части пишут интеграл по замкнутому контуру.
Рассмотрим дифференциальную форму . Тогда, используя свойство дифференциала дифференциальной формы :
Отсюда, используя теорему Стокса:
Пусть . Тогда
Отсюда, используя формулу Грина, получаем
что по определению вихря и есть требуемая величина:
Пусть теперь — кусочно-гладкая гиперповерхность (), ограничивающая некоторую область в -мерном пространстве. Тогда интеграл дивергенции поля по области равен потоку поля через границу области :
В трёхмерном пространстве с координатами это эквивалентно записи:
или
Рассмотрим дифференциальную форму . Тогда, используя свойство дифференциала дифференциальной формы :
Отсюда, используя теорему Стокса:
Литература
[править | править код]- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления — Т. 3
- Арнольд В. И. Математические методы классической механики (djvu) (недоступная ссылка) (недоступная ссылка с 18-05-2013 [4216 дней] — история)
- Картан А. Дифференциальное исчисление. Дифференциальные формы. — М.: Мир, 1971.
См. также
[править | править код]- Векторный анализ
- Дифференциальная форма
- Формулы векторного анализа
- Дифференциальные геометрия и топология
Для улучшения этой статьи желательно: |